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Abstract 38 

Macrophages, as the predominant phagocytes, play an essential role in pathogens 39 

defense and tissue homeostasis maintenance. In the context of cancer, tumor-associated 40 

macrophages (TAMs) have evolved into cunning actors involved in angiogenesis, 41 

cancer cell proliferation and metastasis, as well as the construction of 42 

immunosuppressive microenvironment. Once properly activated, macrophages can kill 43 

tumor cells directly through phagocytosis or attack tumor cells indirectly by stimulating 44 

innate and adaptive immunity. Thus, the prospect of targeting TAMs has sparked 45 

significant interest and emerged as a promising strategy in immunotherapy. In this 46 

review, we summarize the diverse roles and underlying mechanisms of TAMs in cancer 47 

development and immunity and highlight the TAM-based therapeutic strategies such as 48 

inhibiting macrophage recruitment, inhibiting the differentiation reprogramming of 49 

TAMs, blocking phagocytotic checkpoints, inducing trained macrophages, as well as 50 

the potential of engineered CAR-armed macrophages in cancer therapy. 51 

 52 

Keywords: Macrophage; Cancer immunity; Immunotherapy; Phagocytotic 53 

checkpoint; Trained macrophage 54 

 55 

1. Introduction 56 

Tumorigenesis is a process of normal cells being transformed into cancer cells and 57 

characterized by uncontrolled tumor cell growth and impaired immune surveillance. 58 

The development and progression of tumors are influenced by a variety of factors. 59 

Primarily, oncogenic mutations and the activation of signaling pathways driven by these 60 

mutations play a key role[1-5]. Additionally, the interaction between tumor cells and 61 

the surrounding microenvironment significantly contributes to tumor growth. The 62 

tumor microenvironment (TME), a dynamic and complex milieu of various stromal 63 

cells around cancer cells, plays a critical role in tumor progression and treatment 64 

efficacy [6-10]. Tumor-associated macrophages (TAMs) are observed as the most 65 

abundant infiltrated immune cells in the TME [11]. As is known, macrophages are 66 

critical for inflammation, tissue repair, organ regeneration, and tissue homeostasis. By 67 

secreting growth factors, proteases, and cytokines, TAMs interact with other cell 68 

populations within tumors and are involved in pro-tumorigenic or anti-tumorigenic 69 

roles in various cancers [12, 13]. TAMs are extremely heterogeneous in TME which are 70 
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determined by their ontogeny, intrinsic factors, and locations [14]. Throughout the 71 

different stages of malignant cancer, the sub-populations of TAMs are dynamically 72 

changed and are programed to increasingly adopt immune suppressive characteristics 73 

along with the tumor progression. The expansion of TAMs accelerates the formation of 74 

immunosuppressive TME driven by self-proliferation and monocyte differentiation 75 

[15]. In addition, tissue resident macrophages (TRMs) foster an anti-inflammatory 76 

conditions in organs which provide ideal niches for promoting metastasis, for example, 77 

peritoneal GATA6+ TRMs promote the ovarian cancer metastasis into the peritoneal 78 

cavity[16, 17] and liver [9]. Moreover, TAMs impede the CD8+ T cell mediated anti-79 

tumor immune response, which is typically boosted by immune checkpoint blocking 80 

(ICB) [18, 19]. In summary, these data underscore the significant involvement of TAMs 81 

highly in shaping of the context of cancers during tumorigenesis. 82 

With the application and innovation of multi-omics, more comprehensive insights 83 

into TAMs and their subpopulations within TME have been discovered. The phenotypes 84 

and functions of TAMs in tumor conditions are determined by transcriptional and 85 

epigenetic modulations[20, 21], which are greatly influenced by cytokines and 86 

metabolites released by cancer cells [22]. Understanding the diversity and contribution 87 

of TAMs to pathophysiological processes may provide new therapeutic targets for 88 

human cancers. Indeed, certain strategies designed to target TAMs have gained 89 

remarkable success in pre-clinic studies. However, the effectiveness of these strategies 90 

has been limited in clinical trials, highlighting that more precise mechanism and 91 

ingenious technologies should be further exploited in this field. In this review, we 92 

summarize the recent advancements in TAM research and aim to gain a comprehensive 93 

understanding of their roles in cancer immunity and therapy.    94 

 95 

2. The origin, polarization and heterogeneity of TAMs 96 

2.1 The origin of TAMs 97 

First discovered by Ellie Metchnikoff, macrophages are a type of white blood cell 98 

that defends the host against pathogens through a process called phagocytosis and 99 

engages in innate and adaptive immunity by interacting with other immune cells [23]. 100 

It has long been held that macrophages originate from blood monocytes produced from 101 

myeloid progenitors in bone marrow (BM) [24]. Upon tissue injury, infection or 102 

carcinogenesis, these circulating monocytes are rapidly recruited to the corresponding 103 
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site, where they differentiate into macrophages and accumulate in large amounts [25]. 104 

However, by lineage tracing and fate mapping technologies, cumulative evidence 105 

indicates that macrophages can also derive from embryonic progenitors originating 106 

from yolk sac or fetal liver, representing another major developmental path of 107 

macrophages in addition to monocyte differentiation [26, 27]. These embryonic-derived 108 

macrophages reside in organs (such as the brain, liver, and skin), proliferate, and 109 

maintain locally as TRMs throughout life, referring TRMs either in the liver as Kupffer 110 

cells or in the brain as microglia. TRMs can be classified into three subsets based on 111 

common life cycle properties and core gene signatures (Timd4, Lyve1, Folr2, and Ccr2) 112 

in most murine tissues: TLF+ macrophages (expressing TIM4 and/or LYVE1 and/or 113 

FOLR2), CCR2+ macrophages (TIM4−LYVE1−FOLR2−) and MHC-IIhi macrophages 114 

(TIM4−LYVE1−FOLR2−CCR2−). TLF+ macrophages are maintained through self-115 

renewal with minimal monocyte input, while CCR2+ macrophages are almost entirely 116 

replaced by monocytes. MHC-IIhi macrophages, on the other hand, receive modest 117 

monocyte contribution, but are not continually replaced [27]. No matter what the 118 

origins are, colony stimulating factor 1 receptor (CSF1R) and its two ligands CSF1 and 119 

interleukin (IL)-34 are essential for the differentiation and expansion of macrophages 120 

[28]. Overall, macrophages are present in almost all tissues and exhibit complex 121 

phenotypic heterogeneity and functional diversity under various physiological and 122 

pathological conditions because of different developmental origins and tissues of 123 

residence. 124 

In TME, infiltrated TAMs are also composed of both BM-derived macrophages 125 

and TRMs (Figure 1). Cancer cells can induce emergency myelopoiesis and expansion 126 

of bone marrow myeloid progenitors resulting in increased classical Ly6C+ monocytes 127 

[29]. BM-derived circulating peripheral monocytes are recruited into TME by 128 

cytokines and chemokines, such as CSF1, GM-CSF, IL-1β, SDF1α, VEGF and CCL2, 129 

and subsequently differentiate into TAMs [30-33]. In many cancers, these monocyte-130 

derived macrophages are the main source of TAMs. For example, in a transgenic model 131 

of murine breast cancer, TAMs differentiated from monocytes are phenotypically 132 

distinct from the predominant mammary tissue macrophages in healthy mammary 133 

gland. Monocyte-derived TAMs gradually replace mammary tissue macrophages and 134 

promote tumor growth [15]. Additionally, retinoic acid, a metabolite of vitamin A1 135 

produced by murine sarcoma tumor cells, selectively suppresses the DC-promoting 136 
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transcription factor interferon regulatory factor-4 (IRF4) and drives intra-tumoral 137 

monocyte differentiation toward TAMs and away from DCs [34].  138 

Meanwhile, the importance of TRMs in sustaining TAM levels and promoting 139 

tumor growth in certain types of cancers has been demonstrated by recent studies [17, 140 

26, 35, 36]. TRMs are involved in defense, homeostasis, tissue integrity, and wound 141 

healing in healthy tissues. Although both embryonic-derived TRMs and monocyte-142 

derived macrophages contribute to the accumulation of TAMs, it is not fully understood 143 

which TAMs population functions in regulating tumor progression. For instance, in a 144 

mouse model of breast cancer, depletion of TRMs did not reduce the tumor size, 145 

whereas depletion of circulating macrophages significantly decreased the tumor 146 

volume [15]. On the contrary, ablation of BM-derived macrophages did not disrupt 147 

tumor progression in a mouse model of pancreatic cancer, but depletion of TRMs 148 

dramatically reversed the trend [26]. Furthermore, in human breast cancer, FOLR2+ 149 

mammary resident macrophages in tumors, which are localized in perivascular areas in 150 

the tumor stroma, can efficiently prime effector CD8+ T cells and are correlated with 151 

patient survival [37]. 152 

It is noteworthy that TAM populations originating from different sources exhibit 153 

distinct temporal and spatial distribution in the TME. In the lung cancer model, 154 

macrophages from both origins were found to facilitate tumor growth and progression 155 

[38]. Moreover, at the early stage of non-small cell lung carcinoma (NSCLC), TRMs 156 

accumulated in close proximity to tumor cells and induced potent suppression of 157 

adaptive immunity mediated by regulatory T cell [36]. During tumor growth, TRMs 158 

undergo redistribution towards the periphery of the TME, which becomes dominated 159 

by monocyte-derived macrophages in both mouse and human NSCLC. This suggests 160 

that TRMs create a pro-tumorigenic niche for early NSCLC cells [36]. Nevertheless, 161 

these findings support the function complexity and diversity of TAMs, and further 162 

studies are needed to address the conundrum. 163 

2.2 The polarization of TAMs 164 

It’s widely recognized that macrophages are highly plastic cells capable of 165 

undergoing specific polarization in different tissue environments. In response 166 

to different environmental signals, undifferentiated M0 macrophages which represent 167 

the unpolarized and resting state, can be polarized into two types: classically 168 

activated macrophages (M1) and alternatively activated macrophages (M2) [39]. M1 169 
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macrophages, triggered by interferon (IFN)-γ and bacterial lipopolysaccharide (LPS), 170 

exhibit increased levels of nitric oxide synthase (NOS) and reactive oxygen species 171 

(ROS). These M1 macrophages are considered as anti-tumor cells with secretion of 172 

inflammatory factors including IL-6, IL-1, and tumor necrosis factor-α (TNF-α), and 173 

promote adaptive immune response by highly expressing antigen presenting MHC 174 

complex [40]. By contrast, the M2 macrophages, polarized by IL-4, IL-13, and 175 

transforming growth factor β (TGF-β), are associated with the initiation, progression, 176 

metastasis, and immune evasion of tumors, by secreting anti-177 

inflammatory cytokines such as IL-10, IL-4, and IL-13 [41]. Moreover, M2 178 

macrophages are much more complex than M1, which can be further classified into 179 

M2a, M2b, M2c, and M2-like macrophages (Table 1) [42].  180 

Compared to the classic dual classification of macrophages, TAMs display greater 181 

phenotypic and functional diversity. In many cases, TAMs are considered as M2-like 182 

macrophages due to their similarities to M2 macrophage properties, such as high 183 

expression of ARG1, VEGF, CD206, CD204, and low expression of MHC-II [43]. The 184 

polarization of TAMs into M2-like phenotype can be induced by tumor-derived lactic 185 

acid, mediated by hypoxia-inducible factor 1α (HIF-1α) [44]. In addition, the high 186 

acidification of the TME caused by lactic acid accumulation, leads to the G protein–187 

coupled receptor (GPCR)-dependent expression of the transcriptional repressor ICER 188 

in TAMs, promoting polarization of TAMs towards an M2-like phenotype and 189 

facilitating tumor growth [45]. However, studies also provide evidence suggesting that 190 

TAMs are a mixed population of cells expressing both M1 and M2 markers [46-48]. In 191 

the early stage of human lung cancer, a mixture of classical tissue monocytes and TAMs 192 

was observed with co-expression of M1/M2 markers, as well as T cell coinhibitory and 193 

costimulatory receptors [49]. These results indicate the complexity of TAMs and the 194 

limitation of classic M1/M2 classification.  195 

Advances in single cell omics and mass cytometry by time-of-flight (CyTOF) 196 

technologies have provided new approaches to analyze TAM states in more detail. 197 

scRNA-seq studies have been conducted in various cancers, including breast cancer, 198 

NSCLC, small-cell lung cancer, hepatocellular carcinoma (HCC), glioblastoma, 199 

colorectal cancer (CRC), renal cell carcinoma (RCC), and pan-cancer analysis [50-57]. 200 

These single cell studies have dissected TAMs into multiple distinct clusters based on 201 

transcriptomic profiles, which may have different functions in tumor progression. For 202 
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example, MMP12-expressing TAMs in NSCLC, which do not resemble either M1 or 203 

M2 cells, are most strongly associated with a poor clinical outcome [58]; a high 204 

abundance of secreted phosphoprotein 1 (SPP1)-expressing TAMs is correlated with 205 

worse outcome in NSCLC, CRC, and pancreatic ductal adenocarcinoma (PDAC) [58]; 206 

inhibiting APOC1 promotes transformation of M2 macrophages into M1 phenotypic 207 

macrophage through the ferroptosis pathway, which reshapes the TME and improves 208 

anti-PD1 immunotherapy in HCC patients [59]; integrated analysis of bulk RNA and 209 

single-cell RNA sequencing databases reveals Complete Component 1q (C1Q) + TAMs 210 

as one major anti-tumor immune cell population in osteosarcoma patients [60]. In 211 

addition, macrophage subsets are found to show heterogeneous transcriptomic patterns 212 

among distinct tumor types with several tumor-enriched macrophage subsets were 213 

found: the ISG15+ TAMs upregulated multiple interferon-inducible genes, the SPP1+ 214 

TAMs and C1QC+ TAMs resembled dichotomous functional phenotypes of TAMs in 215 

CRC, LYVE1+ macrophages and NLRP3+ macrophages were preferentially enriched in 216 

non-cancer tissues and likely represented as pro-inflammatory TRMs clusters [21]. 217 

Similar to previous studies, a single-cell trajectory analysis of macrophages in gastric 218 

cancer reveals the existence of two distinct cell states: a proinflammatory "M1-like" 219 

state characterized by high CD163 and S100A12 expression, and an "M2-like" state of 220 

TAMs with elevated CD163 and FOLR2 expression [61]. Further research is needed to 221 

identify the phenotypic and functional similarities and the difference between TAM 222 

clusters in distinct cancers, in different stages of tumor progression, and in primary and 223 

metastatic cancers.  224 

Besides, it is largely unknown how the spatial localization of TAMs within the 225 

tumor connects to phenotype and function of TAMs. The development of spatial 226 

transcriptomics tools also provides information on spatial distribution information of 227 

TAMs, adding a new dimension to our understanding of TAM function in different 228 

contexts of cancer. Spatial transcriptomics of TAMs infiltration in NSCLC reveals that 229 

TAMs enrichment in the TME is relevant to tumor cell resistance to ICB 230 

immunotherapy regardless of its PD-L1 status, which is mediated by 231 

CD27, ITGAM, and CCL5 gene expression upregulation within tumor compartment 232 

[62]. Spatial and single-cell analysis of human normal and cancer colorectal tissues 233 

elucidate co-localization of cancer cell with SPP1 + TAMs at the invasive front of tumor, 234 

where CRC cell secrets human leukocyte antigen G (HLA-G) to transform TAMs into 235 
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macrophages with immunosuppressive feature and reduces cytotoxicity of ICB 236 

immunotherapy [63].  Likewise, the progress of these cutting-edge technologies will 237 

bring new insights and guide the research on the new cancer therapy methods by 238 

targeting the unique population of TAMs. 239 

2.3 The heterogeneity of TAMs 240 

Due to the multifaceted roles of macrophages in tissue homeostasis and tumor 241 

surveillance, the differentiation, activation, and regulation of macrophages within the 242 

microenvironment have become major research focuses. Currently, there are two main 243 

strategies that dominate the research on macrophages (Figure 2). The first involves 244 

using single-cell sequencing (scRNA-seq), a powerful tool to dissect the tumor 245 

heterogeneity[64], to categorize macrophages in normal or tumor tissues and 246 

functionally annotate the gene expression within each cluster. Building on this, in-depth 247 

functional studies are conducted using macrophage-specific genetically modified mice. 248 

This includes techniques like knocking out or knocking in specific genes in 249 

macrophages, followed by histological examination and functional analysis. 250 

Additionally, tumor transplantation models can be constructed on the basis of 251 

genetically modified mice to further investigate the impact of specific gene-regulated 252 

macrophage functions on tumor progression. 253 

Recent scRNA-seq studies have shown that the traditional categorization of 254 

macrophages into M1 and M2 phenotypes is not as clear-cut as previously thought[65]. 255 

While M1 macrophages are generally associated with pro-inflammatory responses and 256 

M2 macrophages with anti-inflammatory responses, scRNA-seq analyses have 257 

revealed a more complex landscape of macrophage subpopulations. In a recent study, 258 

an extensive analysis of scRNA-seq data from myeloid cells in 380 samples spanning 259 

15 different cancer types was conducted[21]. This analysis integrated newly collected 260 

data with eight previously published datasets, providing a comprehensive and 261 

expansive view of TAMs. By comparing monocytes and macrophages across multiple 262 

cancer types, the study consistently identified two distinct subsets of tumor-infiltrating 263 

monocytes (TIMs): CD14+ and CD16+ TIMs. Additionally, a subset of LYVE1+ 264 

interstitial macrophages were observed in non-cancerous tissues. Furthermore, the 265 

analysis revealed seven distinct clusters of TAMs, each characterized by specific 266 

marker gene expression patterns. These TAM clusters included INHBA+ TAMs, 267 

C1QC+ TAMs, ISG15+ TAMs, LNRP3+ TAMs, LYVE1+ TAMs, and SPP1+ TAMs. 268 
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These findings shed light on the heterogeneity of TAM populations across various 269 

cancer types and non-cancerous tissues. This comprehensive scRNA-seq analysis 270 

provides valuable information for understanding the roles and potential therapeutic 271 

targets of TAMs in cancer progression and treatment response. In future studies, 272 

combined with single-cell sequencing data, new computational methods, such as 273 

unsupervised clustering approaches[66], can be considered to identify potential new 274 

subtypes of macrophages. 275 

 276 

3. Macrophages in carcinogenesis and cancer immunity   277 

Macrophages exert dual effects in carcinogenesis, with some promoting while 278 

others suppressing tumor growth [67, 68]. M1-like macrophages execute anti-tumor 279 

function by killing the tumor cells through cytotoxic activity directly, attacking cancer 280 

cells by cooperation with T cells through antigen present, or secreting cytokines to 281 

suppress tumor growth. However, most TAMs promote tumor growth and metastasis 282 

by secreting various factors and interacting with other cells in TME, leading to poor 283 

prognosis in multiple cancers including breast, cervix, bladder, brain, and prostate 284 

cancer [69-73]. Furthermore, TME converts M1-like macrophages to M2-like 285 

macrophages, which plays an important role in the development and progression of 286 

tumors. As discussed above, given the high plasticity and diversity of TAMs, it is crucial 287 

to fully understand the properties and functions of transcriptomic unique and spatial 288 

unique TAM clusters in regulating tumor initiation and development. Herein, we 289 

discuss the roles of TAMs in tumor cell proliferation, invasion, and metastasis, 290 

stimulating angiogenesis, tumor immunoevasion, and therapeutic resistance (Figure 3). 291 

3.1 Anti-tumorigenic effects of TAMs 292 

Macrophages are reported as the main phagocytic population within TME. By 293 

distinguishing cancer cells from normal cells, M1 type macrophages can directly engulf 294 

cancer cells by phagocytosis activity and indirectly eliminate tumor cells by inducing 295 

cancer cell death through secreting some molecules including ROS and NO or by 296 

activating other immune cells such as T cells and nature killer (NK) cells [74]. The 297 

potential tumor-suppressive role of TAMs has been studied in various tumor contexts. 298 

For instance, high infiltration of CD68+ TAMs has been associated with improved 299 

survival in colon, gastric, and endometrial cancer patients [75-77]. In a mouse model 300 

of CRC metastasis, depletion of Kupffer cells (TRMs in the liver) resulted in increased 301 
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liver metastasis of CRC cells, suggesting an inhibitory function of macrophages in liver 302 

metastasis [78]. In melanoma, CD169+ macrophages has been shown to inhibit tumor 303 

growth by blocking the dissemination of tumor-derived extracellular vesicles [79]. In 304 

the single-cell analysis of TAMs, some M1-like TAM subsets and other newly identified 305 

TAM populations are correlated with better prognosis, providing further evidence for 306 

the existence of an anti-tumorigenic portion of TAMs within TME [80]. However, 307 

cancer cells have evolved mechanisms to escape uptake by TAMs with the expression 308 

of “don’t eat me” signal genes such as CD47 and CD24, which disrupt the phagocytosis, 309 

and blocking CD47 or CD24 by antibodies can re-activate the macrophage mediated 310 

phagocytosis of tumor cells [81, 82]. 311 

Furthermore, M1-like TAMs can induce ferroptosis, an intracellular iron-312 

dependent form of cell death, in cancer cells through various mechanisms. These 313 

include the release of proinflammatory cytokines, providing peroxides to trigger Fenton 314 

reactions, and activating CD8+ CTLs, with the latter being considered a major 315 

contributor to initiating ferroptosis in cancer cells [83, 84]. The activated CD8+ CTLs 316 

produce IFN-γ, which activates JAK/STAT1 pathway and downregulates the 317 

transcription of SLC3A2 and SLC7A11, two subunits of the glutamate-cysteine 318 

antiporter system xc
− that involved in ferroptosis [85]. This action disables the GSH-319 

dependent antioxidant system and consequently promotes tumor cell excessive lipid 320 

peroxidation and ferroptosis [85]. Additionally, during the respiratory burst, M1-like 321 

TAMs can release peroxides (H2O2) to trigger intracellular Fenton reaction and generate 322 

excessive ROS, therefore promoting tumor cell ferroptosis [86, 87]. Interestingly, 323 

ferroptosis products of dying cancer cell contrarily promotes TAMs switch into an M2-324 

like pro-tumor phenotype via STAT3-dependent fatty acid oxidation and accelerates 325 

pancreatic adenocarcinomas [88], which suggests the crafty characteristics of tumors 326 

and the complicated crosstalk between TAMs and cancer cells. 327 

Emerging evidence from scRNA-seq studies has shed light on the discovery of 328 

novel macrophage subtypes exhibiting remarkable potential in antitumor activities. One 329 

notable investigation found that the presence of CD74+ macrophages in hepatocellular 330 

carcinomas was strongly associated with improved prognosis and activation of immune 331 

response pathways [89]. Another study made a significant observation uncovering the 332 

role of LC3-associated phagocytosis, a distinct process from conventional autophagy, 333 

in driving TAMs to exert control over tumor growth [90]. This unique mechanism relies 334 
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on the participation of tumor-infiltrating T cells and is dependent on the coordinated 335 

activation of stimulator of interferon response CGAMP Interactor 1 (STING) and type 336 

I interferon responses. In the context of breast cancer, single-cell studies have revealed 337 

the presence of a distinct population of folate receptor 2+ (FOLR2+) macrophages 338 

residing in the perivascular regions of the tumor stroma[91]. These macrophages 339 

engage in interactions with CD8+ T cells and demonstrate a remarkable ability to 340 

efficiently prime effector CD8+ T cells. Notably, a higher density of FOLR2+ 341 

macrophages within tumors is associated with improved patient survival, highlighting 342 

their potential as prognostic markers and their role in facilitating anti-tumor immune 343 

responses. In addition to these findings, recent research has highlighted the potential of 344 

targeting monoamine oxidase A (MAO-A) to modulate the polarization of TAMs [92]. 345 

MAO-A, an enzyme located in the mitochondrial membrane, has emerged as a 346 

promising therapeutic target due to its involvement in TAM function. Notably, 347 

compelling results have been observed in a preclinical study utilizing the B16 348 

melanoma mouse model, in which the pharmacological inhibition of MAO-A 349 

enzymatic activity with commercially available inhibitors, commonly prescribed for 350 

neurological disorders, demonstrated significant efficacy. This inhibition of MAO-A 351 

activity resulted in a remarkable reduction in regulatory TAMs (Reg-TAMs) and a 352 

concomitant expansion of TAM subsets characterized by a proinflammatory signature. 353 

3.2 TAMs promote carcinogenesis  354 

Rather than exerting an anti-tumorigenic function, TAMs are broadly involved in 355 

tumor progression. TAMs collaborate with other immune cells and stromal cells, 356 

collectively constructing a special microenvironment for cancerous growth. Meanwhile, 357 

TAMs foster cancer progression by interacting with TME or by secreting growth factors 358 

such as epithelial growth factor (EGF), platelet-derived growth factor (PDGF), TGF-β, 359 

hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF) that stimulate 360 

tumor proliferation [93]. For example, in HCC, TAMs induced liver inflammation and 361 

subsequent carcinogenesis by releasing IL-6, IL-1β, TNF, HGF, CCL2, and other 362 

factors [94]. In human endometrial carcinoma, chemokine (C‐X‐C motif) ligand 8 363 

(CXCL8) secreted by TAMs promoted tumor progression by suppressing the 364 

expression of estrogen receptors via homeobox B13 (HOXB13) [95]. In PDAC, IL-1β 365 

released by TAMs suppressed the expression of 15-hydroxyprostaglandin 366 

dehydrogenase (15-PGDH), an enzyme inversely associated with tumor advancement, 367 
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presence of lymph node metastasis and nerve invasion, and poor prognosis of patients 368 

[96]. Increased colony-stimulating factors (CSFs) produced by TAMs has also been 369 

observed to be related to cancer development across a range of malignancies, including 370 

liver cancer, breast cancer, RCC, Hodgkin lymphoma, and ovarian cancer [97].  371 

Furthermore, interactions between cancer stem cells and TAMs are reported to 372 

promote tumorigenesis as well [98]. For example, TAMs promoted stem cell-like 373 

properties of cancer cells by activating the nuclear transcription factor-κB (NFκB) 374 

pathway in colon cancer and breast cancer, the IL-6-STAT3 (Signal transducer and 375 

activator of transcription 3) pathway in HCC and the AKT-mTOR pathway in RCC [99]. 376 

Even in 3D engineered microenvironments, TAMs intensified the stem-like properties 377 

and malignant phenotypes of ovarian cancer cells through the WNT pathway [100]. 378 

In addition to the effects of TAMs on cancer cells, the latter reciprocally polarize 379 

TAMs towards states in favor of tumor progression by producing cytokines, 380 

chemokines, and metabolites. For instance,, substances such as succinate, histamine, 381 

CSF1, E3 ubiquitin protein ligase COP1, and β-glucosylceramide released by cancer 382 

cells can modulate metabolic state and induce ER stress of TAMs, thereby escalating 383 

the generation of pro-tumor TAMs [58, 101-105]. In glioblastoma, periostin secreted 384 

by tumor stem cells recruited monocyte-derived macrophages from peripheral blood 385 

and polarized them into M2-like TAMs to promote tumorigenesis [106]. Overall, the 386 

mechanisms underlying TAMs promoting tumorigenesis are extremely diverse and 387 

display context dependency. 388 

In the context of HCC, a specific subset of M2 macrophages characterized by high 389 

expression of C-C motif chemokine ligand 18 (CCL18) and the transcription factor 390 

CAMP responsive element modulator (CREM) has been identified through scRNA-seq 391 

[107]. These M2 macrophages are believed to play pivotal roles in tumor progression. 392 

Understanding the association between M2 macrophages, CCL18 expression, and 393 

CREM provides valuable insights into the underlying mechanisms driving HCC 394 

development and paves the way for targeted interventions to combat this aggressive 395 

cancer. In another notable study, a tumor-specific macrophage subpopulation marked 396 

by the upregulation of triggering receptor expressed on myeloid cells 2 397 

(TREM2)/apolipoprotein E (APOE)/complement C1q (C1Q) markers has been 398 

discovered and validated using advanced imaging techniques[108]. This subset of 399 

macrophages demonstrated a significant enrichment in tumors from patients who 400 
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experienced recurrence following surgery, specifically in clear cell renal cell carcinoma 401 

(ccRCC). The identification of these TREM2/APOE/C1Q-positive macrophages not 402 

only offers a potential prognostic biomarker for ccRCC recurrence but also presents a 403 

promising target for therapeutic strategies aimed at preventing tumor relapse. 404 

Collectively, these studies shed light on the diverse, context-dependent roles of 405 

macrophages in the tumor microenvironment and their considerable impact on cancer 406 

progression.  407 

3.3 TAMs enhance tumor metastasis 408 

In the theatre of oncology, studies have revealed the critical roles of TAMs in 409 

stimulating tumor invasion and metastasis. TAMs can orchestrate a hostile breakout, 410 

releasing an arsenal of weapons including matrix metalloproteinases (MMPs), 411 

cathepsin, urokinase, protease, and matrix remodeling enzymes. These molecular 412 

saboteurs disrupt cell-cell and cell-matrix junction, enabling the escape and invasion of 413 

cancer cells [109-113]. The plot thickens when sphingosine-1-phosphate (S1P), 414 

released by apoptotic tumor cells, stimulated TAMs to secrete lipocalin-2 (LCN2), 415 

further propelling tumor metastasis [114]. Similarly, in a RCC model undergoing IL-416 

2/anti-CD40 immunotherapy, macrophage-dependent NO in the tumor 417 

microenvironment was essential to regulate the activity of MMPs and the expression of 418 

adhesion molecules, which was the basis for metastasis [115]. TAMs are also capable 419 

of igniting cancer cell invasions in other ways. TAMs-derived CCL18 activated the 420 

interaction between integrin and receptor membrane-associated phosphatidylinositol 421 

transfer protein 3 (PITPNM3) to promote the metastasis of breast cancer [116]. TAM-422 

produced cathepsin B has also been shown to enhance breast cancer cell invasion in a 423 

lung-metastasis model. The consumption of glucose fuels enhances hexosamine 424 

biosynthetic pathway (HBP) and O-GlcNAcylation of cathepsin B in TAMs, which 425 

supported cancer metastasis [117]. The positive feedback between tumor cells and 426 

TAMs triggered tumor cells to secrete CSF-1, stimulating TAMs to secrete epidermal 427 

growth factor (EGF), which also accelerated tumor invasion and metastasis by 428 

destroying the matrix [118-120]. Additionally, TAMs have a hand in regulating 429 

epithelial-mesenchymal transformation (EMT), a well-known bioprocess intrinsically 430 

linked with tumor metastasis. In pancreatic cancer, for example, TAMs are revealed to 431 

bolster EMT and foster cancer metastasis by reducing the expression of E-cadherin via 432 

activating the TLR4/IL-10 signaling pathway[121, 122]. In another study, TAMs were 433 
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demonstrated to promote EMT and metastasis of liver cancer and CRC through 434 

secreting TGF-β [123]. 435 

In addition to the assistance in metastasis at primary sites, studies have shown that 436 

TAMs play a crucial role in preparing a favorable landing strip for migratory cancer 437 

cells, assisting these rogue cells to seed in distal tissues or organs. For instance, 438 

cytochrome P450 4A released by TAMs, fostered the formation of pre-metastasis niche 439 

and the trend of M1 polarization[124]. In lung metastasis models of breast cancer and 440 

melanoma, monocytes were recruited by CCL2 produced by cancer cells to differentiate 441 

into macrophages, creating a pre-metastatic niche for tumor cells [125, 126]. In a liver 442 

metastasis model of PDAC, TAMs derived inflammatory monocytes, are able to secrete 443 

granular protein to transform the resident hepatic stellate cells into myofibroblasts to 444 

support cancer cell implantation [127]. Interestingly, TRMs can also facilitate cancer 445 

metastasis into the tissue, due to their anti-inflammatory property. For example, 446 

Alveolar macrophages, TRMs in the lung, promoted lung metastasis of HCC and breast 447 

cancer by secreting leukotriene and suppressing the Th1 response [128]. Peritoneal 448 

TRMs promoted ovarian cancer metastasis into the peritoneal cavity by driving the 449 

spheroid formation [129]. Besides, TAMs are affected by exosomes produced by tumor 450 

cells, for example, exosome-educated macrophages boosted liver metastasis of 451 

pancreatic cancer through TGF-β secretion [130]. 452 

Recent advances in single-cell research have provided invaluable insights into 453 

tumor microenvironment modulation and the intricate relationship between 454 

macrophages and cancer cell invasion. These studies not only highlight the impact of 455 

macrophages on cancer cell behavior but also spotlight their potential as therapeutic 456 

targets. For instance, a lung cancer study revealed that the depletion of tissue-resident 457 

macrophages led to significant changes in the tumor microenvironment, curbing tumor 458 

invasiveness and growth[36]. These alterations included a decrease in regulatory T cell 459 

numbers and a shift in their phenotype, accompanied by an accumulation of CD8+ T 460 

cells. Furthermore, the relocation of tissue-resident macrophages from the tumor core 461 

to the periphery during tumor progression indicated their dynamic role in lung cancer 462 

development. Another study focused on glioblastoma demonstrated the ability of 463 

macrophages to induce a transition of glioblastoma cells into mesenchymal-like 464 

states[131]. This transition was mediated by the secretion of oncostatin M by 465 

macrophages, which interacted with its receptors on glioblastoma cells, activating the 466 
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signal transducer and activator of transcription 3 (STAT3) signaling pathway. 467 

Importantly, the acquisition of mesenchymal-like states in glioblastoma cells was 468 

associated with increased expression of a mesenchymal program in macrophages and 469 

enhanced cytotoxicity of T cells. These findings highlight the extensive alterations in 470 

the immune microenvironment orchestrated by macrophages and underscore their 471 

potential therapeutic implications. 472 

3.4 TAMs enhance angiogenesis 473 

In solid tumors, TME is typically characterized by a state of hypoxia, an essential 474 

element for tumor angiogenesis, which is recognized as one of the hallmarks of cancer 475 

[132]. A wealth of research has evidenced that hypoxic TME steers the recruited 476 

macrophages towards an M2-like state , inciting TAMs to unleash pro-angiogenic 477 

factors such as vascular endothelial growth factor (VEGF), HIF, MMP, PDGF, bFGF, 478 

TNF, and IL-1β [133, 134]. For example, in breast and colon cancer, TAMs were 479 

positively correlated with VEGF level and microvascular density [135, 136]. TAM-480 

induced MMP9 has been found to be a strong ally in promoting tumor angiogenesis in 481 

ovarian cancer, while TAM-derived thymine phosphorylase (TP) has been implicated 482 

in fostering tumor angiogenesis in gastric cancer [137, 138]. Another piece of this 483 

intricate puzzle is the role of WNT7b, produced by TAMs, which ratchets up the 484 

expression of VEGF-A in vascular endothelial cells, thereby enhancing angiogenesis in 485 

breast cancer [139]. The significance of HIF expression in TAMs can also not be 486 

overstated for tumor angiogenesis, as supported by the observation that knockout of 487 

HIF-1α in TAMs resulted in curtailed angiogenesis and a reduction in tumor burden in 488 

breast cancer. Additionally, TIE2-expressing monocytes, a particular breed of TAM 489 

existed both in human peripheral blood and tumors, has been noted to fuel tumor 490 

angiogenesis and tumor growth in endometriosis lesions, pancreatic cancer, and ovarian 491 

cancer [140, 141].  492 

3.5 TAMs in tumor immunity 493 

In addition to their direct effects on cancer cells, TAMs function as pro-tumorigenic 494 

cells by attenuating cancer immunity to construct an immunosuppressive 495 

microenvironment for cancer cell growth in several ways [142, 143]. As phagocytes, 496 

TAMs compete with dendritic cells and degrade tumor-associated antigens (TAA) in 497 

TME [144]. Meanwhile, antigen presentation activity is abnormal in TAMs, resulting 498 

in inhibition of adaptive immune response and thereby facilitating tumor immune 499 
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evasion. This is evident where the transcription factor IRF8 is required for cancer cell 500 

antigen presentation by monocyte-derived TAMs, which was essential for promoting 501 

cytotoxic T lymphocyte (CTL) exhaustion within the tumor. Notably, TAM-specific 502 

IRF8 deletion prevented exhaustion of cancer cell-reactive CTLs and suppressed tumor 503 

growth [145]. 504 

TAMs also impede the anti-tumor activity of tumor-infiltrating natural killer cells 505 

and T cells and synergize with myeloid-derived suppressor cells (MDSCs), tumor-506 

associated dendritic cells, and neutrophils to foster an immunosuppressive tumor 507 

microenvironment [142, 144]. T cell immunity is suppressed by TAMs as evidenced by 508 

the unleashed T cell response upon TAM blockage in several cancers [146, 147]. 509 

Recruitment of CD8+ T cells was blocked by TAMs in TME of HCC through the 510 

inhibition of CXCL9 and CXCL10, meanwhile CD8+ T cell activation and proliferation 511 

were attenuated through regulating L-arginine by ARG1 and inducible NO synthase 512 

(iNOS) in lung cancer and lymphoma [44, 148]. TAM-secreted cytokines including IL-513 

10 and TGF-β, inhibited T cell proliferation and differentiation and promoted T cell 514 

exhaustion [149, 150].  515 

Furthermore, TAMs contribute to the blockade of cytotoxic activities in T cells, 516 

natural killer T cells, and natural killer cells on account of the high expression of 517 

immune checkpoint ligands on TAMs such as programmed cell death protein ligand 1 518 

(PD-L1), programmed cell death protein 1 (PD-1), B7-H4, and cytotoxic T-519 

lymphocyte–associated protein 4 (CTLA4), which leads to reinforced tumor growth 520 

[147, 151-153]. For example, in mouse models of colon cancer and breast cancer, M2-521 

like TAMs expressed  high levels of PD-1, which not only reduced the anti-tumor 522 

function of T cells but also inhibited the phagocytosis of macrophages and promoted 523 

the growth of tumors[154]. Additionally, a wealth of data reveals that TAMs can also 524 

mediate T cell depletion in TME. The activated antigen-specific Fas+CD8+ T cells 525 

undergo apoptosis following their interaction with FasL+CD11b+F4/80+ monocyte-526 

derived macrophages within the liver, which systemically depleted the peripheral T cell 527 

numbers and diminished tumoral T cell diversity and function by siphoning activated 528 

CD8+ T cells from circulation [18]. Importantly, TAMs and M-MDSCs, but not cancer 529 

cells, consumed the most glucose per cell in TME and maintain robust glucose 530 

metabolism [155], implying that TAMs could trigger T cell death by glucose 531 

deprivation and lactate production [156]. Taken together, all these results highlight 532 
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macrophage as a central player of the immunosuppressive TME through regulating the 533 

recruitment and the function of multiple immune subtypes. 534 

3.6 TAMs in therapeutic resistance 535 

Growing studies have indicated the significant roles of TAMs in chemo- or radio-536 

resistance. Generally, TAMs contribute to therapeutic resistance either by promoting 537 

cell survival and cancer cell stemness or by shielding cancer cells from death. For 538 

example, TAMs have been reported to activate the STAT3 signaling pathway in cancer 539 

cells by producing cytokines such as IL-6 and TNF-α, which enhanced the resistance 540 

to chemotherapy in various cancer cells [157, 158]. It was also shown that TAMs can 541 

secret exosomes containing microRNAs and metabolites that are implicated in 542 

chemotherapy resistance in different type of cancers including ovarian cancer, gastric 543 

cancer, and PDAC [130, 159, 160]. In addition, blockage of TAMs or certain factors 544 

secreted by TAMs has shown to improve the radiotherapy sensitivity in head and neck 545 

cancer as well as breast cancer [161, 162].  546 

4. TAM-targeted cancer therapy 547 

Conventional cancer treatments, including surgical resection and kinase inhibitors, 548 

frequently encounter challenges such as tumor relapses and drug resistance[163, 164]. 549 

This underscores the urgent need to develop novel therapeutic strategies for more 550 

effective cancer therapy. Given the importance of TAMs in tumor progression and 551 

immune response, targeting TAMs as a potential cancer therapeutic strategy has aroused 552 

great interests. Numerous approaches are either being developed or are under active 553 

research for different types of cancer, with many clinical trials currently underway. 554 

These strategies are designed either through inhibiting the pro-tumorigenic function or 555 

boosting the anti-tumorigenic capabilities of TAMs by manipulating the mass, the states, 556 

and the activity of TAMs. This discussion will center on the current macrophage-557 

targeting therapies, that can be broadly divided as follows: inhibition of 558 

monocyte/macrophage recruitment, depletion of macrophages, reprogramming and 559 

engineering of TAMs, and other therapies (Figure 4). 560 

4.1 Inhibition of monocyte/macrophage recruitment 561 

The strategy of inhibiting the recruitment of monocyte into tumor tissue holds 562 

promise, as TAMs are predominantly derived from circulating monocyte precursors. 563 

Chemokine ligand 2 (CCL2) is essential for the recruitment and localization of 564 

monocytes into tumors [165], making the targeting CCL2 and its receptors CCR2 a 565 
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viable method for curtailing monocyte infiltration and TAM production. In preclinical 566 

models, blocking CCL2-CCR2 signaling by genetic approach or small molecular 567 

inhibitors resulted in reduced tumor growth and metastasis and improved the efficacies 568 

of chemotherapy, radiation therapy, and immunotherapy in HCC [166-168]. In a mouse 569 

model of pancreatic cancer, CCR2 antagonists blocked the mobilization of CCR2-570 

positive monocytes from bone marrow into tumors, thereby limiting TAM production 571 

and curbing tumor growth and metastasis [169]. Carlumab, an anti-CCL2 monoclonal 572 

antibody, has demonstrated promising results in preventing the development of certain 573 

cancers in mouse models [170]. Several small molecular inhibitors and antibodies 574 

aimed to disrupt the CCL2-CCR2 axis are under clinical trial. The CXCL12-CXCR4 575 

pathway is another potential target to decrease TAM recruitment, the blockade of which 576 

mobilized CD8+ T cells to the tumor and reduced TAM accumulation in multiple 577 

cancers [171-173]. Meanwhile, a peptide antagonist of CXCR4, named as 578 

motixafortide, is currently under teste in ongoing clinical trials [174]. 579 

Other molecules such MAC-1 (CD11b/CD18) and fibroblast growth factor 580 

receptor (FGFR) have also been reported as potential targets. For example, inhibition 581 

of MAC-1 has been shown to enhance tumor response to radiation therapy by reducing 582 

myeloid cell recruitment, consequently attenuating squamous cell carcinoma 583 

growth[175]. Likewise, AZD4547, an inhibitor of the FGFR tyrosine kinase family, has 584 

been observed to block the FGFR in a lung adenocarcinoma mouse model, resulting in 585 

robust TAM elimination and tumor regression, rendering this receptor a potential 586 

therapeutic target [176]. The potential of targeting 6-hydroxydopamine catecholamines, 587 

CSF-1R, and CD88 for cancer therapy in lung cancer and colon cancer as well [28, 177, 588 

178]. 589 

4.2 Reduction and clearance of TAM 590 

4.2.1 Inhibition of TAMs differentiation 591 

As discussed above, CSF1R is the key factor for TAM survival and proliferation 592 

and is highly expressed across all TAM states. This makes the interruption of the CSF1-593 

CSF1R axis a promising method to reduce TAMs.  594 

Firstly, the inhibition of CSF1-CSF1R signaling has resulted in substantial cell 595 

apoptosis of TAMs and improvement in T cell response in many tumor models [179-596 

181]. The small molecule CSF1R antagonist named PLX3397 (Pexidartinib), has been 597 

found to penetrate the blood-brain barrier and significantly reduce the amount of tumor-598 
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associated microglia, thereby preventing tumor invasion in a glioblastoma mouse 599 

model [182]. In murine breast-to-brain metastasis models, the combination of BLZ945, 600 

an inhibitor of CSF1R, and AC4-130 , an inhibitor of CSF2Rb-STAT5 signaling, has 601 

proven effective in controlling tumor growth, normalizing of microglia activation states, 602 

and mitigating neuronal damage [183]. For advanced ovarian cancer patients, GW2580, 603 

a CSF1R kinase inhibitor, has been reported to inhibit macrophage function, reduce M2 604 

macrophage infiltration, and significantly decrease the number of ascites [184]. In 605 

addition to compounds, CSF-1R antibodies (such as Emactuzumab) are also developed 606 

to block the CSF1-CSF1R pathway and have proved its efficacy in diffuse-type giant 607 

cancer cells [185, 186]. Secondly, the efficacy of chemotherapy or ICB has been found 608 

to be improved when applied to block the CSF1-CSF1R axis. For example, docetaxel 609 

(microtubule-stabilizing agent) coupled with anti-CSF1R led to TAM depletion in a 610 

murine epithelial ovarian cancer model [187]. Finally, many ongoing CSF1-CSF1R 611 

targeting trials are evaluating their anti-tumor efficacy either alone or in combination 612 

with other drugs such as chemotherapy agents or immune checkpoint inhibitors. 613 

4.2.2 Elimination of TAMs 614 

Macrophages always undergo transcriptionally and epigenetically remodeling to 615 

adapt to the local microenvironment. Targeting the intrinsic regulators of TAMs 616 

provides a specific way to deplete the tissue specific TAMs without defects induced by 617 

general depletion of monocytes/macrophages. In peritoneal cavity, for example, 618 

transcription factor GATA6 is critical for the peritoneal macrophage differentiation and 619 

maintenance [188, 189]. The depletion of GATA6 in peritoneal TRMs induces cell 620 

apoptosis and number loss, indicating that targeting GATA6 can be used to eliminate 621 

peritoneal TAMs. Retinoid X receptors (RXRs) determine the identity of peritoneal 622 

TRMs by regulating the chromatin accessibility of GATA6. RXRs deficiency impairs 623 

neonatal expansion of the large peritoneal macrophages (LPMs) pool and reduces the 624 

survival of adult LPMs through excessive lipid accumulation. Depletion of RXR 625 

diminished LPMs accumulation in ovarian cancer and strongly inhibits tumor 626 

progression in mice [190].  627 

Novel artificial materials have been developed to eliminate the TAMs as well. For 628 

example, trabectedin and lurbinectedin could reverse the immunosuppression effect of 629 

TAMs through depleting macrophages in the TME. However, these two chemicals 630 

inevitably caused side effects due to unselectively macrophage consumption, 631 
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potentially disturbing immune homeostasis [191]. The clodronate liposome, a non-632 

nitrogen bisphosphonates which elicits toxic effects on macrophages via phagocytosis, 633 

has been used to deplete TAMs in vivo, resulting in reduced tumor growth in PDAC 634 

[192] and ovarian cancer metastasis [16]. Depletion of TAMs with clodronate has also 635 

been shown to prevent aerobic glycolysis and tumor hypoxia, improving tumor 636 

response to chemotherapy [193]. Moreover, as a result of TAM depletion, PD-L1 637 

expression, as well as T-cell infiltration, is significantly increased in aerobic cancer cells, 638 

which dramatically promoted the antitumor efficacy of PD-L1 antibodies [193]. 639 

Zoledronate, a third-generation nitrogen-containing bisphosphonate, has been shown to 640 

exhibit selective cytotoxicity towards TAMs, impairing differentiation of monocytes 641 

into TAMs and to reducing the infiltration of TAMs, which finally resulted in decreased 642 

tumor angiogenesis and inhibited tumor progression [194].  643 

Furthermore, therapies using Fc domain enhanced anti-TREM2 monoclonal 644 

antibody have been developed to promote anti-tumor immunity by eliminating and 645 

modulating TAM populations, which leads to enhanced CD8+ TIL infiltration and 646 

effector function [195]. In addition, chimeric antigen receptor (CAR) T cells, 647 

genetically modified to express receptors that recognize TAMs-specific antigens, are 648 

designed to eliminate TAMs. In an ovarian cancer study, both mouse and human FRβ-649 

specific CAR T cells recognized and depleted the FRβ+ TAMs, interrupting ovarian 650 

cancer metastasis [196].  651 

4.3 Reprogramming of TAMs    652 

Macrophages demonstrate a high degree of plasticity, enabling them to adapt to 653 

variable microenvironments. This adaptability paves the way for the reprogramming of 654 

TAMs into a tumoricidal phenotype, thereby restoring their anti-tumor effects [197]. 655 

The reprogramming of M2-like TAMs into M1-like TAMs within the TME has shown 656 

promising results. Several surface markers of TAM can be targeted to switch their 657 

phenotypes, such as the scavenger receptor MARCO, toll-like receptors (TLRs), CD40, 658 

or CCR5 [198-201].  659 

In models of breast and colon carcinoma as well as melanoma, an anti-MARCO 660 

monoclonal antibody has been developed and has exhibited anti-tumor effects in some 661 

cases through reprogramming TAMs to pro-inflammatory phenotypes and enhancing 662 

tumor immune responses [198]. Similarly, CCR5 inhibitors such as maraviroc, 663 

vicriviroc, TAK-779, and anibamine have shown anti-tumor effects in mouse model of 664 
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multiple cancers and are tested clinically in breast cancer, colon cancer and PDAC [202]. 665 

In addition, specific ligands for the TLRs or CD40 have also been identified to activate 666 

M1 macrophages. The TLR7 agonist imiquimod has been approved by the FDA for 667 

topical treatment of superficial basal cell carcinoma [203]. TLR3 agonist poly-ICLC, 668 

which activates the NFκB pathway and anti-tumor immunity, is under clinical test for 669 

glioma [204]. Paclitaxel decreases tumor growth by reprogramming TAMs to an M1 670 

subtype in a TLR4-dependent manner [205]. Anti-CD40 antibodies have shown 671 

significant anti-tumor activity as single agents in several preclinical models including 672 

PDAC and breast cancer [206-208]. Combined administration of monophosphoryl lipid 673 

A (MPLA) and IFN-γ stimulates type I IFN signaling in breast cancer, which 674 

reprogramed CD206+ TAMs to iNOS+ TAMs, resulting in cytotoxic T cell activation 675 

through macrophage-secreted IL-12 and TNF-α, finally reduction of primary tumor 676 

growth and metastasis [209]. 677 

Specific pathways involving anti-inflammatory responses can also be modified to 678 

reshape TAMs. For example, by specifically targeting STAT3 through CD163-targeted 679 

corosolic acid-containing liposomes, M1-like TAMs were reprogrammed, resulting in 680 

a decrease in IL-10 expression and increase in pro-inflammatory TNF-α [210]. 681 

Similarly, it has been shown that several synthetic molecules (AS1517499, TMC-264, 682 

A771726) inhibited STAT6, one of the major signal transducers activated by IL-13 and 683 

involved in M2 polarization, leading to inhibited TAMs transformation and tumor 684 

progression in a mouse model of breast cancer [211]. Furthermore, inhibiting STAT6 685 

transcriptional activity by enhancing STAT6 acetylation suppresses TAMs M2-like 686 

polarization, reshapes TME into a tumor-suppressive state, and represses tumor 687 

progression in melanoma [212]. PI3Kγ, a key macrophage lipid kinase, selectively 688 

drives immunosuppressive transcriptional programming in macrophages which 689 

promotes tumor immune invasion [213, 214]. PI3Kγ signaling in TAMs inhibits NFκB 690 

activation and stimulates CCAAT/enhancer binding protein (C/EBP)-β activation 691 

through AKT and mammalian target of rapamycin (mTOR), thereby induces a 692 

transcriptional program of immunosuppression [213]. Genetic depletion of Pik3cg or 693 

selective pharmacologic targeting of PI3Kγ by IPI-549 reprogramed TAMs, reshaped 694 

the TME, and promoted CTL-mediated tumor regression [213-215]. 695 

A few other strategies are studied likewise to manipulate TAMs toward to M1-like 696 

states. Modulating macrophage mitochondrial function could be considered as an 697 
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approach to activating TAMs reprogramming. Under hypoxia condition, nuclear-698 

encoded mitochondrial pyruvate dehydrogenase beta gene expression is attenuated by 699 

promoting Nuclear Respiratory Factor 1 (NRF1)  degradation, dampening hypoxia-700 

mediated NRF1 degradation decreases the Warburg effect and promotes M1 701 

polarization of TAM, promoting tumor cells to become more sensitive to apoptosis 702 

through a FADD-dependent manner [216]. Depletion of NF-κB effector molecule 703 

Gadd45b in myeloid cells recovered the activation of pro-inflammatory TAMs and 704 

increased intratumor immune infiltration, thereby diminishing HCC and ovarian cancer 705 

oncogenesis in mouse [217]. For NSCLC patients, disrupting Angptl2, a secreted 706 

inflammatory glycoprotein, may be an effective strategy to re-educate TAM 707 

polarization and reprogramming of M2-like TAMs to M1-like TAMs [218].  708 

4.4 Blocking phagocytotic checkpoints  709 

The therapeutic exploitation of innate immune clearance of dying cancer cells has 710 

emerged as an exciting new area of cancer immunotherapy. Similar to the immune 711 

checkpoints on T cells, several phagocytotic checkpoints on macrophages have been 712 

identified to modulate the tumor-associated antigens uptake, presentation, and 713 

degradation. Targeting these phagocytotic checkpoints is critical for tumor clearance 714 

and type I IFN immune response. Some cancer cells express “don’t eat me” signal 715 

ligands such as CD47 and CD24, which can be recognized by TAM receptors such as 716 

SIPR1a (for CD47) and SIGLEC10 (for CD24), effectively blocking the attack from 717 

TAMs. Interrupting SIPR1α-CD47 or SIGLEC10-CD24 axis by CD47 or CD24 718 

antibodies stimulated TAMs to phagocytose cancer cells and enhanced antitumor T cell 719 

responses in mouse models [81, 219, 220]. Furthermore, a phase I trial involving an 720 

anti-CD47 antibody Hu5F9-G4 demonstrated partial remissions in two patients with 721 

ovarian/fallopian tube cancers for 5.2 and 9.2 months [221]. As a general marker of 722 

embryonic-derived TRMs [222-224], T cell immunoglobulin and mucin domain-723 

containing molecule-4 (TIM4) mediates the uptake of apoptotic cell by recognizing 724 

phosphatidylserine (PS). Interestingly, TIM4+ cavity TAMs sequester and impair CD8+ 725 

T cells proliferation through the recognition between TIM4 and PS, which is elevated 726 

on activated T cells. Hence, the TIM4 blockade abrogated this sequestration, restored 727 

T cell proliferation, and thus enhanced anti-tumor efficacy in models of anti-PD-1 728 

therapy and adoptive T cell therapy in mice [19]. Additionally, TIM4-mediated uptake 729 

and degradation of dying tumor cells are important for the immune evasion via the 730 
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canonical autophagy due to reduced antigen presentation [225]. Besides, TIM4 731 

functions with LC3-associated phagocytosis (LAP) to promote immune tolerance and 732 

blockage of TIM4 with antibody releases the STING-mediated type I interferon 733 

responses in TAMs [90]. Consistently, blockade of phagocytic receptor MerTK with 734 

antibody also resulted in accumulation of apoptotic cells within tumors and triggered a 735 

type I interferon response which stimulated T cell activation and synergized with anti-736 

PD-1 or anti-PD-L1 therapy [226].  737 

4.5 Application of trained macrophage  738 

The application of trained immunity in macrophages provides a potential strategy 739 

for cancer treatment. Traditionally, innate immunity has been understood to react 740 

rapidly and nonspecifically upon encountering a pathogen, without building up 741 

immunological memory akin to adaptive immunity. However, studies have shown that 742 

prototypical innate immune cells (such as monocytes, macrophages, or natural killer 743 

cells) have the potential for increased responsiveness upon secondary stimulation, a 744 

phenomenon termed “trained immunity” [227, 228]. Contrary to the stringent 745 

antigen/pathogen specificity of adaptive immunity, trained innate immune cells can 746 

trigger systemically enhanced immune responses to a variety of heterologous stimulants 747 

after primary stimulation [228, 229]. Capitalizing on this characteristic, trained 748 

immunity has been leveraged to disrupt the immunosuppressive TME and boost the 749 

systemic anti-tumor response via pre-stimulating the myeloid cells. For example, 750 

trained immunity induced by pre-treatment of mice with β-glucan, a fungal-derived 751 

prototypical agonist of trained immunity, has been associated with transcriptomic and 752 

epigenetic rewiring of granulopoiesis and neutrophil reprogramming toward an anti-753 

tumor phenotype [230]. Meanwhile, β-glucan also attracts circulating 754 

monocyte/macrophages influx into the pancreas with features of trained immunity to 755 

exert anti-tumor functions [231]. Furthermore, the metabolite S1P mediated whole β-756 

glucan particle (WGP) induced trained immunity in lung interstitial macrophages, 757 

leading to inhibition of tumor metastasis and prolonged survival in multiple mouse 758 

models of metastasis. Application of WGP-trained BM-derived macrophages through 759 

adoptive transfer reduced tumor lung metastasis [232]. Interestingly, a recent study also 760 

observed that acute respiratory viral infections induced trained immunity in lung tissue-761 

resident alveolar macrophages. These macrophages are poised to exert long-lasting 762 

tissue-specific anti-tumor immune response [233], suggesting that trained immunity in 763 
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macrophage can provide a reprogrammed and persistent activation of immune response. 764 

Consequently, a designed nano-therapy has been developed to specifically induce 765 

trained immunity with nanoparticle MTP10-HDL in a B16F10 mouse melanoma model 766 

to overcome the immunosuppressive tumor microenvironment and synergize with 767 

immune checkpoint inhibitors [234]. Therefore, creating and modulating the trained 768 

immunity in monocyte/macrophage should enhance the anti-tumor immune responses, 769 

which might be a novel and promising immunotherapy against advanced cancer and 770 

metastasis.  771 

4.6 The potential of engineered CAR-macrophages in cancer therapy 772 

Earlier research focused on macrophage functions and their anti-tumor properties, 773 

but recent studies have shifted toward utilizing macrophages directly as therapeutic 774 

tools (Figure 5). The laboratory methods to obtain macrophages involve isolating 775 

mononuclear cells or monocytes from bone marrow or peripheral blood, and then 776 

stimulating, amplifying, and differentiating them in vitro (e.g., with GM-CSF and IFN-777 

γ). A recent study used induced pluripotent stem cells (iPSCs) to obtain macrophages 778 

after in-vitro differentiation[235]. Based on this, macrophages can be further armed 779 

with chimeric antigen receptors (CARs), adding a second signal within the 780 

macrophages. Similar to CAR-T cells, macrophages armed with CARs offers several 781 

benefits: firstly, CAR can precisely target and kill tumors by recognizing tumor-specific 782 

antigens on their surface; secondly, it can act as an antigen-presenting cell to prime and 783 

activate T cells; and thirdly, further genetic modification of macrophages may enhance 784 

their cytokine secretion capabilities, thereby improving their tumor-killing 785 

effectiveness. 786 

Based on the ability of macrophages to clear pathogens and antigens, engineered 787 

macrophages by modifying antigen receptors on macrophages have also been 788 

developed, known as CAR-M (chimeric antigen receptor macrophage) cells. 789 

Macrophages engineered with targeted CARs can enhance its antigen presentation and 790 

phagocytic capacity, through which CAR-M cells could recognize antigens expressed 791 

specifically on cancer cells, therefore attacking and eliminating malignant cells. Zhang 792 

Jin’s team developed CAR-expressing macrophages using iPSCs as the cell source, 793 

referred to as first-generation CD3ζ-based CAR-macrophages (iMACs)[236]. Building 794 

on this, they further developed iMACs with toll-like receptor 4 intracellular TIR 795 

(Toll/IL-1R) domain-containing CARs and M1 polarization characteristics, which 796 
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demonstrated enhanced orthogonal phagocytosis, polarization, and superior antitumor 797 

functions in treating solid tumors[235]. Yizhao Chen and colleagues developed CAR-798 

M targeting HER2 and CD47, demonstrating their inhibitory effects on HER2 or CD47-799 

positive ovarian cancer in vitro and in vivo[237]. The study preliminarily confirmed 800 

that these effects are primarily due to phagocytosis, the promotion of adaptive immunity, 801 

and modulation of the tumor microenvironment[237]. Another recent preclinical study 802 

by Zahir Shah and colleagues demonstrated that iPSC-derived CAR-M targeting the 803 

tumor antigen PSCA exhibit strong antitumor activity against human pancreatic solid 804 

tumors both in vitro and in vivo[238]. Genetically engineered CAR-M targeting HER2 805 

decreased tumor burden in a mouse model [239, 240]. Delivery of Adenovirus-806 

delivered CAR to macrophages transforms M2 macrophages into M1 polarization, 807 

reshaping TME and amplifying anti-tumor cytotoxicity of T cells, which inhibits lung 808 

cancer metastasis during ovarian cancer treatment [240].  809 

The majority of CAR-M strategies are currently in pre-clinical trials, with some 810 

already progressing to clinical trials. As an example, the first-in-human multi-center 811 

trial utilizing CAR-M carrying an adenoviral vector Ad5f35 targeting HER2 in various 812 

HER2-overexpressing solid tumors is currently in Phase I of interventional clinical 813 

trials (NCT04660929, estimated completion time: 2024-12), this has demonstrated 814 

promising results in effectively targeting solid tumors 815 

(https://classic.clinicaltrials.gov/ct2/show/NCT04660929). The phase I clinical trial 816 

results of the CAR-M product (CT-0508) demonstrate its preliminary safety, tolerability, 817 

and manufacturing feasibility for HER2+ tumors[241]. All the above studies elucidate 818 

CAR-M is anticipated to emerge as the forefront of tumor immunotherapy. 819 

 820 

5. Future Prospective 821 

Macrophages are important innate immune cells that play critical roles in clearing 822 

pathogens and maintaining tissue homeostasis. As the dominant myeloid cells infiltrate 823 

TME, TAMs influence cancer progression and immune response through multiple 824 

routes. Co-existence of two distinguished polarizations of TAMs displays spatial and 825 

temporal distribution in different types of cancer. M1-like TAMs activate the immune 826 

system and suppress tumor progression, whereas M2-like TAMs suppress the immune 827 

system to promote tumor development. Cancer cells and other infiltrated cells in TME 828 

tend to repress the anti-tumorigenic function and activate the pro-tumorigenic effects 829 

https://classic.clinicaltrials.gov/ct2/show/NCT04660929
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of TAMs, which provides a potential approach to take advantage of the M2-like TAMs 830 

by switching their polarization to M1-like.   831 

High plasticity is the core characteristic of macrophages, giving rise to phenotypic 832 

diversity and functional complexity of TAMs. Although macrophage infiltration is a 833 

shared property in different tumors, substantial differences in TAM phenotypes and 834 

roles are observed in tumors arising in or disseminating to different tissues. As proof, 835 

while TAM infiltration is correlated with poor prognosis in majority tumors, there are 836 

noteworthy exceptions such as primary CRC. Advanced technologies have identified 837 

increasing subgroups of TAMs and progressively expanded our understanding of TAMs 838 

beyond the simple dual classification. This certainly leads to many open questions for 839 

future studies. First, functional specificity of unique TAM subsets needs to be 840 

elucidated at single cell level, especially in different genetic and tumor contexts. Second, 841 

mechanisms underlying TAM regulation on tumor development at primary site and 842 

metastatic lesions need more comprehensive analyses since the tissue intrinsic 843 

properties vary a lot. Third, spatial distribution of TAMs and their corresponding 844 

function within tumors should be explored. Last but not the least, more studies are 845 

needed to decipher the master transcriptional and epigenetic regulators accounting for 846 

pro- or anti- tumorigenic function of TAMs. These explorations will shed new insights 847 

into the fundamental biology of TAM and cancer immunotherapies targeting TAMs.  848 

Given the high infiltration of TAMs in TME, approaches are developed for cancer 849 

treatment by depleting macrophages. Despite scientific advancements and promising 850 

preclinical studies, the translation of TAM-targeting therapies into effective clinical 851 

applications is still challenging. One of the reasons could be the heterogeneous nature 852 

of macrophages, which exhibit diverse phenotypes even within the same tumor. 853 

Another challenge is related to drug delivery. Many TAM-targeting agents fail to reach 854 

the tumor site due to the physiological barriers within the TME. Advanced drug delivery 855 

systems, such as nanoparticle-based delivery, are currently being explored to improve 856 

drug bioavailability. The side effects of these methods should be evaluated properly 857 

since macrophages are widespread and essential for normal tissue homeostasis.  858 

TAMs are mainly replenished by the circulating myeloid precursor pool, which 859 

gives rise to the exploitation of cancer therapy by TAM recruitment disruption. One 860 

feasible idea is that we could make use of the strong attraction of macrophages to tumor 861 

tissues, to engineer T cells to overcome the poor recruitment of T cells at tumor site. 862 
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This thought requires a profound understanding of the molecular basis of TAM 863 

recruitment and may broaden the application of CAR T cells in cancer immunotherapy. 864 

While high plasticity makes reprogramming TAMs operable, TAM heterogeneity is also 865 

the obstacle for TAM targeting drugs. Rather than bulk TAMs, targeting a key small 866 

portion of TAMs could be more effective with reduced side effects, which might be a 867 

future direction. Reprogramming macrophages towards antitumor phenotypes, rather 868 

than tumor suppressive ones, represents a promising direction, even though the 869 

potential for macrophage subset reprogramming has just been uncovered. Although 870 

TAM-targeting methods are still at the early stage, investigation into mechanisms of 871 

resistance to TAM-based immunotherapies is urgently needed as very limited data is 872 

available currently. The plasticity of macrophages allows them to switch phenotypes 873 

under different conditions, potentially contributing to drug resistance. Additionally, 874 

TAM-targeted cancer prevention and vaccine strategies should be considered, given the 875 

crucial roles of TAMs in cancer initiation, progression, and the formation of an 876 

immunosuppressive tumor microenvironment.  877 

With the recent advancement of CAR-armed macrophage technology, its clinical 878 

potential still requires thorough evaluation through both preclinical and clinical trials. 879 

We would like to emphasize that the successful integration of CAR-macrophages with 880 

other therapies, such as CAR-T cells, in future clinical applications will depend on 881 

several key factors: (1) the ability of CAR-macrophages to sustain potent and long-882 

lasting anti-tumor activity. As we know, one major issue with CAR-T cells in clinical 883 

applications is their tendency to become exhausted, leading to a loss of sustained 884 

functionality in some patients[10]. Could CAR-M cells face similar challenges? (2) 885 

whether the toxicity and side effects associated with CAR-macrophages are 886 

manageable and potentially lower than those of CAR-T cells; and (3) the identification 887 

of additional tumor-specific surface antigens suitable for effective CAR-macrophage 888 

targeting. 889 

The current TAM-targeting approaches face several limitations, and several 890 

challenges need to be addressed to better understand the roles of TAMs in cancer, 891 

including: (1) clarifying the tumor heterogeneity which may complicate the 892 

development of universal therapies targeting TAMs; (2) further understanding the 893 

complexity of TAM polarization, because TAMs can exist in a range of activation states 894 

(M1, M2, etc.), and this plasticity makes it challenging to target TAMs effectively 895 
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without disrupting their beneficial roles in tissue homeostasis and immune regulation; 896 

(3) further understanding the molecular mechanisms that influence the function of 897 

TAMs, such as TAM-associated metabolites that promote tumor progression and TAM-898 

specific transcriptional and epigenetic factors, as well as surface markers, to distinguish 899 

between pro- and anti-tumoral TAM subsets; (4) elucidating the detailed mechanisms 900 

underlying TAM-mediated immunosuppression in the tumor microenvironment, for 901 

example, how TAMs interact with other immune cells and tumor cells, and whether we 902 

use certain molecular signatures to predict the efficacy of therapies targeting 903 

TAMs?[242] (5) developing novel delivery systems to enhance drug penetration for 904 

efficient targeting of TAMs; and (6) further understanding the resistance mechanisms 905 

of TAM-targeting therapies, for examples, the upregulation of alternative pathways or 906 

through the recruitment of other immune cells that compensate for TAM depletion or 907 

modulation. 908 

 909 

6. Concluding Remarks 910 

In this review, we summarize the origins and polarization of tumor-associated 911 

macrophages (TAMs), discuss their role in regulating tumor development and immunity, 912 

and highlight the latest strategies in TAM-targeting cancer immunotherapy. The 913 

inherent heterogeneity of TAMs allows them to interact with various cells and 914 

participate in tumorigenesis and cancer immunity through diverse mechanisms, 915 

providing numerous opportunities for developing TAM-targeting therapies. However, 916 

for these strategies to be successfully translated into clinical practice, a more 917 

comprehensive and precise understanding of TAMs' heterogeneity and plasticity is 918 

essential. While several compounds, antibodies, and TAM engineering approaches have 919 

been developed, further supportive testing is needed to evaluate their clinical potential, 920 

both alone and in combination with other therapies, across different cancer contexts. 921 

Ongoing basic, translational, and clinical research will open new avenues for innovative 922 

therapeutic interventions, with promising outcomes expected in the future. 923 
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Figures, tables, and figure legends: 1711 
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Graphical abstract. Created in BioRender. Zhao, H. (2025) 1714 

https://BioRender.com/i12q098  1715 
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 1716 

Figure 1. The origin of TAMs. TAMs derive from two main sources: tissue-resident 1717 

macrophages and newly recruited monocyte-derived macrophages.  1718 
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 1719 

Figure 2. The multifaceted roles of macrophages and the approaches for functional 1720 

study of macrophages. Created in BioRender. Zhao, H. (2025) 1721 

https://BioRender.com/t36o292  1722 
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 1723 

Figure 3. The role of macrophages in cancer development and therapy. (A) 1724 

Proliferation; (B) Invasion and metastasis; (C) Angiogenesis; (D) Tumor immunity; (E) 1725 

Therapeutic resistance.   1726 



61 
 

 1727 

Figure 4. TAM-targeted cancer therapy. (A) Inhibition of TAMs differentiation; (B) 1728 

Elimination of TAMs; (C) Reprogramming and engineering of TAMs; (D) Blocking 1729 

phagocytotic checkpoints; (E) Application of trained macrophage.  1730 
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 1731 

Figure 5. The application of CAR-armed macrophages in cancer therapy. Created in 1732 

BioRender. Zhao, H. (2025) https://BioRender.com/x76e687  1733 
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Table 1. The different activators and biological functions of the M2 macrophage. 1734 

Subgroups Upstream activators Functions 

M2a IL-4, IL-13 Anti-inflammatory and tissue repair 

M2b IL-1β, TLR Ligands Th2 activation and regulation of the immune response 

M2c IL-10, TGF-β, Glucocorticoids Phagocytosis and immunosuppression 

M2d TLR Ligands, A2R agonists Pro-tumor and angiogenesis 
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