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ABSTRACT  1	

Extracellular vesicles (EV) have emerged as promising cell-free therapeutics in 2	

regenerative medicine. However, translating primary cell line-derived EV to clinical 3	

applications requires large-scale manufacturing and several challenges, such as 4	

replicative senescence, donor heterogeneity, and genetic instability.  5	

To address these limitations, we used a reprogramming approach to generate human 6	

induced pluripotent stem cells (hiPSC) from the young source of cord blood mesenchymal 7	

stem/stromal cells (CBMSC). Capitalizing on their inexhaustible supply potential, hiPSC 8	

offer an attractive EV reservoir.  9	

Our approach encompassed an exhaustive characterization of hiPSC-EV, aligning with the 10	

rigorous MISEV2023 guidelines. Analyses demonstrated physical features compatible with 11	

small EV (sEV) and established their identity and purity. Moreover, the sEV-shuttled non-12	

coding (nc) RNA landscape, focusing on the microRNA and circular RNA cargo, completed 13	

the molecular signature. The kinetics of the hiPSC-sEV release and cell internalization 14	

assays unveiled robust EV production and consistent uptake by human neurons. 15	

Furthermore, hiPSC-sEV demonstrated ex vivo cell tissue-protective properties. Finally, 16	

via bioinformatics, the potential involvement of the ncRNA cargo in the hiPSC-sEV 17	

biological effects was explored.  18	

This study significantly advances the understanding of pluripotent stem cell-derived EV. 19	

We propose cord blood MSC-derived hiPSC as a promising source for potentially 20	

therapeutic sEV. 21	

 22	

Keywords: extracellular vesicles, exosomes, nanoparticles, human-induced pluripotent 23	

stem cells, miRNA, circRNA, cord blood 24	

 25	
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Abbreviations: EV: extracellular vesicles; hiPSC: human induced pluripotent stem cells; 26	

MSC: mesenchymal stromal cells; sEV: small extracellular vesicles; cGMP: current good 27	

manufacturing practice; OGD: oxygen and glucose deprivation; NTA: nanoparticle tracking 28	

analysis; CBMSC: cord blood-derived MSC; ATMP: advanced therapy medicinal products; 29	

SDG: sucrose density gradient; TEM: transmission electron microscope; SEC: size-30	

exclusion chromatography; NfL: neurofilament light chain; NPC: neural progenitor cells; 31	

nc-RNA: non-coding RNA; PGRN: pluripotency genes regulatory network. 32	

  33	
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BACKGROUND 34	

Extracellular vesicles (EV) are nanometer-sized lipid bilayer membrane-bound structures 35	

that contain bioactive molecules, including nucleic acids, proteins, and lipids. EV trafficking 36	

serves as a fundamental mechanism for intercellular communication exchange [1]. In view 37	

of possible clinical applications based on EV, it has become evident that utilizing the EV in 38	

therapy can offer several advantages compared to using parental cells (2): i) EV can be 39	

isolated and stored long-term at low temperatures, eliminating the need to produce large 40	

amounts of cells at the time of inoculation, which is required for cellular therapy [2–4]; ii) 41	

EV contents are encapsulated and protected from degradation in vivo [5,6]; iii) EV are 42	

stable bioactive entities [7,8]; iv) EV are able to reach distant targets via blood circulation, 43	

as demonstrated by their intravenous administration in primates (10); and v) EV present 44	

reduced risks of undesired side effects compared to whole cells, particularly because EV 45	

are hypo/non-immunogenic, and therefore, rarely are able to induce immune rejection [9–46	

11]. 47	

Despite the considerable progress in the EV research field and the advantages of cell-free 48	

therapy over cell therapy, the evaluation of EV in regenerative medicine approaches deals 49	

with challenges in achieving clinical applications [12,13]. Among them, one major issue 50	

derives from cell identity and their culture condions, which affect EV properties. .Obtaining 51	

EV from cultured primary cell lines, such as mesenchymal stromal cells (MSC) often used 52	

in regenerative medicine, raises concerns regarding widespread heterogeneous isolation 53	

and cell culture methodologies, limited replication potential, establishment of senescence 54	

[14,15], genetic instability during prolonged cell expansion [16,17], and heterogeneity 55	

within and among cell donors [18,19]. A multitude of such variables makes it difficult to 56	

define the EV characteristics (molecular identity, functionality, quality, and purity) that are 57	

crucial for obtaining consistent functional results, which are essential for the clinical 58	

translation of a potentially therapeutic EV product [13,20,21].  59	
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To overcome the lifespan limitations of any primary cell lines as an EV source for therapy, 60	

some researchers have implemented immortalization techniques [22]. In the present work, 61	

an alternative possibility was explored generating a source of EV by reprogramming a fetal 62	

source-derived MSC [23] to human induced pluripotent stem cells (hiPSC) [24], utilizing a 63	

non-integrative and current good manufacturing practice (cGMP)-compliant method 64	

[25,26]. By employing Sendai virus, we avoided tumorigenic risks associated with 65	

immortalization techniques, insertional mutagenesis, forced expression of oncogenes, 66	

genomic modification, and instability [27]. Therefore, we investigated the physical and 67	

biological features of hiPSC-derived EV, following the MISEV2023 guidelines [28], and we 68	

demonstrated their tissue protective properties. Additionally, we explored the biological 69	

roles of the EV-shuttled circular (circ)RNAs and their potential micro (mi)RNA targets. 70	

Based on our findings, we propose that cord blood MSC-derived hiPSC serve as an 71	

optimal young stem cell source for potentially therapeutic EV. Overall, this study sheds 72	

light on the promising applications of hiPSC-EV in regenerative medicine and highlights 73	

their potential to go beyond current limitations in EV-based therapies. 74	

 75	

  76	
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METHODS 77	

Culture of human induced pluripotent stem cells  78	

hiPSC (n=3) were generated from cord blood MSC and characterized following the 79	

previously described procedures [24]. The hiPSC cultures were maintained in StemMACS 80	

iPS-Brew XF PSC medium (Miltenyi Biotec, Bergisch Gladbach, Germany). Upon reaching 81	

80% confluence, the colonies were detached in accordance with the respective 82	

experimental requirements. For standard hiPSC culture maintenance, cells were incubated 83	

with 5 mM ethylenediaminetetraacetic acid disodium salt (EDTA; Sigma-Aldrich, St. Louis, 84	

Missouri, USA) in D-PBS without Ca2+ or Mg2+ (Euroclone, Milan, Italy) and seeded as cell 85	

clumps on hESC-qualified Matrigel Matrix-coated culture plates (Corning, Corning, New 86	

York, USA). For EV production and kinetics, cells were incubated with Accutase (Biowest, 87	

Nuaillé, France) and seeded as single cells in the presence of Y-27632 RHO/ROCK 88	

pathway inhibitor (Stem Cell Technologies, Vancouver, Canada) at a density of 5,000 89	

cells/cm2 on Truncated Vitronectin Recombinant Human Protein-coated culture surfaces 90	

(VTN-N; Thermo Fisher Scientific, Waltham, Massachusetts, USA). hiPSC identity was 91	

confirmed using short tandem repeat (STR) profiling (data not shown). 92	

Nanoparticle tracking analysis  93	

Nanoparticle Tracking Analysis (NTA) was performed using a NanoSight NS300 (Malvern, 94	

Surrey, UK). Samples were diluted with 0.1 μm tri-filtered D-PBS (Euroclone) to optimize 95	

the quality parameters for analysis. Media incubated for 24 h at 37 °C in cell-free wells of 96	

the plates were used as blank. The diluted samples were analyzed using a low-volume 97	

flow-cell chamber in flow mode, with 5 recordings of 60 s each to ensure a constant 98	

sample flow. 99	

Isolation of extracellular vesicles 100	

For EV isolation, cell culture supernatants were collected on two consecutive days at 70-101	

80% confluence. Cell supernatants were processed through serial centrifugation as 102	
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previously described [29], with minor modifications. Briefly, cell culture supernatants were 103	

pooled, centrifuged at 350 ×g for 10 min at room temperature (21-25 ºC, RT), collected, 104	

and further centrifuged at 4,700 ×g for 15 min at RT. The resulting cleared supernatants 105	

were 0.2 μm filter-sterilized and ultracentrifuged at 100,000 ×g for 1 h at 4 °C using a 106	

Sorvall WX 80+ ultracentrifuge equipped with F37L-8×100 Fiberlite fixed angle rotor 107	

(Thermo Fisher Scientific). The EV-containing pellets were resuspended and successively 108	

washed with 0.1 μm tri-filtered D-PBS. The supernatant was discarded, and the obtained 109	

ultracentrifuged small EV pellet (hiPSC-sEV) was resuspended in a total volume of 200 110	

μL. When specified, EV contained in the cleared supernatant were concentrated by 111	

ultrafiltration (UF-EV) at 4,000 ×g using 30 kDa Amicon Ultra-15 tubes (Merck, Darmstadt, 112	

Germany). 113	

Electron microscopy 114	

For Transmission Electron Microscopy (TEM), hiPSC-sEV were prepared as previously 115	

described and analyzed within 24 h. The sample was adsorbed onto 300 mesh carbon-116	

coated copper grids (Electron Microscopy Sciences, Hatfield, Pennsylvania, USA) and 117	

fixed with 2% glutaraldehyde in D-PBS. Grids with adhered hiPSC-sEV were examined 118	

using a Philips CM 100 TEM microscope (Philips, Amsterdam, Netherlands.) at 80 kV after 119	

negative staining with 2% phosphotungstic acid (Sigma-Aldrich) and images were 120	

captured using a digital camera (Kodak, Rochester, New York, USA; or using Jeol JEM 121	

2100Plus (Jeol, Tokyo, Japan) electron microscope equipped with a 9 MP complementary 122	

metal oxide superconductor (CMOS) and Gatan Rio9 digital camera (Gatan, Inc. 123	

Pleasanton, CA, USA). 124	

Sucrose density gradient 125	

Tubes containing linear sucrose density gradients were manually prepared. A volume of 126	

2.5 mL of 2.0 M, 1.4 M, 0.8 M, and 0.25 M sucrose (Merck) and 20 mM HEPES (Sigma-127	

Aldrich) MilliQ water solutions were sequentially pipetted into an open-top polyclear 128	
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centrifuge tube (Seton, USA). EV-containing pooled size-exclusion chromatography (SEC) 129	

fractions were loaded onto the gradient and ultracentrifuged 200,000 ×g overnight at 4 °C 130	

on a Sorvall WX 80+ ultracentrifuge (Thermo Fisher Scientific) equipped with TH-641 131	

Swinging Bucket Rotor (Thermo Fisher Scientific). Eight fractions were collected, and the 132	

refractive index of each fraction was measured using a HI96800 refractometer (Hanna 133	

Instruments, Woonsocket, Rhode Island, USA) with sucrose temperature compensation 134	

(nD20). Each fraction was then washed through ultracentrifugation with a F37L-8×100 135	

Fiberlite fixed angle rotor (Thermo Fisher Scientific) and resuspended in a total volume of 136	

100 μL of 0.1 μm tri-filtered D-PBS for further analysis. 137	

MACSPlex assay 138	

The Human MACSPlex Exosome Kit (Miltenyi Biotec) was used in the cleared 139	

supernatants as previously described [29]. Analysis and data processing were performed 140	

on a FACSCanto II cytometer using BD FACSDiva software (BD, Franklin Lakes, New 141	

Jersey, USA). 142	

Western Blotting 143	

Proteins were extracted in RIPA buffer (Sigma-Aldrich), following standard procedures. 144	

The protein concentration was determined using the Pierce BCA Protein Assay Kit 145	

(Thermo Fisher Scientific), according with manufacturer’s instructions. To evaluate 146	

tetraspanin levels (CD63, CD9, and CD81), 40 μg of proteins were separated on Novex 147	

WedgeWell 4-20% Tris-Glycine Gels (Thermo Fisher Scientific) under non-reducing 148	

conditions. To detect other proteins, 8-40 μg of proteins were separated on a 10% 149	

polyacrylamide gel (Sigma-Aldrich) under reducing conditions with a 10X Bolt Sample 150	

Reducing Agent (Thermo Fisher Scientific). Samples were boiled at 95 °C for 5 min, using 151	

4X NuPAGE LDS Sample Buffer (Thermo Fisher Scientific). All gels were blotted using an 152	

iBlot 2 Gel Transfer Device (Thermo Fisher Scientific) with iBlot PVDF or nitrocellulose 153	

Transfer Stacks (Thermo Fisher Scientific), as specified in Table 1. Membranes were 154	
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blocked with 5% nonfat milk and incubated with the respective primary antibodies 155	

overnight at 4 °C, then with the appropriated secondary antibody. The antibodies used are 156	

listed in Tables 1 and 2. The proteins of interest were visualized using the Amersham ECL 157	

Prime Western Blotting System (GE Healthcare, Chicago, Illinois, USA). 158	

Chemiluminescence images were obtained using ChemiDoc XRS+ (Bio-Rad, Hercules, 159	

California, USA). 160	

Size-exclusion chromatography 161	

SEC was performed according to a modified version of a previously described protocol 162	

[30]. SEC columns were prepared in 10 mL plastic syringes: the tip of the syringe was 163	

filled with a nylon stocking filter and 10 mL of Sepharose (Sigma-Aldrich) was poured into 164	

the syringe to form a 1.5 cm-diameter and 4.5 cm-height column. hiPSC-sEV or hiPSC-165	

UF-EV samples were resuspended in 0.1 μm tri-filtered D-PBS and loaded on the column. 166	

For the Carboxyfluorescein succinimidyl ester (CFSE)-labelling protocol, elution was 167	

performed using 0.1 μm tri-filtered Neurobasal (Gibco). Twenty sequential fractions (0.5 168	

mL) were collected and processed immediately or within 24h for further analysis. 169	

miRNome PCR-array 170	

The miRNome of hiPSC-sEV was extracted using the miRNeasy Mini Kit (Qiagen, Venlo, 171	

Netherlands) and the RNeasy MinElute Cleanup Kit (Qiagen), following the manufacturer’s 172	

instructions. The extracted RNA was retrotranscribed using the TaqMan Advanced miRNA 173	

cDNA Synthesis Kit (Thermo Fisher Scientific), and analyzed using the TaqMan 174	

OpenArray Real-Time PCR Master Mix and TaqMan OpenArray Human MicroRNA Panel 175	

array (Thermo Fisher Scientific) on a QuantStudio 12 K Flex Real Time PCR System 176	

(Thermo Fisher Scientific) [24]. Dead entries based on the current miRBase version 22.1 177	

database were excluded for further analysis. 178	

circRNA micro-array 179	

The extracted total RNA was enriched in circRNAs using a RNase R treatment (Epicentre 180	
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Biotechnologies, Madison, WI, USA). The RNA samples were amplified and transcribed 181	

into fluorescent cRNA using the Super RNA Labeling Kit random priming method 182	

(ArrayStar, Carlsbad, California, USA). Hybridization was performed using an Arraystar 183	

Human Circular RNA Microarray (Arraystar V1.0). Scanning was performed using an 184	

Agilent Scanner G2505C, and raw data were extracted using the Agilent Feature 185	

Extraction software (version 11.0.1.1). The identification of circRNAs followed the 186	

circBASE database nomenclature. A quality threshold of the 90th percentile was applied to 187	

the signal intensity to retrieve a list of the most abundant molecules [31]. Results were 188	

archived in the NCBI GEO database under the series accession number GSE240004. 189	

Comparison with hiPSC was performed using a previously published dataset available in 190	

the NCBI GEO database under the series accession number GSE144629. 191	

Neural progenitor cell-derived postmitotic neurons differentiation 192	

Neural progenitor cells (NPCs) were generated from fibroblast-derived hiPSC [32] and 193	

cultured onto matrigel-coated flasks in NPC medium containing DMEM/F12, N-2 and B-27 194	

supplements (Thermo Fisher Scientific), 1% Pen/Strept, and 20 ng/ml bFGF (Thermo 195	

Fisher Scientific). NPCs were passaged twice a week using Accutase solution (Sigma-196	

Aldrich). 197	

For neurons differentiation, medium of 90% confluent NPCs was replaced with 198	

differentiation medium composed of DMEM/F12, N-2 and B-27 supplements (Thermo 199	

Fisher Scientific), 1% Pen/Strept, 10 μM SU5402 (Sigma-Aldrich,), 8 μM PD0325901 200	

(Sigma-Aldrich), 10 μM DAPT (Sigma-Aldrich). Differentiation medium was replaced every 201	

day with a fresh one on days 1 and 2. At day 3, cells were detached with Accutase 202	

(Sigma-Aldrich) and seeded at a density of 75,000 cells/cm2 onto poly-L-203	

lysine/laminin/fibronectin (100 μg/ml, 2 μg/ml, 2 μg/ml) (Sigma-Aldrich)-coated coverslip in 204	

neuronal maturation medium supplemented with 10 μM ROCK inhibitor Y27632 for the first 205	

24 h. Neuronal maturation medium was composed by Neurobasal A (ThermoFisher 206	
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Scientific) supplemented with 1× B-27 supplement, 2 mM glutamine, 1% Pen/Strept, 20 207	

ng/ml BDNF (Peprotech), 100 nM ascorbic acid (Sigma-Aldrich), 1 μg/μl Laminin (Sigma- 208	

Aldrich), 10 μM DAPT (Sigma- Aldrich), 250 μM dbcAMP (Selleckchem). The culture 209	

medium was replaced the next day to remove the ROCK inhibitor; then half of the medium 210	

was replaced with a fresh neuronal maturation medium twice a week. 211	

Extracellular vesicles labeling 212	

hiPSC-sEV were mixed in Diluent C (Sigma-Aldrich) and PKH26 (Sigma-Aldrich) and 213	

incubated for 20 minutes at RT in the dark. The reaction was stopped by adding an equal 214	

volume of 1% Bovine Serum Albumin (BSA) (Sigma Aldrich). hiPSC-sEV were then 215	

ultracentrifuged at 100,000 xg for 1 hour and resuspended in D-PBS (Euroclone). For 216	

CFSE labeling, CellTrace CFSE Cell Proliferation Kit (Thermo Fisher Scientific) was used 217	

at a final concentration of 20 µM to stain hiPSC-sEV preparations containing 1.2-2.4 × 1012 218	

particles/mL. After incubation for 2 h, the hiPSC-sEV were washed through 219	

ultracentrifugation and further purified by SEC. Fractions 6 and 7 were collected and 220	

pooled for subsequent use. 221	

Flow cytometry 222	

To evaluate CFSE+ hiPSC-sEV, a specific setup for nanoscale flow cytometry was 223	

implemented on a FACSCanto II cytometer using FACSDiva software (BD). At least 1,000 224	

events were acquired within P1 gate at a low acquisition flow rate. The acquired particles 225	

were plotted against SSC-H and FL1-H to determine the percentages of CFSE-positive 226	

events. Megamix-Plus SSC polystyrene beads (160, 200, 240, and 500 nm) (Stago, 227	

Asnières-sur-Seine, France) were used for quality control following the manufacturer’s 228	

instructions.Standard flow cytometry was performed to evaluate hiPSC-sEV uptake by 229	

neurons. 230	

Immunofluorescence staining and acquisition protocol 231	
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Neurons (75,000 cells/cm2) were incubated for 24h with 106 particles (PKH26-hiPSC-sEV) 232	

per cell [33] and then analyzed by confocal microscopy. 233	

Samples were then fixed in 4% paraformaldehyde for 20 min on ice, washed and 234	

permeabilized for 30 min 0,3% Tryton (Eurobio Scientific, Les Ulis, France), 3% BSA 235	

(SERVA Electrophoresis GmbH, Heidelberg, Germany). Then, cells were incubated with 236	

chicken polyclonal anti-human MAP2 primary antibody 1:1000 (ab92434, abcam) 237	

overnight at 4°C; the day after, with goat anti-chicken secondary antibody 1:1000 238	

(AlexaFluor-647, Thermo Fisher Scientific) for 1h at RT and with 0.1 μg/mL DAPI (Roche, 239	

Basel, Switzerland). Glass dishes were mounted on ProLong Gold Antifade Mountant 240	

(Thermo Fisher Scientific).  241	

Immunofluorescence imaging was performed using a Leica SP8 Stellaris confocal 242	

microscope (Leica, Wetzlar, Germany), managed by LASX software. The acquisition was 243	

taken with a white light laser and Diode 405, using the HC PL APO CS 2 63X/1.30 GLYC 244	

NA objective. Each ROI was 2048 x 2048, zoom 1.28, with a pixel size of 0.071µm and a 245	

voxel size of 0.071µm (acquired at 400 Hz). For the orthogonal views, images were 246	

acquired with the same objective, and were 2768 x 2768, zoom 1.28, having a pixel size of 247	

0.052 µm and a voxel size of 0.052µm; 15 steps of 0.633 µm (acquired at 428Hz).  248	

Ex vivo model of brain ischemia 249	

Organotypic cortical brain slice preparation was performed as previously described [34], 250	

starting from the prefrontal cortex of C57BL/6 mouse pups (P1-3). After one week in 251	

culture (day 0), cortical slices were subjected to oxygen and glucose deprivation (OGD), 252	

using an hypoxic chamber (Whitley H35 Hypoxystation, Don Whitley Scientific, UK) at 37 253	

ºC,  [O2]=0.1%, [CO2]=5%, [N2]=95% for 2 h in deoxygenated glucose-free medium. One 254	

hour after OGD, cortical slices were treated with different doses of hiPSC-sEV (0.6-6-60 × 255	

109 particles/well/administration, named 1x, 10x, 100x) delivered in the culture medium. At 256	

24h, the culture medium was changed and freshly sEV were administered at the same 257	
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concentration. The collected medium was analysed for neurofilament light chain (NfL) 258	

release. Forty-eight hours after OGD, organotypic slices were analyzed for cell death using 259	

a propidium iodide incorporation assay. Slices were collected using the TRIzol reagent 260	

(Thermo Fisher Scientific) for subsequent gene expression studies. 261	

Propidium iodide incorporation 262	

To evaluate cell death 48 h after OGD injury, the inserts with cortical slices were placed on 263	

new plates with fresh NB/B27 medium (Invitrogen, Waltham, Massachusetts, USA) 264	

containing 2 µM of propidium iodide (PI; Sigma-Aldrich, USA) [35] and incubated for 30 265	

min. Images were acquired using the TRITC filter of an Olympus IX71 microscope at X4 266	

magnification (Olympus, Tokyo, Japan) and analyzed using Fiji software (University of 267	

Wisconsin-Madison, USA). Fluorescence intensity per slice was measured as Integrated 268	

Density and the value was normalized over the slice area (in mm2). 269	

Quantification of neuronal injury biomarker in the culture medium 270	

To assess neuronal damage, the amount of neurofilament light chain (NfL) released in the 271	

culture media, collected and stored at −20°C, was quantified. Analysis was performed 272	

using a commercially available single molecule array (simoa) immunoassay (Quanterix, 273	

Billerica, MA, USA) on an SR-X Analyzer (Simoa® NF-light™ V2 Advantage Kit, Item 274	

104073) as described by the manufacturer. A single lot of reagents was used for all 275	

samples. 276	

qPCR (quantitative Polymerase Chain Reaction) 277	

A CFX96 Real-Time System coupled with a C1000 Thermal Cycler (Bio-Rad) was used for 278	

all qPCR experiments. Data were analyzed and exported for analysis using the CFX 279	

Manager software (Bio-Rad). For miRNA validation, miRNA-enriched RNA was extracted 280	

from hiPSC-sEV or SEC fractions, as described above. Retrotranscription was performed 281	

using a miScript II RT Kit (Qiagen) or by cDNA Reverse Transcription (RT) kit (Applied 282	

Biosystems). Real-time PCR was performed using miScript SYBR Green PCR Kit 283	
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(Qiagen) and miScript Primer Assays (Qiagen) for amplification of specific targets. Global 284	

normalization was performed, and the normalizing factor was calculated as the mean of 2-285	

ΔCt values of all genes analyzed.  286	

For circRNA analysis, total RNA was extracted from hiPSC and hiPSC-sEV pellets using 287	

TRIzol reagent (Thermo Fisher Scientific). RNase R treatment (Epicentre Biotechnologies, 288	

Madison, WI, USA) was performed [26] prior to retrotranscription using SuperScript IV 289	

VILO Master Mix (Thermo Fisher Scientific), amplification using PowerUp SYBR Green 290	

Master Mix (Thermo Fisher Scientific), and global normalization. For gene expression 291	

analysis, the ΔΔCt method was applied, using Gapdh as a housekeeping gene [36]. For 292	

assessment of full-length mRNA, 250 ng RNA was retrotranscribed with SuperScript IV 293	

VILO Master Mix (Invitrogen) and amplified with DreamTaq PCR Master Mix (2X) (Thermo 294	

Fisher Scientific). Amplicons were detected by standard gel electrophoresis. The 295	

sequences of the designed primers or product codes of commercially available assays 296	

(Qiagen) are listed in Table 3. 297	

EV circRNA biological role prediction 298	

To explore the potential involvement of the hiPSC-sEV circRNA cargo in the pathways 299	

regulated in the organotypic cortical brain slice OGD model, the 10 most expressed 300	

circRNAs were selected based on their normalized array signals. Their potential miRNA 301	

targets were predicted using TargetScan, PITA, and miRanda algorithms [37–39] requiring 302	

specific parameters for prediction: miRanda score over 80 and energy lower than 15, and 303	

for PITA, dGduplex_miRNA lower than -15 and dGopen_miRNA higher than -15. The list 304	

of miRNAs with a minimum of two binding sites (on the same or on different circRNAs), 305	

according to the predictions of at least two algorithms, was ordered based on their frontal 306	

lobe expression signal in the miRNA tissue Atlas v2.0 [40] to obtain a list of 15 miRNAs 307	

most probably targeted in our biological context. To predict their biological roles, the 308	

multiMiR R package [41] was employed to retrieve miRNA-validated targets, filtering the 309	
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most consistent results (only PAR-CLIP|HITSCLIP|CLASH|Luciferase|Degradome|ChIP-310	

seq|ELISA|Immuno. Supporting data were selected after excluding weak MTI findings). 311	

The DOSE package [42] was used to calculate enrichment in the DISgeNet database [43] 312	

while clusterProfiler was adopted for gene ontology (GO) biological process enrichments. 313	

The results were then manually refined to better contextualize them in our biological 314	

context, focusing on ischemic and hypoxia-related brain diseases and hypoxia, ischemia, 315	

apoptosis, cell death, and cytokine-related terms among the biological processes. Only the 316	

terms with adjusted p-values lower than 0.05 were considered as enriched. The enrichplot 317	

functions were used to graphically represent the results. 318	

Reference databases and statistical analysis 319	

The miRNA and circRNA data were annotated and analyzed using various reference 320	

databases and software tools. The miRbase 22.1 database was utilized for miRNA 321	

nomenclature and identification (https://mirbase.org/) [44]. The HGNC Database, HUGO 322	

Gene Nomenclature Committee (HGNC), European Molecular Biology Laboratory, 323	

European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, 324	

Cambridge CB10 1SD, United Kingdom, was employed to study miRNA families and 325	

clusters (https://www.genenames.org) [45]. For experimentally validated miRNA-target 326	

interactions, the miRTarBase 9.0 beta (https://mirtarbase.cuhk.edu.cn) [46] was thoroughly 327	

investigated. For the circRNA study, the CircBase from the July 2017 update 328	

(http://www.circbase.org/) [47] was used as a reference. To create visual representations 329	

of the miRNome heatmap and circRNA plots, we employed the gplots package and 330	

heatmap.2() function in R (R Core Team (2018). R: Language and environment for 331	

statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available 332	

online at https://www.R-project.org.  333	

For miRNA profile comparison, top expressed miRNA lists were retrieved from tables or 334	

supplementary materials reported by other groups [48–50] and limited to the first 20 335	
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entries if longer. MiRNA names were updated to mirBase version 22.1, if needed, to 336	

compare common entries. Venn diagram representation of the miRNA common to one or 337	

more over the four examined profiles was produced online by Venny (Oliveros, J.C. (2007-338	

2015) Venny. An interactive tool for comparing lists with Venn's 339	

diagrams. https://bioinfogp.cnb.csic.es/tools/venny/index.html). 340	

All statistical analyses and graphical representations were performed using Prism 6 341	

software (GraphPad Software, GraphPad, La Jolla, California, USA). Details of the specific 342	

statistical analysis methods are detailed in the Figure legends. Statistical significance was 343	

set at p < 0.05.  344	
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RESULTS 345	

Human induced pluripotent stem cells release small extracellular vesicles 346	

The initial detection of EV release from hiPSC involved performing NTA on cleared 347	

supernatants from hiPSC cultures, diluted in D-PBS. This analysis revealed a nanoparticle 348	

population with a size distribution consistent with that of sEV (30) (Figure 1A). Notably, the 349	

50th percentile size was 125 ± 3 nm, while the 90th percentile size was 185 ± 4 nm 350	

(Supplementary Figure 1A). Importantly, this dimensional profile remained consistent over 351	

successive days of hiPSC culture, as demonstrated by the mean and mode size values 352	

(Figure 1B). The same samples were analyzed using NTA to determine the kinetics of 353	

hiPSC-sEV release. The observed nanoparticle concentration per mL was approximately 354	

15-60 x 109, with a three-fold increase observed over three days of hiPSC culture (Figure 355	

1C). 356	

To validate the size and structure of the hiPSC-sEV, we concentrated them through 357	

ultracentrifugation and analyzed them using TEM. Images obtained corroborated the NTA 358	

findings, confirming the presence of EV with a diameter of 100 nm (Figure 1D). 359	

We performed a CFSE assay to characterize the biological nature of hiPSC-sEV [28,51]. 360	

The assay results indicated the integrity of these vesicles, with 79.0 ± 4.6% of CFSE-361	

positive events, underscoring their status as membrane-enclosed bodies containing active 362	

enzymes (n=3) (Figure 1E). 363	

To further confirm the vesicular identity of hiPSC-sEV, we employed a sucrose density 364	

gradient (SDG) to assess their flotation properties (Figure 1F). Following hiPSC-sEV 365	

separation, we collected eight fractions along the SDG (Supplementary Figure 1B). NTA 366	

analysis revealed a peak particle count in fraction 7 (Figure 1G), corresponding to a 367	

density of 1.21 ± 0.00 g/mL (Figure 1H). This observation was consistent with protein 368	

concentration peaks at fraction 7, as determined by the BCA assay, which is consistent 369	
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with previous results (Figure 1I). Validation of hiPSC-sEV presence was obtained using 370	

TEM (Supplementary Figure 1C). 371	

Altogether, our findings demonstrate that hiPSC release sEV with consistent physical and 372	

biological properties. Additionally, these results provide insights into optimal harvesting 373	

timing for hiPSC-sEV in subsequent studies. 374	

Extracellular vesicle protein cargo defines their identity and cell source 375	

To elucidate the presence and relative abundance of markers associated with identity, cell 376	

type source, organelle origin, and biogenesis pathways, a comprehensive biochemical 377	

analysis was performed on hiPSC-sEV. This entailed surface antigen immunophenotyping 378	

and assessment of protein content. 379	

Utilizing a bead-based MACSplex assay in conjunction with flow cytometry, we detected 380	

the presence of EV-enriched tetraspanins CD9, CD63, and CD81. High levels of 381	

pluripotency/multipotent progenitor (SSEA-4, CD133/1), early embryonic (ROR1), and 382	

epithelial (CD326, CD29) cell markers were observed. Conversely, antigens linked to 383	

mesenchymal stromal cells (CD146, CD105, CD44, NG2) [29,52] and immune system 384	

cells (CD45, CD31, CD14) (26) were not detected (Figure 2A). Remarkably, major 385	

histocompatibility complex classes, HLA-ABC and HLA-DRDPDQ were not detected in 386	

hiPSC-sEV. 387	

The tetraspanin content was further evaluated by western blot analysis, revealing hiPSC-388	

sEV enrichment when compared to parental hiPSC (Figure 2B). Surface membrane 389	

antigens associated with pluripotency, TRA1-60, TRA1-81, and SSEA-4 were also 390	

detected, with higher abundance in hiPSC-sEV compared to hiPSC (Supplementary 391	

Figure 1D). 392	

Examination of cytosolic proteins revealed that the EV marker ALIX (95 kDa) exhibited an 393	

exclusive signal in hiPSC-sEV, in contrast to other commonly used EV markers, ANXA1, 394	

FLOT1, and FLOT2 (39, 47, and 49 kDa, respectively), which were similarly represented in 395	
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hiPSC or slightly more prominent than in released hiPSC-sEV (Figure 2C). Non-EV-396	

specific cytosolic proteins ACTB, GAPDH, and HSP70 (42, 36, and 70 kDa, respectively) 397	

were exclusively or enriched in parental hiPSC, while they were faintly detected or absent 398	

in hiPSC-sEV (Figure 2D). 399	

Further characterization was performed to exclude the presence of biological materials 400	

derived from other cellular compartments. Organelle markers for the endoplasmic 401	

reticulum (CALR, 46 kDa), mitochondria (UQCRC1, 53 kDa), and Golgi (GM130, 130 kDa) 402	

were detected only in hiPSC. Meanwhile, nuclear markers were detected in both parental 403	

hiPSC and hiPSC-sEV at similar levels (H3, 15 kDa), or enriched in hiPSC-sEV (LMNB1, 404	

66-70 kDa). Secreted proteins and components of the extracellular matrix were either 405	

scarcely present (LAMB2, 220 kDa) or enriched (FN, 240 kDa) in hiPSC-sEV (Figure 2E). 406	

Validation of widely accepted EV markers CD63 and ALIX was carried out in the context of 407	

sucrose density gradient (SDG) fractions. The results, consistent with NTA and BCA data, 408	

exhibited an exclusive signal for CD63 (Figure 2F) and a highly enriched signal for ALIX 409	

(Figure 2G). 410	

These findings collectively demonstrate the presence of markers typifying EV and their 411	

biogenesis pathways within hiPSC-sEV. The presence of surface antigens characteristic of 412	

parental cells and the absence of antigens associated with other potentially co-isolating 413	

organelles align with the MISEV2023 guidelines [28]. 414	

Size-exclusion chromatography reveals identity of pure extracellular vesicles 415	

We further sought to determine hiPSC-sEV integrity and purity after UC isolation. To 416	

achieve this, we compared hiPSC-sEV with hiPSC-UF-EV, a process known to impact sEV 417	

integrity negatively [53]. Both hiPSC-sEV and hiPSC-UF-EV underwent size-exclusion 418	

chromatography (SEC), generating 22 distinct fractions (Figure 3A). 419	

hiPSC-UF-EV were separated into particle-enriched (peak at 6-10) and protein-enriched 420	

(peak at 14-18) fractions, as confirmed by NTA (Figure 3B) and protein quantification 421	
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(Figure 3C), respectively. NTA also indicated the presence of particles at low, yet 422	

detectable, levels in protein-enriched fractions (12–22). In contrast, particle-enriched 423	

fractions showed low protein content, with no consistent concentration peak (from 5 to 8). 424	

The verify the identity of the counted particles, western blot analysis was performed. A 425	

CD63 signal colocalized with particle-enriched fractions, peaking in fractions 6-8 (Figure 426	

3D). However, protein-enriched fractions consistently exhibited a smeared CD63 signal 427	

(from 12 to 16), indicating hiPSC-UF-EV samples contained extraneous EV debris. 428	

hiPSC-sEV underwent a more precise separation using SEC. NTA particle count 429	

distribution appeared cleaner, without the persistence of particles in the late fractions 430	

(Figure 3E). A particle count peak was detected in fractions 6-7, consistent with protein 431	

content, which was consistently more abundant in these particle-associated fractions 432	

(Figure 3F). Notably, protein content was negligible or absent in these particle-poor 433	

fractions, suggesting that the UC isolation method effectively removed contaminated 434	

soluble proteins from hiPSC-sEV, a departure from UF. The particle identities were further 435	

assessed, revealing a specific CD63-positive signal tightly concentrated in fractions 6-8 436	

(Figure 3G). Subsequent fractions showed no CD63 signal. The identity and integrity of 437	

hiPSC-sEV were confirmed by the FLOT1 (Figure 3H) and ALIX (Figure 3I) evaluation, 438	

with both proteins showing strong, distinct signals enriched in fractions 6-8 with no smears. 439	

TEM validation underscored the previous observations. The SEC-hiPSC-UF-EV fraction 440	

contained more debris and protein aggregates, whereas the SEC-hiPSC-sEV fraction 441	

displayed intact EV (Figure 3J). 442	

The particle-to-protein ratio was calculated to assess purity, comparing hiPSC-UF-EV and 443	

hiPSC-sEV using SEC. The purity ratio was significantly higher in SEC- hiPSC-sEV than in 444	

SEC- hiPSC-UF-EV, with 930 x 106 particles/µg and 0.5 x 106 particles/µg, respectively 445	

(Figure 3K). Further analysis demonstrated that SEC improved the purity of hiPSC-sEV. 446	
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While median values fell within the same 0.1-1 logarithmic range, the purity ratio of SEC- 447	

hiPSC-sEV remained significantly higher than that of hiPSC-sEV (Figure 3L). 448	

Collectively, these findings establish SEC as a method to assess and preserve hiPSC-sEV 449	

integrity, offering the potential for enhanced hiPSC-sEV purity without the compromise of 450	

associated identity markers. Furthermore, we reiterate the detrimental impact of 451	

ultrafiltration on hiPSC-EV isolation, endorsing UC as a suitable separation approach. 452	

Profiling the miRNome cargo of extracellular vesicles  453	

The comprehensive biological characterization of hiPSC-sEV was complemented by the 454	

determination of their non-coding (nc) RNA content. First, we employed a high-throughput 455	

PCR array method encompassing 754 human miRNAs based on the miRBase version 14 456	

database (https://www.mirbase.org/). This analysis revealed a conserved expression of 457	

147 unique miRNAs across the three distinct hiPSC-sEV batches (Figure 4A and 458	

Supplementary Figure 2A). Based on amplification outputs, the average top-ranked 459	

miRNAs belonged to pluripotency-associated miRNA families and clusters (Figure 4B and 460	

Supplementary Figure 2B). Conversely, the least expressed miRNAs primarily belonged to 461	

the MIR515 family, which is associated with human trophoblast differentiation [54,55] 462	

(Supplementary Figure 2C). The differential ranking of miRNAs was validated on selected 463	

targets using qPCR, which confirmed the same amplification pattern (Supplementary 464	

Figure 2D).  465	

To demonstrate that the identified miRNAs were associated with hiPSC-sEV and not 466	

influenced by protein contaminants or other particle factors, the top-ranked miRNAs were 467	

validated using qPCR in SEC-hiPSC-sEV samples. The results showed clear amplification 468	

of all analyzed miRNAs in hiPSC-sEV-enriched SEC fractions 5-8 (Figure 4C). Further 469	

analysis focused on comparing the hiPSC-sEV miRNome with that of the parent hiPSC 470	

cells, to define specificity in terms of miRNA content. The hiPSC-sEV dataset 471	

demonstrated complete overlap with the hiPSC miRNome, underscoring a shared content 472	
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of the same 147 miRNAs. Upon applying a 10-fold cut-off (sEV-to-hiPSC ratio), the 473	

analysis showed the overrepresentation of a few miRNAs in hiPSC-sEV, whereas just one 474	

miRNA was underrepresented (Figure 4D), although not significantly different (Figure 4E).  475	

This analysis revealed a distinctive molecular signature of pure hiPSC-sEV, affirming the 476	

alignment with the identity of their parent hiPSC. 477	

Finally, we investigated if the miRNA profile of hiPSC-sEV was consistent with previous 478	

studies. To this aim, the list of 20 top expressed miRNAs in hiPSC-sEV was compared to 479	

other hiPSC-derived EV profiles already published [48–50]. The comparison revealed the 480	

presence of 50 unique miRNAs and among them only hsa-miR-92a-3p (2%) was common 481	

to all lists, belonging to the pluripotency-associated miRNA clusters 17/92. Five miRNAs 482	

(10%) resulted common to three out of four profiles and 17 (38%) common to two out of 483	

four signatures (Supplementary Figure 2E). The profile most similar to the one described 484	

in our work resulted the one published by Bi and colleagues, which shows 11 miRNAs 485	

(55%) in common, while the other two profiles were more similar among them.  486	

Profiling the circRNome cargo of extracellular vesicles  487	

Our analysis into the ncRNA content extended to address the class of circRNA molecules, 488	

with the aim to characterize for the first time the circRNA profile of hiPSC-sEV. 489	

A total of 4,747 circRNAs were found to be shared by hiPSC-sEV and hiPSC, presenting a 490	

highly similar signal distribution: 98.2% of these molecules exhibited a signal intensity 491	

within a log-fold change range (Supplementary Figure 2F).  492	

For a more detailed analysis of the differential expression between hiPSC-sEV and their 493	

parental hiPSC, we selected a panel of 46 circRNAs among the molecules detected by 494	

microarray for qPCR analysis. Similar to the miRNome cargo, we employed a 10-fold cut-495	

off (sEV-to-hiPSC ratio) and observed an overrepresentation of certain circRNAs within 496	

hiPSC-sEV, whereas no circRNAs were found to be underrepresented (Figure 4F). 497	

Moreover, these differences lacked statistical significance (Figure 4G). 498	
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Given the abundance of pluripotency-associated ncRNA shuttled by hiPSC-sEV, also the 499	

presence in sEV of coding full-length mRNA transcripts of the Pluripotency Genes 500	

Regulatory Network (PGRN) and other Yamanaka factors [56] was investigated by PCR 501	

and detected by gel electrophoresis comparing with the parental hiPSC. The analysis 502	

clearly showed the absence of full-length mRNAs of OCT4, SOX2, MYC, NANOG, LIN28A 503	

and KLF4 genes in hiPSC-sEV (Figure 4H).  504	

Extracellular vesicles elicit a protective response upon acute damage 505	

We investigated the ability of hiPSC-sEV to be internalized by neuronal cells for releasing 506	

ncRNA cargo into the cytoplasm, thus exerting a biological modulation on injured cells. 507	

The uptake was tested using hiPSC-sEV labeled with PKH26 (PKH26-hiPSC-sEV) on 508	

human neurons differentiated from NPCs as in vitro model. Fluorescence was detected 509	

using confocal microscopy after 24h of PKH26-hiPSC-sEV incubation (Figure 5A). We 510	

observed PKH26-positive intracellular particles, as shown in Figure 5A and 5B, 511	

demonstrating the successful uptake by the cells. To support these data, using another EV 512	

staining and another technique, we confirmed the integration of CFSE- hiPSC-sEV on the 513	

same in vitro model by flow cytometry, as shown in Supplementary Figure 3A and 3B.  514	

Based on these results, we tested the therapeutic potential of hiPSC-sEV in an ex vivo 515	

model of brain ischemia, represented by organotypic cortical slices subjected to OGD 516	

(Figure 6A). A logarithmic dose-response curve was applied, consisting of two subsequent 517	

administrations of 0.6-6.0-60.0 × 109 particles/well/administration (1×, 10×, and 100× dose, 518	

respectively) at 1h and 24h post-OGD insult. Cell death in brain tissue was evaluated 48h 519	

after OGD using a PI incorporation assay (Figure 6B). hiPSC-sEV exhibited a strong 520	

protective effect on OGD-injured slices, with a significant reduction in PI incorporation 521	

across all applied doses, with the 10x dose showing the highest protection (Figure 6C). 522	

Protective effects induced by hiPSC-sEV were confirmed when evaluating NfL, as a proxy 523	

of neuronal damage, in the culture media. Compared to OGD untreated condition, all three 524	
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doses showed a significant reduction of released NfL (Figure 6D). 525	

To investigate the underlying molecular mechanisms of hiPSC-sEV, we assessed the 526	

transcript levels of a selected panel of genes related to survival and cell growth.  527	

Apoptosis-associated Bcl-2 and Bax were significantly upregulated following OGD, and in 528	

particular Bcl-2 showed a partial rescue upon hiPSC-sEV treatment, with the 100× dose 529	

reaching significance (Figure 6E). Proliferation-associated Mki67 and Pcna genes were 530	

not altered after OGD, yet exhibited a significant increase upon hiPSC-sEV treatment, 531	

compared to control and untreated OGD slices, particularly with the 10× dose (Figure 6F). 532	

In order to understand which cell population was associated with proliferative activity, we 533	

analyzed the expression of neuronal (NeuN, Figure 6G), astrocytic (GFAP, Figure 6H) and 534	

microglial (CD11b, Figure 6I) related genes. The OGD-induced downregulation of NeuN 535	

was not affected by hiPSC-sEV treatments. GFAP was upregulated after OGD, and a dose 536	

response effect was observed with hiPSC-sEV 100x inducing a significant downregulation. 537	

At last, hiPSC-sEV induced an up-regulation of the microglial marker CD11b, with doses 538	

10x and 100x showing the highest effects. 539	

We then explored the potential role of hiPSC-sEV-shuttled circRNAs in contributing to the 540	

observed beneficial effects. The ten most highly expressed circRNAs (Supplementary 541	

Figure 3C) were selected based on their normalized array signals. Their potential miRNA 542	

targets were predicted using three different algorithms, yielding a list of 269 miRNAs, 543	

wherein at least two algorithms coherently predicted a minimum off two binding sites on 544	

the same or different circRNAs. Subsequently, 183 miRNAs were found to be expressed in 545	

the frontal lobe according to the miRNA tissue Atlas v2.0 [40], with 15 exhibiting relevant 546	

expression levels, making them potential circRNA targets (Supplementary Figure 3D). 547	

Notably, 8 of these miRNAs overlapped with those highly expressed in the microglial cell 548	

subtype. To estimate the biological impact of the downregulating these 15 miRNAs, their 549	

validated targets were identified using the multiMiR R package [41] and searched for 550	
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enrichments in disease-related genes and gene ontology biological processes through the 551	

DOSE and clusterProfiler packages, respectively [42]. This analysis revealed enrichments 552	

in hypoxia-related genes, as present in the DISgeNet database, as well as in biological 553	

processes involved in hypoxia-related neuronal death and inflammation (Figure 7). 554	

These findings suggest that hiPSC-sEV retain significant and relevant tissue-protective 555	

properties for acute neural damage.  556	

 557	

  558	
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DISCUSSION 559	

The prevailing clinical framework for hiPSC use predominantly focuses on their therapeutic 560	

potential within tissue replacement boundaries [57,58]. Here, we propose an alternative 561	

and possibly complementary approach for hiPSC use based on the release of their EV.  562	

Our group boasts a considerable track record in cord blood research, spanning from 563	

oncohematological clinical applications to the unique therapeutic use of MSC [23,52,59–564	

61]. We successfully generated hiPSC from this fetal cord blood cell source, starting from 565	

cord blood-derived MSC (CBMSC) with the goal of maintaining parental cell young trait 566	

and of warranting the safety of these new hiPSC lines [24,62,63]. 567	

The introduction of cell-free therapy in the context of regenerative medicine poses both 568	

challenging and promises. Innovative therapies, including advanced therapy medicinal 569	

products (ATMP) based on EV, necessitate rigorous regulatory considerations. A pivotal 570	

aspect involves the precise “identity definition” of the clinical product. Henceforth, we 571	

started the work presented herein. 572	

In accordance with MISEV2023 recommendations, our EV underwent thorough 573	

characterization based on their protein composition, encompassing selected markers 574	

spanning transmembrane, secreted, and cytosolic intracellular-compartments [28]. This 575	

comprehensive panel of antigens encompassed hiPSC-specific cell membrane markers, 576	

immune histocompatibility complexes, hematopoietic and stromal cell-type markers, and 577	

organelle-specific molecules. These results significantly expand and advance the current 578	

knowledge on hiPSC-sEV.  579	

Flow cytometry and western blot analysis were used to measure tetraspanin protein EV 580	

marker levels in hiPSC-sEV and to compare with those in parental cells. The congruence 581	

of physical properties and biological attributes ensured accurate hiPSC-sEV identity 582	

assessment. Intriguingly, a more in-depth analysis unveiled that hiPSC-sEV presented 583	

nucleus-associated markers (i.e., H3 and LMNB1), which could be related to high nucleus-584	
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to-cytoplasm ratio typical of hiPSC, potentially facilitating nuclear material in exosome 585	

biogenesis. Notably, no other organelle-associated markers (i.e., Golgi apparatus, 586	

endoplasmic reticulum, mitochondria, cytoskeleton, lysosomes) were found, confirming 587	

compliance with MISEV2023 standards and confirming the absence of apoptotic bodies in 588	

hiPSC-sEV preparations. Furthermore, consistent with previous reports, we showed that 589	

hiPSC-sEV were negative for hematopoietic markers (CD45), but positive for integrins 590	

[64,65], EV-associated markers [48,64–66], and pluripotency-associated antigens 591	

(SSEA4) [64,65]. 592	

To validate the physical properties of hiPSC-EV, we applied analytical methodologies to 593	

obtain a clear indication that hiPSC-EV were enriched in small EV.  594	

To envision the large-scale standardized manufacturing processes required for possible 595	

future clinical applications, we assessed the kinetics of hiPSC-sEV production. We 596	

confirmed that they possess floating properties and a density compatible with EV identity, 597	

compared to similar ranges defined for other cell sources [67–71]. 598	

Furthermore, we employed a chromatographic technique to thoroughly pinpoint the identity 599	

and biological content of hiPSC-sEV. This technique allowed for the precise association of 600	

selected biomolecules with hiPSC-sEV and the assessment of their integrity and purity. 601	

The application of size-exclusion chromatography significantly improved the particle-to-602	

protein ratio compared to ultracentrifugation or ultrafiltration-processed EV, all while 603	

retaining EV markers, miRNA content, and proper morphology. 604	

An essential requirement for the therapeutic application of hiPSC-sEV is their ability to 605	

interface with or be internalized by target cells, thereby triggering their effects [72] or 606	

transferring the bioactive cargo within the EV lumen to modulate intracellular molecular 607	

pathways [73]. Uptake of hiPSC-sEV has been demonstrated in several cell types, such as 608	

endothelial cells [74,75] and hepatic stellate cells [48]. We successfully demonstrated the 609	

uptake of hiPSC-sEV by human neurons.  610	
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Still in the context of possible future clinical use, to demonstrate that hiPSC-sEV released 611	

into the extracellular environment and taken by neighbouring cells cannot lead their 612	

conversion into hiPSC by providing the necessary factors for inducing pluripotency, in this 613	

study we determined that hiPSC-sEV did not carry full transcripts of genes involved in their 614	

reprogramming process. 615	

To test the therapeutic potential of hiPSC-sEV, we used an ex vivo model of acute brain 616	

damage. The short treatment window for acute damage and the complex multifactorial 617	

inflammatory cascade surrounding it underscore the advantages of EV-based therapeutics 618	

over cell-based therapies. Ideally, EV therapeutics could be developed as ready-to-use 619	

off-the-shelf drugs, easily available to physicians operating under urgent needs. In our ex 620	

vivo model of ischemic brain injury, we observed a consistent reduction in OGD-induced 621	

cell death and neuronal damage obtained with all three doses tested recapitulating what 622	

has previously been observed using the secretome derived from human amniotic MSC or 623	

from human umbilical cord perivascular cells [34,35]. In view of identifying a solid 624	

biomarker able to monitor neuronal damages and the efficacies of therapies, we employed 625	

the use of NfL [76]. This biomarker reflects the structural integrity of neurons in human 626	

brains and it is translationally valid, supported by its prognostic value after acute brain 627	

injury [77–80] and its adoption as a primary outcome measure in Phase II trials [81]. 628	

Establishing its preclinical validity as a pharmacodynamic biomarker will enhance the 629	

translation of neuroprotective treatments from lab to clinical settings [82]. In our 630	

experimental setting, NfL was nicely and statistically reduced after hiPSC-sEV treatment in 631	

comparison with the ODG levels, confirming the pharmacodynamic validity of NfL 632	

biomarker for acute brain injury [35]. We further analyzed the hiPSC-sEV-induced effects 633	

on injured brain tissue at gene expression levels finding an induction of proliferation-634	

associated genes. No treatment effects on neuronal gene was observed, thus indicating a 635	

neuroprotective more than a regenerative mechanism of action of hiPSC-sEV. Instead, 636	
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clear hiPSC-sEV dose effects were found on glial cells, with reduction of astrocyte and 637	

induction of microglia activation. These results are in agreement with previous work from 638	

our group in the in vitro model [34,35] and suggest the role of microglia activation in the 639	

observed protection [83,84]. 640	

Similar results in a different inflammatory context, in a diabetic mouse model, were 641	

obtained by Levy et al. starting from EV isolated from a hiPSC line derived from bone 642	

marrow CD34+ cells obtained from a healthy 31-year-old donor [85]. And again, using a 643	

commercially available hiPSCs, Saneh et al. showed that hiPSC-EV attenuated hyperoxic 644	

injury in a fetal murine lung explant model [86]. 645	

On the whole, our data suggest that sEV exert a protective effect on brain tissue exposed 646	

to ischemic conditions and modulate astroglial and microglia reactions. However, 647	

additional experiments are necessary to confirm that sEV support neuronal survival and 648	

activity and to unveil the underlying mechanisms. 649	

Indeed, several mechanisms of action have been proposed for the effect of EV in 650	

regenerative medicine, including mitochondrial transfer [87,88] and RNA [7,89–91] and 651	

protein [86,92–94] delivery; however, a defined and shared consensus is still missing. The 652	

transfer and direct action of specific miRNAs [95–101] has also been proposed as a 653	

mechanism of action for EV. Several studies have supported this hypothesis, since various 654	

miRNAs specifically involved in inflammatory processes have been found to be abundant 655	

in EV [102–105]. However, there are still some concerns on whether miRNA transfer from 656	

EV to target cells can exert therapeutic effects [106–108]. Nonetheless, the miRNA cargo 657	

of our hiPSC-sEV could potentially affect inflammatory signaling processes, which could 658	

be attributed to the presence of miRNA subset targeting anti-inflammatory mRNAs, 659	

namely, the hsa-miR-24-3p [109] and hsa-miR-130a-3p [110,111].  660	

Our hiPSC-sEV revealed similarities and discrepancies with miRNA profiles showed by 661	

other groups that may reflect the differences in hiPSC lines employed as EV source and 662	
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hiPSC-EV isolation methods. In addition, the method adopted to investigate miRNA profile 663	

can influence the results. Indeed, likewise our work, Bi et colleagues studied EV secreted 664	

from hiPSC obtained via a non-integrative reprogramming method, starting from MSC, 665	

while the other groups both used hiPSC derived from fibroblasts via an integrative method. 666	

Moreover, Bi et al followed an isolation worfkflow consistent with our protocol and 667	

investigated miRNA profile via a miRNA microarray. On the other side, the other two 668	

groups adopted different methods for both EV isolation and miRNA sequencing.  669	

Among these data sets, some differences were reported that could be due to the cells of 670	

origin, to the reprogramming methods employed to obtain hiPSC and to the protocols 671	

adopted to isolate hiPSC-EV populations and to analyze their miRNA cargo.  672	

The ncRNA family has emerged as a key player in regulating molecular networks 673	

associated with differentiation pathways [112–116]. Among ncRNAs, circRNAs have 674	

recently gained attention as novel regulators of physiological cell functions [117–121]. 675	

Although initially perceived as mere byproducts of mRNA splicing [122–126], recent 676	

studies unveiled a plethora of endogenous circRNAs across various tissues and 677	

organisms under diverse conditions, highlighting their pivotal roles in cellular biology and 678	

pathophysiology [127,128]. As EV are considered a promising drug and potential delivery 679	

vectors, EV carrying circRNAs hold promise for treating pathologic conditions [129]. 680	

Herein, we contribute to the largest hiPSC-EV circRNome catalog, shedding light on their 681	

possible role in the field of functional ncRNAs. This groundbreaking study introduces a 682	

network of interactions between mRNAs, miRNAs, and circRNAs within hiPSC-EV, 683	

suggesting circRNAs' involvement in the anti-inflammatory effects observed with EVs. 684	

circRNAs have a stable structure, the ability to resist RNA enzymes, and sequence-685	

conserved characteristics. Their regulatory role in injury and regeneration might be favored 686	

[130–135], thus laying a foundation for their future clinical application. Recent innovative 687	

research has presented EV-circRNAs as potential players in the ischemic injury processes 688	
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[136,137]. Cellular stresses like hypoxia and inflammation, associated with several 689	

pathological conditions, including cerebral ischemic injury, significantly impact the 690	

regulation of circRNAs [138–140]. Although the precise role of EV-circRNAs in 691	

pathophysiological settings remains unclear, a recent study demonstrated the potential of 692	

engineered EV for delivering candidate circRNAs, which led to the restoration of a specific 693	

circRNA (circSCMH1) levels in rodent and non-human primate ischemic stroke models, 694	

hinting at the therapeutic viability of EV-circRNA strategies [141]. In this work, we defined 695	

the largest hiPSC-EV circRNome ever reported as a possible novel actor in the area of 696	

non-coding functional RNAs. Although our study sheds light on this possible role in injury 697	

and regeneration, it is essential to recognize that the intricate mechanisms underlying EV-698	

based therapeutics likely comprise multifactorial and interconnected pathways, culminating 699	

in complex and complementary biological cargo responses. 700	

CONCLUSIONS 701	

Our study introduces a compelling avenue for the near-term clinical application of hiPSC-702	

derived extracellular vesicles in the field of cell-free therapy. This approach has the 703	

potential to revolutionize regenerative medicine by harnessing the inherent reparative 704	

capabilities of EV, thereby promising a future rich in therapeutic possibilities. As the field 705	

advances, further investigations into the precise mechanisms underpinning the diverse 706	

therapeutic effects of EV will unveil the full extent of their potential impact. 707	

  708	
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Tables 1133	
 1134	
Table 1. Primary antibodies employed in western blot and blotting strategies. 1135	
 1136	

Target Species 
reactivity Vendor Cat. number Dilution Transfer Stack 

ACTB Human Sigma-Aldrich A5441 1:5 000 Nitrocellulose 
ALIX Human Santa Cruz Biotechnology sc-53538 1:500 Nitrocellulose 
ANXA1 Human BD Biosciences 610066 1:5 000 Nitrocellulose 
CALR Human BD Biosciences 612136 1:250 Nitrocellulose 
CD62E Human ThermoFischer Scientific 14062782 1:100 Nitrocellulose 
CD63 Human Millipore CBL553 1:100 Nitrocellulose 
CD81 Human BD Biosciences 555675 1:250 Nitrocellulose 
CD9 Human BD Biosciences 555370 1:500 Nitrocellulose 
FLOT1 Human BD Biosciences 610820 1:500 Nitrocellulose 
FLOT2 Human BD Biosciences 610383 1:250 Nitrocellulose 
FN Human BD Biosciences 610077 1:5 000 PVDF 
GAPDH Human Santa Cruz Biotechnology sc-47724 1:200 Nitrocellulose 
GM130 Human Santa Cruz Biotechnology sc-55591 1:500 Nitrocellulose 
H3 Human Cell Signaling Technologies 4499S 1:2 000 Nitrocellulose 
HSP70 Human BD Biosciences 610607 1:250 Nitrocellulose 
LAMB2 Human BD Biosciences 610722 1:250 PVDF 
LMNB1 Human Santa Cruz Biotechnology sc-374015 1:250 PVDF 
SSEA-4 Human BD Biosciences 560073 1:500 Nitrocellulose 
TRA1-60 Human Abcam ab16288 1:250 PVDF 
TRA1-81 Human Abcam ab16289 1:250 PVDF 
UQCRC1 Human Abcam ab110252 1:1 000 Nitrocellulose 

 1137	

Table 2. Secondary antibodies employed in western blot. HRP: Horseradish peroxidase 1138	

linked: IgG (H+L): Gamma Immunoglobins Heavy and Light chains 1139	

 1140	

 1141	

Table 3. Primers employed in qPCR. 1142	

 1143	

Target Specie Forward primer Reverse primer 
circ_0006789 Human 5’-TCCTTTCCCTTTGAGACCGT-3’ 5’-GAGAGAGAACTGATCTCGGGGT-3’ 
circ_0001489 Human 5’-CTCTAGGCTTGTTAGTGGGTT-3’ 5’-CAGGGTGCTTAGGGAGCATA-3’ 
circ_0012634 Human 5’-GAAATTCACAAGCGCACAGGA-3’ 5’-TGCGGAGTCCATCATGTCAC-3’ 
circ_0092283 Human 5’-CAAGACTCTGGACCCCAAGG-3’ 5’-AGAGCCCAGAGTGGGAGAAG-3’ 
circ_0080210 Human 5’-TCACGCCGGGTTCTTTACCT-3’ 5’-GCTCACCCACATCTACCACTTA-3’ 

Target Host Conjugate Immunogen Vendor Cat. number Dilution 

Rabbit Donkey HRP IgG (H+L) GE Healthcare NA934 1ML 1:3 000 

Mouse Goat HRP IgG (H+L) BioRad 1706516 1:3 000 
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circ_0001360 Human 5’-TCGTCGTCATCGTCATCTTC-3’ 5’-GGGTAATACTGCCGCTGGTA-3’ 
circ_0001973 Human 5’-CACAGACACAGAGTGAGAAGCA-3’ 5’-CATGATGGTGACACTGGATGC-3’ 
circ_0008234 Human 5’-AAAGGGAAAGGTTCCCGTGT-3’ 5’-GCTGCTGCTGGAGGAGAAC-3’ 
circ_0008253 Human 5’-GCCTGCTCTCAGTTTGTTCC-3’ 5’-TTCCGAGGATACCTCTGGTC-3’ 
circ_0040809 Human 5’-GATCTGGTCACGAACAAGCA-3’ 5’-CCGGTCAACACGAAAGAGTT-3’ 
circ_0007001 Human 5’-TTTTCATGAACGTGGACAGC-3’ 5’-CGCTGGCGAATACTGTCTCT-3’ 
circ_0000247 Human 5’-AGGGAGAGTGTTTTCCTGCTC-3’ 5’-CTGGCATGGTACATGGAGAG-3’ 
circ_0000682 Human 5’-ACAGGGACGTCCTCATTGTC-3’ 5’-GTCACATTTCATCCCCTGGT-3’ 
circ_0015232 Human 5’-TCAGCCTCACCTTCAAGGAG-3’ 5’-GTTGGGCAGGGGCACATTAT-3’ 
circ_0023919 Human 5’-GCCCAATGATCTGCTTGATT-3’ 5’-AGTGTAGTTGCCCTGCTTGC-3’ 
circ_0008432 Human 5’-GGGCCATGAAGGATGAGGAG-3’ 5’-TTGAGGGCGGCCACATC-3’ 
circ_0034398 Human 5’-ATGCGCCCTCATTAATGGCT-3’ 5’-ATGTGTTTCTGGTACTCCTGGG-3’ 
circ_0006566 Human 5’-ACGAGATCTGCCCTCCTTG-3’ 5’-AAGTATCCTAAAGGGCCGTCA-3’ 
circ_0001009 Human 5’-TACCTCCTCCTCCCCAGTTC-3’ 5’-TGTTCTCAGCTGCCAACTACA-3’ 
circ_0049462 Human 5’-CGATGGTGTTTGTGACTGCT-3’ 5’-GGGGCTTATAGCCAGTGTTG-3’ 
circ_0003249 Human 5’-ATCATTCCGCCTTTTGGGGA-3’ 5’-TCTAGAACCACCCCGTCTGT-3’ 
circ_0003205 Human 5’-AACCGGGTAACAGCAGAGAG-3’ 5’-GCAGCCAAAAGACAACAGGT-3’ 
circ_0085173 Human 5’-GCGCCTATCTCAAAGACGAC-3’ 5’-GGGAAAGGTTCACTGGAACA-3’ 
circ_0000591 Human 5’-AAAACGAGACTTTCTTGGTTTCA-3’ 5’-CTGCTGTTTCTCCTCCATGA-3’ 
circ_0001324 Human 5’-TCGTTTTCCAACCCCTTCTCC-3’ 5’-TAGCTGATTGGTGGGCTGTT-3’ 
circ_0061774 Human 5’-GGGCTTCTACGTCATCTTCG-3’ 5’-TATGTAGGAGTGCGGGGTTC-3’ 
circ_0003472 Human 5’-GACGTTTCACTGCTGCTGAG-3’ 5’-CCAATTGGAAGGAACAGAGC-3’ 
circ_0001136 Human 5’-TGCCTCTATGACCTGCAGAA-3’ 5’-TATAAACTGCCTGGCCGAAT-3’ 
circ_0000437 Human 5’-AGGGTCATAGAAAGGCAGCA-3’ 5’-ATGGGTTACATGCCCAAGAG-3’ 
circ_0005035 Human 5’-AGCCGATGTGTGAGAAGACC-3’ 5’-GATGAGCAGGATGTGGAGGT-3’ 
circ_0006413 Human 5’-TGGACCGTATTCTCCAAATAGC-3’ 5’-GTCCAACAGATGAGGCTGCT-3’ 
circ_0000002 Human 5’-CCGTCTTCTCCATGATCCAG-3’ 5’-CATAGCGAGAAGGAGGTTGC-3’ 
circ_0000921 Human 5’-TTTTACTGGGGGACAACTGG-3’ 5’-GGCAAGGTGCTGAGTCTTTC-3’ 
circ_0034447 Human 5’-CTCCTGTGATGAGCTGTCCA-3’ 5’-CCATTCACCACGTTGTTGTC-3’ 
circ_0008348 Human 5’-TTCAAGAACGACCCCTACCA-3’ 5’-GGTCACAGCGGAAGCACTC-3’ 
circ_0000818 Human 5’-GCTGAGTTCCTGGACTGGAG-3’ 5’-GCCAGATGTACAAGGGAAGC-3’ 
circ_0000711 Human 5’-AACTCATCATCGAGCCCATT-3’ 5’-TGGTAAGCAAAGTGGTGTGG-3’ 
circ_0001741 Human 5’-CGGCGCACAGAAATTATAGA-3’ 5’-CATGGTCTGTGCAGCAAAAT-3’ 
circ_0001436 Human 5’-TCCAACACTTCAGCCTGGTT-3’ 5’-CTCCTTCCAGGGCATCATAA-3’ 
circ_0004338 Human 5’-TGGTGGTTCGAGAATGTCAA-3’ 5’-TGTGCTCCTGCTCATACTGG-3’ 
circ_0007334 Human 5’-AGGCAAAGAGTTGGCACACTA-3’ 5’-TGGGCCTTTATCATCTTGCACTT-3’ 
circ_0001663 Human 5’-GCTCACCTTGGCTACCTGAA-3’ 5’-TCAACAACACATGTCAGCCATA-3’ 
circ_0001017 Human 5’-TTGGAAAATGTGATAAAAACAAGG-3’ 5’-CTGAAATCAAGCAGCTGACG-3’ 
circ_0001821 Human 5’-TTGGGTCTCCCTATGGAATG-3’ 5’-CATCTTGAGGGGCATCTTTT-3’ 
circ_0001900 Human 5’-TGTGCTCCTGCTCATACTGG-3’ 5’-ACGTTCAGTGCCTCGAAAGA-3’ 
circ_0073244 Human 5’-GGACAAGCAAGGCAAAGTGA-3’ 5’-TCCTCTTGGCTCCTTGGGTAA-3’ 
miR124a-5p Human 5’-AGGCACGCGGTGA-3’	 miScript Universal Primer	
miR302a-3p Human 5’-GCAGTAAGTGCTTCCATGT-3’	 miScript Universal Primer	
miR302b-3p Human Hs_miR-302b_1, MS00003906	 miScript Universal Primer     	
miR302c-3p Human 5’-AGTAAGTGCTTCCATGTTT-3’	 miScript Universal Primer	
miR500a-5p Human 5’-GTAATCCTTGCTACCTGGGT-3’	 miScript Universal Primer	
miR597-5p Human 5’-GTGTCACTCGATGACCAC-3’	 miScript Universal Primer     	
Bcl-2 Murine 5’-GTGCCTGTGGTCATGGATCTG-3’	 5’-CCTGTGCCACTTGCTCTTTAG-3’	
Bax Murine 5’-GAGAGGCAGCGGCAGTGAT-3’	 5’-TGCTCGATCCTGGATGAAACC-3’     	
Gapdh Murine 5’-GCAGTGGCAAAGTGGAGATTGT-3’	 5’-CGTTGAATTTGCCGTGAGTGGA-3’	
Mki67 Murine 5’-GATAACGCCACCGAGGACAA-3’	 5’-ATGGATGCTCTCTTCGCAGG-3’	
Pcna Murine 5’-ACCTTTGAAGATTGCTCCTGAGA-3’ 5’-ACTTGGTGACAGAAAAGACCTCA-3’ 
NeuN Murine 5’-CAGACGGTGCCGCAGG-3’ 5’-ATGTAGTCGTTTGGGCTGCT-3’ 
GFAP Murine 5’-GAAAACCGCATCACCATTCC-3’ 5’-TCGGATCTGGAGGTTGGAGA-3’ 
CD11b Murine 5’-GAGCAGCACTGAGATCCTGTTTAA-3’ 5’-ATACGACTCCTGCCCTGGAA-3’ 
ActB Murine  5’-GCCCTGAGGCTCTTTTCCAG-3’ 5’-TGCCACAGGATTCCATACCC-3’ 
KLF4 Human 5’-CAGCCACCTGGCGAGTCT-3’ 5’-GTAAGGCGAGGTGGTCCG-3’ 
LIN28A Human 5’-CCTTTGCCTTCGGACTT-3’	 5’-	CCTGATAGCAAAAGAATA	-3’	
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MYC Human 5’-ATGCCCCTCAACGTTAGCTTCA-3’ 5’-TTACGCACAAGAGTTCCGTAGCTG-3’ 
NANOG Human 5’-CTGGAGGTCCTATTTCTCTA	-3’	 5’-AAAAATCCTATGAGGGATGG-3’	
OCT4 Human 5’-GGTTGAGTAGTCCCTTCG-3’ 5’-CTTAATCCCAAAAACCCTGG-3’ 
SOX2 Human 5’-AACATGATGGAGACGGA-3’ 5’-TTTCTTTGAAAATTTCTCCCC-3’ 

 1144	
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A

F

Rank miRBase ID Family Cluster (<10 kB range)
144 hsa-miR-526b-5p MIR515 miRNA 512-2/518b
145 hsa-miR-500a-5p MIR500 miRNA 532/502
146 hsa-miR-455-5p none none
147 hsa-miR-572 none none
148 hsa-miR-512-5p MIR506 miRNA 512-1/520e
149 hsa-miR-526a-5p MIR515 miRNA 525/519d
150 hsa-miR-15a-5p MIR15/16 miRNA 15a/16-1
151 hsa-miR-597-5p None none
152 hsa-miR-520e-3p MIR515 miRNA 512-1/515-2
153 hsa-miR-29b-3p MIR29 miRNA 29b-1/29a

DC

B

E Povero et al.
(20)

Bi et al.
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Louro et al.
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A

Top sEV circRNA array ID Alias Chr txStart txEnd GeneSymbol Strand

hsa_circRNA_100375 hsa_circ_0006758 chr1 165859440 165860559 UCK2 +

hsa_circRNA_105027 hsa_circ_0006789 chrX 118544152 118544325 SLC25A43 +

hsa_circRNA_001506 hsa_circ_0000981 chr2 20240809 20240905 LAPTM4A -

hsa_circRNA_102890 hsa_circ_0002867 chr2 200245086 200298237 SATB2 -

hsa_circRNA_000629 hsa_circ_0000775 chr17 43012303 43012398 KIF18B -

hsa_circRNA_103188 hsa_circ_0062682 chr22 26936754 26937684 TPST2 -

hsa_circRNA_000956 hsa_circ_0001489 chr5 59770958 59771235 PDE4D +

hsa_circRNA_000274 hsa_circ_0000919 chr19 19760861 19761115 ATP13A1 -

hsa_circRNA_104017 hsa_circ_0004004 chr5 172359438 172362313 ERGIC1 +

hsa_circRNA_102782 hsa_circ_0055630 chr2 96905450 96906426 LOC285033 +

C
miR n binding sites frontal_lobe expr

hsa-miR-9-5p 2 24722.08764
hsa-miR-138-5p 2 4129.123776
hsa-miR-24-3p 2 3908.75962
hsa-miR-708-5p 2 827.6093796
hsa-miR-744-5p 2 712.4819363
hsa-miR-330-5p 3 182.9692156
hsa-miR-29b-2-5p 2 121.9343803
hsa-miR-214-3p 2 70.64043719
hsa-miR-1179 2 55.93868428
hsa-miR-4516 2 53.08355833
hsa-miR-30c-1-3p 3 24.88092356
hsa-miR-30c-2-3p 3 14.12116305
hsa-miR-1908-5p 2 11.15587018
hsa-miR-1226-3p 2 10.88440215
hsa-miR-431-3p 2 10.42536501
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CTR Neurons

CFSE-hiPSC-sEV Neurons 

hiPSC- sEV Neurons 

hiPSC- sEV Neurons 

Sample Name Subset Name Count Median: Comp-FITC-A
CTR Neurons Single Cells 3733 537
CFSE-hiPSC-sEV Neurons Single Cells 2322 1102


