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Abstract 

The Illumina BovineSNP50 BeadChip features 54,001 informative single nucleotide poly-
morphisms (SNPs) that uniformly span the entire bovine genome.   Among them, 52,255 SNPs 
have locations assigned in the current genome assembly (Btau_4.0), including 19,294 (37%) 
intragenic SNPs (i.e., located within genes) and 32,961 (63%) intergenic SNPs (i.e., located 
between genes).  While the SNPs represented on the Illumina Bovine50K BeadChip are 
evenly distributed along each bovine chromosome, there are over 14,000 genes that have no 
SNPs placed on the current BeadChip.  Kernel density estimation, a non-parametric method, 
was used in the present study to identify SNP-poor and SNP-rich regions on each bovine 
chromosome.  With bandwidth = 0.05 Mb, we observed that most regions have SNP densities 
within 2 standard deviations of the chromosome SNP density mean.  The SNP density on 
chromosome X was the most dynamic, with more than 30 SNP-rich regions and at least 20 
regions with no SNPs.   Genotyping ten water buffalo using the Illumina BovineSNP50 
BeadChip revealed that 41,870 of the 54,001 SNPs are fully scored on all ten water buffalo, but 
6,771 SNPs are partially scored on one to nine animals.  Both fully scored and partially/no 
scored SNPs are clearly clustered with various sizes on each chromosome.  However, among 
43,687 bovine SNPs that were successfully genotyped on nine and ten water buffalo, only 
1,159 were polymorphic in the species.  These results indicate that the SNPs sites, but not the 
polymorphisms, are conserved between two species. Overall, our present study provides a 
solid foundation to further characterize the SNP evolutionary process, thus improving un-
derstanding of within- and between-species biodiversity, phylogenetics and adaption to en-
vironmental changes. 

Key words: SNPs, kernel density plots, call frequency plots, cross species transferability, evolu-
tionary process 

Introduction 

Like other mammals, cattle possess a large 
amount of single nucleotide polymorphisms (SNPs) in 
their genome.  The current NCBI dbSNP collection 

contains more than 2.2 million bovine SNPs 
(http://www.ncbi.nlm.nih.gov/projects/genome/gu
ide/cow/).  Among them, ~2.1 million SNPs were 

contributed by the Baylor College of Medicine on be-
half of the Bos taurus sequencing project using a single 
breed, Hereford cattle. The same team also provided 
an additional 114,958 SNPs discovered by comparing 
random shotgun reads from individuals of six diverse 
cattle breeds to the Hereford genome assembly. Based 

http://www.ncbi.nlm.nih.gov/projects/genome/guide/cow/
http://www.ncbi.nlm.nih.gov/projects/genome/guide/cow/
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on 126,800 BAC (bacterial artificial chromosome)-end 
sequences and 1,091,070 BAC shotgun reads released 
by the ENCODE project [1] and the Bovine HapMap 
project [2], Matukumalli and colleagues [3] identified 
89,832 unique putative SNPs for cattle.  Expressed 
sequence tags (ESTs) derived from different sources of 
samples were also used to mine putative SNPs 
representing coding regions of the bovine genome [4].  
In order to further enhance broad discovery of SNPs 
for wide utility, Van Tassell and colleagues [5] de-
veloped a deep sequencing approach on reduced re-
presentation libraries derived from different target 
populations.  The approach relies on next generation 
sequencing, which was performed on an Illumina 
Genome Analyzer.  Using DNA samples of 66 cattle 
representing three populations, the authors produced 
nearly 50 million sequences, which identified 62,042 
putative SNPs and estimated their allele frequencies 
in cattle.   

All of these publicly available SNP data made it 
possible for the Illumina scientists and collaborators 
to develop an informative and high-density SNP ge-
notyping microarray for community use [3].  The Il-
lumina BovineSNP50 BeadChip (Illumina Inc., San 
Diego, CA) is comprised of 54,001 SNP probes.  After 
testing a panel of 576 animals, including 392 animals 
from 14 taurine dairy and beef breeds, 73 animals 
from three breeds of predominantly indicine back-
ground, 48 animals from two breeds that are tau-
rine×indicine composites, and 45 animals from two 
African breeds, Matukumalli et al. [3] found that the 
average call rate for individual samples was greater 
than 97.5% and 85% of samples had call rates above 
98.8%.  The authors also observed that 51,383 (~95%) 
of the 54,001 called SNPs were polymorphic among 
the 558 cattle with an average minor allele frequency 
of 0.26.  To date, the BovineSNP50 BeadChip has been 
used in cattle for genomic evaluation [6-7], identifica-
tion of copy number variation [8], paternity validation 
[9], and whole genome association studies for Myco-
bacterium avium subsp. paratuberculosis infection 
[10-11] and growth [12].  The chip has also been used 
to estimate genetic variability between American and 
European bison [13].   

Catttle (Bos taurus) and water buffalo (Bubalus 
bubalis) belong to the subfamily Bovinae.  The former 
species was domesticated between 8,000 and 10,000 
years ago [14], while domestication of the latter spe-
cies occurred at least 7,000 years ago [15].  For centu-
ries, both animals have been heavily used for produc-
tion of power, milk and meat to benefit human socie-
ty. Although both species shared a common ancestor 
approximately 16.9 million years ago [16], their phe-
notypic divarication has continued to present time.  

For example, a cow can produce 5 to 10 times more 
milk than a buffalo, but buffalo milk contains more 
total solids (18 – 23 % as compared to 13 – 16% in cow 
milk) (ftp://ftp.fao.org/docrep/fao/010/ah847e/ 
ah847e.pdf).  Water buffalo meat flavor is similar to 
beef, but contains about one-half the amount of cho-
lesterol, and less than one-fourth the amount of fat, 
particularly saturated fat.   Water buffaloes are able to 
subsist on a low quality, high roughage diet and are 
resistant to most of the internal and external parasites 
that affect cattle.  Therefore, the primary goal of this 
study was to test and evaluate the cross-species 
transferability of SNPs from cattle to buffalo in a 
mammalian model system.  In order to do so, we used 
the Illumina BovineSNP50 BeadChip as described 
above.  Our report here represents the largest SNP 
transferability study between these two species at the 
whole genome level.  In particular, characterization of 
cross-species SNP transferability might provide new 
insights into understanding molecular mechanisms of 
SNP divergence and genome evolution associated 
with the phenotypic divergence between these two 
species. 

Materials and Methods 

Water Buffalo DNA Preparation and Genotyp-
ing on Illumina Bovine50SNP BeadChips.  Basic in-
formation on the 54,001 SNPs on the Illumina Bovi-
neSNP50 BeadChip (Illumina Inc., San Diego, CA), 
including SNP name, chromosome, and map location 
was downloaded from the Illumina website (Illumina 
Inc., San Diego, CA).  Among these SNPs, 1,672 re-
main unassigned to any bovine chromosome, while 74 
SNPs have information on chromosome, but without 
specified locations.  In the present study, blood sam-
ples were collected from water buffalo and used for 
DNA extraction.  Blood was collected into vacutainer 
tubes that contained EDTA as the anticoagulant.  
Thereafter, DNA was extracted from 200 µL of whole 
blood with the GenElute Blood Genomic DNA ex-
traction kit (Sigma, St. Louis, MO) according to the 
manufacturer’s instructions.  Ten water buffalo DNA 
samples were genotyped at GeneSeek (Lincoln, NE) 
on the BovineSNP50 genotyping BeadChip.   

Genotype Quality Control Process on Water 
Buffalo Samples.   GeneSeek (Lincoln, NE) performed 
a quality control check on our water buffalo samples 
for their Illumina BovineSNP50 BeadChip genotypes.  
A custom-generated (using >500 Holstein cattle) 
cluster file was applied and then the markers were 
filtered by a specific set of criteria.  All markers were 
individually inspected if they fell into the filtered 
set.  Call rates below 80%, AB R Mean below 0.1, 
Cluster Separation below 0.13, AB T Mean below 0.2 
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or above 0.8, Gentrain score below 0.3, or Het Excess 
below -0.7 or above 0.7 usually cause a marker to be 
examined, unless there is a valid explanation for ex-
cluding one or more criteria.  Because of the small 
number of samples this was applied as completely as 
possible.  It should be understandable that there are 
noticeable differences between individual breeds of 
cattle and surely there are even more differences be-
tween cattle and water buffalo.  Fortunately, we only 
observed three SNPs in our water buffalo data set that 
had a cluster separation score of less than 0.13. 

Bovine Reference Genome Assembly (Btau_4.0).  
The Bovine Genome Sequencing and Analysis Con-
sortium [17] has led to genome sequencing and its 
assembly for cattle.  The current assembly (Btau4.0) 
combined both BAC and whole-genome shotgun 
(WGS) sequences, which were then placed on chro-
mosomes by employing different mapping methods.  
The Consortium estimated that the bovine genome 
size is ~2.87 Gbp, and the current assembly covers at 
least 92% of the genome.   As the SNP map locations 
are based on the Btau_4.0 assembly, we downloaded 
the gene information from the Cow Genome Re-
sources at National Center for Biotechnology Infor-
mation (NCBI) (Bovine Genome Resources). The in-
formation includes gene symbol, start position, stop 
position, orientation on the chromosome, and gene 
description.   

SNP Density Estimation along Each Bovine 
Chromosome.  A non-parametric, kernel density es-
timation method was used to describe the distribution 
of the number of SNP markers along the bovine ge-
nome. Let x1,x2,…,xn ~ f be an independent and iden-
tically-distributed sample of a random variable X, 
where xi is the observable location, say in bp, of the 
i-th SNP marker. Then, its kernel density estimator is:  
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where  h>0 is a smoothing parameter called the 
bandwidth (BW), and  K(●) is some kernel, taken to be 
a standard Gaussian function with mean zero and 
variance 1 in the present analysis. 
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In the above, h is a free parameter, which may 
exhibit a strong influence on the resulting kernel den-
sity estimates (plots). The kernel density plots showed 
similar patterns with BW = 1M or less, but the density 
plots tend to be over-smoothed with BW=5M and 
beyond. Thus, we choose to present the results ob-

tained with BW=0.05M. This also corresponds to the 
fact that the 54,000 SNPs on the Illumina Bo-
vine50KBeadchip have an average spacing of 51.5 Kb 
on the bovine genome. 

Call Frequency Plots.  Let xi be a map position 
pertaining to SNP i, and yi  be a measure of call fre-
quency, for i=1,…,n.. LOWESS (locally weighted 
scatterplot smoothing) was used to portray the rela-
tionship between xi’s and yi’s, as follows: 

 i i iy g x                      ….(3) 

where g is a smoothing function and εi  is a ran-
dom variable with mean 0 and constant scale. 
LOWESS is a non-parametric curve- or func-
tion-fitting technique [18-19], in which the fit at point 
x is made using only points in the neighborhood of x. 
Thus, this method has weaker assumptions about the 
form of the relationship, as compared to parametric 
methods, and allows the relationship to be described 
more closely to its true form, as revealed by the data. 

In this analysis, LOWESS starts with a local po-
lynomial (a k-NN type fitting) least squares fit and 
then uses robust methods to obtain the final fit. First, a 
polynomial regression is fit in a neighborhood of x. 

This is equivalent to finding β R p+1 that minimizes 
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where Wki(x) denote k-NN weights. Then, the resi-

duals î  and the scale parameter  ˆˆ
imedian   

are computed, and robustness weights are defined as: 

 ˆ ˆ/ 6i iK                                  ….(5) 

where: 
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Finally, the analysis fits the polynomial regres-
sion in (4) but with weights  δiWki(x). 

A noteworthy feature of the above procedure is 
that we do not need to define a global function of any 
form to fit a model to the data, but the fit is made lo-
cally only using a segment of the data. Mathemati-
cally, “local” is defined by the distance represented as 
the largest integer no greater than f×n, where f is the 
smoother span. The value of f gives the proportion of 
points in the plot which influence the smooth at each 
value. In general, a larger value of f gives more 
smoothness. Thus, the good choice of f is a value 
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which is as large as possible that minimizes the va-
riability in the smoothed points without distorting the 
pattern in the data. By this standard, we empirically 
decided that f=0.001  be used in the present analysis.  

Results 

Genome Anchored Features of the Illumina Bo-
vine50SNP BeadChip.  The current annotation of the 
bovine genome (Btau_4.0) indicates that the gene 
count on bovine chromosomes ranges from 273 genes 
on chromosome 27 to 1,535 genes on chromosome 3, 
while the number of SNPs on the Illumina Bovi-
neSNP50 BeadChip varies from 740 SNPs on chro-
mosome X to 3,339 SNPs on chromosome 1 (Figure 1).  
Overall, there are far more Illumina SNPs than genes 
on most chromosomes, but the difference between 
SNP and gene counts on chromosomes 18, 19 and 23 is 
not dramatic. The number of Illumina SNPs is less 
than the number of genes on chromosome X.  Our 

analysis indicated that 19,294 SNPs (37%) are intra-
genic (i.e., located within bovine genes) and 32,961 
SNPs (63%) are intergenic (i.e., located between bo-
vine genes).  The number of SNPs by genes and by 
intergenic regions was extrapolated from down-
loaded data and is shown in Figure 2.  Over 14,000 
genes in the bovine genome have zero intragenic 
SNPs and the remaining genes have between 1 and 44 
intragenic SNPs.  In the latter category, most genes 
have between 1 and 6 intragenic SNPs: around 6,000 
bovine genes have only 1 intragenic SNP; more than 
1,500 genes have 2 intragenic SNPs; 1,459 genes have 
between 3 and 6 intragenic SNPs; the remaining genes 
contain between 7 and 44 intragenic SNPs.  On the 
other hand, every intergenic region is covered by at 
least 1 SNP: over 4,500 intergenic regions have only 1 
SNP, nearly1,500 include 2 SNPs; 2,719 have between 
3 and 10 SNPs; the remaining intergenic regions have 
between 11 and 58 SNPs (Figure 2).  

 
 
 

 

Figure 1. Overall distribution of SNPs and genes on each bovine chromosome.  
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Figure 2.  Distribution of genes having no (0) and a varying number of intragenic and intergenic SNPs on the Illumina 

BovineSNP50 BeadChip.   

 
Chromosome Wide SNP Density Dynamics of 

the Illumina Bovine50SNP BeadChip. The kernel 
density plots showed similar patterns with BW = 1M 
or less, but the density plots tend to be flat with 
BW=5M and beyond (data not shown).  As Illumina 
claimed that these 54,001 SNPs have an average 
spacing of 51.5 Kb, we choose to present the results 
obtained with BW=0.05M (50 Kb).  The means for the 
whole genome average and by each chromosome, and 
two times the standard deviations of the chromosome 
mean were plotted on each kernel density plot 
(BW=0.05M). Empirically, we defined a SNP-rich re-
gion along the chromosome as the region at which the 
computed kernel density value was above two times 
the standard deviation of the chromosome SNP den-
sity mean. Likewise, a region along the chromosome 
was considered SNP-poor if the point fell below two 
times the standard deviation of the chromosome SNP 
density mean. As shown in Figure 3, bovine chromo-
somes 3, 11, 13, 16, 17, 19, 20, 22, and 28 have almost 
no SNP-rich regions, but still possess various numbers 
of SNP-poor regions. When the low point of the 
SNP-poor regions approaches zero, it indicates that 
this region has no SNPs placed on the Illumina Bovi-
neSNP50 BeadChip.  Chromosome X shows the 
greatest SNP density dynamics, because it harbors 
more than 30 SNP-rich regions and also has at least 20 
regions with no SNPs (Figure 3). 

Call Frequency of the Bovine 54,001 SNPs on 
Water Buffalo Samples.  Among 54,001 SNPs on the 

Illumina BovineSNP50 BeadChip, 41,870 (77.5%) were 
successfully genotyped on all 10 water buffalo DNA 
samples (call frequency = 1), while 5,360 (9.9%) had 
no calls (call frequency = 0) (Table 1).  The remaining 
6,771 (12.6%) SNPs had calls on various numbers of 
water buffalo samples, including 733 bovine SNPs on 
one animal, 560 on two animals, 512 on three, 470 on 
four, 458 on five, 546 on six, 703 on seven, 972 on 
eight, and 1,817 on nine water buffalo samples, re-
spectively (Table 1).   We also observed that 78.27% of 
the intragenic SNPs across the genome had a call 
frequency of 1.0, whereas 77.13% of intergenic SNPs 
had a call frequency of 1.0. The chi-squared test 
showed that the difference (78.27%-77.13%=1.13%) is 
significantly different from zero (P = 0.0059).  How-
ever, 9.79% of all intragenic SNPs across the genome 
had no calls, while 10% of intergenic SNPs had a call 
frequency of 0.  On the basis of chromosomes, the 
percentage of SNPs with a call frequency of 1 ranged 
from 74.3 on bovine chromosome 27 (BTA27) to 81.1 
on chromosome X (BTAX), while the percentage with 
a call frequency of 0 varied from 4.7 on BTAX to 11.5 
on BTA27. Most interestingly, each bovine chromo-
some can be divided into cluster regions of SNPs with 
high or low call frequencies (Figure 4).  For example, 
BTA8 contains seven cluster regions of SNPs with a 
call frequency of 1 and seven cluster regions of SNPs 
that had calls on water buffalo samples ranging from 
0 to 9 animals. 
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Figure 3.  Kernel density plots of SNPs on the Illumina BovineSNP50 BeadChip by chromosomes.  
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Figure 4.  Call frequency plots of bovine SNPs on water buffalo samples.  The chromosome size can be seen in 

Figure 3.  The six scale marks on the top of each chromosome represent 0 (left most), 20, 40, 60, 80 and 100% (right most) 

of call frequency.  

 
 

Table 1.  Statistics for different subsets of 54,001 bovine 

SNPs grouped by number of buffalo with a scored genotype. 

No. of 
bovine 
SNPs in 
the set  

No. of 
water 
buffalo 
with a 
genotype 
scored  for 
SNPs in 
set 

No. of Poly-
morphic 
SNPs in water 
buffalo 

No. of SNPs 
that are Hete-
rozygous on 
all called ani-
mals 

Heterozygote 
% 

5,360 0 - - - 

733 1 413 413 100 

560 2 314 252 80.25 

512 3 245 171 69.80 

470 4 217 128 58.99 

458 5 190 104 54.74 

546 6 196 95 48.47 

703 7 235 106 45.11 

972 8 234 76 32.48 

1,817 9 233 53 22.75 

41,870 10 926 32 3.46 

 

Polymorphic Status of the Bovine 54,001 SNPs 
on Water Buffalo Samples. Among 41,870 bovine 
SNPs that were successfully genotyped on all 10 water 
buffalo DNA samples, only 926 (2.2%) are polymor-
phic in water buffalo, including 254, 132, 95, 80, 82, 58, 
59, 52, 60, and 54 SNPs with minor allele frequencies 
of 0.05. 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45 and 
0.50, respectively (Supplemental Table 1).  However, 
386 of these 926 SNPs called on all 10 water buffalo 
DNA samples have minor allele frequencies ≤0.10 and 
are probably too rare to be useful in water buffalo.  
While only 926 SNPs were polymorphic in all ten 
samples, there were 6,771 bovine SNPs that had calls 
on one to nine water buffalo samples; of these, 2,277 
(33.6%) are polymorphic markers in the species.  In-
terestingly, 1,398 of these SNPs were heterozygous on 
all called animals (Table 1).  Although the hetero-
zygous status decreased from 100% when all 413 
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SNPs were called as heterozygotes on one animal to 
22.75% when 53 of 233 SNPs were heterozygous on all 
nine called water buffalo samples, the observed figure 
significantly exceeds the expectation (chi square = 
5.924, P=0.0149 for the former case and chi square = 
44.053, P=0.0000 for the latter case).  However, among 
41,870 SNPs that had calls on all ten samples, only 32 
were heterozygotes without significant bias from the 
expected number of 41 (chi square = 1.111, P=0.2919). 

Discussion 

Approximately, 97% of the SNPs on the Bovi-
neSNP50 BeadChip have map locations on the current 
bovine reference genome assembly (Btau_4.0), which 
can be downloaded in order to characterize SNPs at a 
whole genome level.  While all of the SNPs are evenly 
distributed across the bovine genome, the number of 
SNPs on each chromosome is not correlated with the 
number of genes on each chromosome (Figure 1).  As 
a consequence, not all genes have intragenic SNPs; in 
fact, most genes do not have a SNP (Figure 2).  Of the 
genes that do have intragenic SNPs, most have only 1. 
In contrast, all intergenic regions have at least 1 SNP 
and there are many more intergenic SNPs with a 
1:1.71 intragenic to intergenic SNP ratio.  These 
intragenic SNPs may be used as targets for future 
functionality research when utilizing the Bovi-
neSNP50 BeadChip to transfer markers to water buf-
falo.  

The intergenic SNPs can also be transferred from 
cattle to water buffalo.  While they may not be pri-
mary targets for functionality research as they fall in 
non-coding or “junk” DNA regions, these SNPs might 
provide secondary targets for research regarding 
regulation of gene expression.  Research has shown 
that aside from the coding regions, evidence exists 
that another 80% of the bases in the genome are ex-
pressed, which may indicate that “junk” DNA is not 
actually junk [20]. The non-coding regions contain 
“genetic switches” that do not encode proteins but 
regulate where and when genes are expressed [21] 
and may encode signals that are functionally impor-
tant to chromosome assembly, DNA replication, and 
gene expression [22].  Subirana and Messeguer [23] 
found that non-coding DNA may play a role in 
maintaining structure and function of eukaryotic 
chromosomes; this includes roles in centromere func-
tion, chromosome condensation, axis formation, and 
chromosome pairing during meiosis. Variations in 
non-coding DNA may also influence many complex 
conditions and diseases [24]. The emerging data re-
garding function in non-coding regions makes inter-
genic SNPs ideal targets for research on disease ex-
pression and structural functionality.  

SNP density plots evaluate SNP distribution 
dynamics across the genome and identify SNP-poor 
and SNP-rich regions (Figure 3).  We observed that 
most regions fall within 2 standard deviations of the 
chromosome SNP density mean. The fact that the 
54,001 SNPs on the Illumina Bovine50K BeadChip 
have an average spacing of 51.5 Kb (i.e., at least 1 SNP 
per every 50 Kb) prompted us to generate SNP den-
sity plots with a BW=0.05M (50 Kb) for each chromo-
some. These density plots might not be most ideal to 
portray the distribution of these SNPs on these chro-
mosomes, but they sufficiently depicted some 
SNP-poor and a few SNP-rich regions.  For example 
the most dynamic chromosome in terms of SNP dis-
tribution is chromosome X, which has more than 30 
SNP-rich regions and at least 20 regions with zero 
SNPs (Figure3).  Therefore, further research in SNP 
identification should focus on SNP-poor regions in 
order to provide even coverage along the entire bo-
vine genome, which can be used on future SNP 
BeadChips.  

To date, the Illumina BovineSNP50 BeadChip 
has been used to genotype various breeds and species 
in the tribe Bovini.   Matukumalli and colleagues [3] 
used the chips to genotype 576 animals and found 
that the number of SNPs with minor allele frequencies 
of ≥0.05 ranged from 31,633 to 42,711 among 14 tau-
rine breeds, from 41,720 to 42,594 between two tau-
rine×indicine composite breeds, from 28,823 to 35,425 
between two African breeds and from 23,284 to 30,139 
among three indicine breeds (Figure 5).   However, 
the figure further reduced to 6,352, 2,506, 1,604, 1,429, 
1,262, and 949 SNPs when the 54,001 bovine SNPs 
were tested on samples of Lowland Anoa (Bubalus 
depressicornis), Gaur (Bos gaurus), North American 
Bison (Bison bison), Banteng (Bos javanicus), Cape Buf-
falo (Syncerus caffer), and Yak (Bos grunniens), respec-
tively [3].  Pertoldi and colleagues [13] also genotyped 
the same set of 54,001 bovine SNP probes on bison 
samples of three sub-species and found only 929 cattle 
SNPs remain polymorphic in European Bison, 1,524 in 
American wood Bison and 1,403 in American Plain 
Bison, respectively.  When we combine the SNPs that 
were successfully genotyped on both nine and ten 
water buffalo samples, a total of 1,159 bovine SNPs 
remained polymorphic in the species (Figure 5).   
These results clearly indicate that polymorphic status 
of cattle SNPs is variable within and between species. 
Therefore, the present study provides insight into the 
SNP evolutionary process, and helps to understand 
within- and between-species biodiversity, phyloge-
netics and adaption to environmental changes.   
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Figure 5. Polymorphic dynamics of cattle SNPs within and between species.  The minor allele frequency for each 

SNP is ≥0.05 in a given population. Data sources: Matukumalli et al. [3], Pertoldi et al. [13] and our present study. 

 
In recent years, the water buffalo research 

community has been working hard to generate ge-
nome resources in terms of cytogenetic characteriza-
tion, whole genome mapping and whole genome se-
quencing (reviewed by Michelizzi et al. [25]).  The 
present study added more than 1,000 useful SNPs as 
genetic markers to the water buffalo genome re-
sources (Supplemental Table 1).  For example, this set 
of genetic markers can be used to advance sustainable 
water buffalo production systems for higher produc-
tivity through manipulating the variation within and 
between breeds, in order to realize more rapid and 
better-targeted gains in breeding value.  This process 
would help water buffalo breeders and farmers to 
overcome challenges and problems such as poor re-
productive efficiency, sub-optimal production poten-
tial, high incidence of infertility diseases, low rates of 
calf survival and high costs of feeding.   No doubt, 

phenotypic data is required to estimate the effects 
associated with the SNP so accurate recording sys-
tems are as necessary as marker discovery. The func-
tions of many of these genes and the importance of 
these SNPs have been investigated in cattle and they 
can provide insight into potential functions of the 
transferable SNPs in water buffalo. Therefore, this 
research makes it possible to identify potential eco-
nomically important genes in water buffalo based on 
known functionality of these genes in cattle.  

In fact, our present work was performed on the 
Illumina BovineSNP50 BeadChip v1.  Since then, Il-
lumina has improved the BeadChip and made the 
BovineSNP50 v2 with a total of 54,609 bovine SNPs 
(http://www.illumina.com/products/bovine_snp50
_whole-genome_genotyping_kits.ilmn).  Now, the 
next-generation High-Density Bovine BeadChip (Bo-
vineHD) array is also available, featuring a total of 

http://www.illumina.com/products/bovine_snp50_whole-genome_genotyping_kits.ilmn
http://www.illumina.com/products/bovine_snp50_whole-genome_genotyping_kits.ilmn
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777,962 SNPs (http://www.illumina.com/products/ 
bovinehd_whole-genome_genotyping_kits.ilmn).  On 
the other hand, the community has also improved the 
bovine whole genome assembly.  For example, using 
the Celera Assembler, the Center for Bioinformatics 
and Computational Biology at University of Mary-
land has reassembled the bovine genome and released 
the data to the public [26].  The UMD3.0 release in-
volves 36.82 million reads into a 2.649 billion bp ge-
nome out of which 2.640 billion (99%) bp were placed 
on chromosomes (http://www.cbcb.umd.edu/ 
research/bos_taurus_assembly.shtml).  In addition, 
several groups have started to sequence the water 
buffalo genome (reviewed by Michelizzi et al. [25]).  
Using the Illumina Genome Analyzer IIx, we recently 
sequenced a male sample of water buffalo and ob-
tained over 46 Gb of sequences for the species.  The 
whole genome assembly of water buffalo is under-
way.  All these new resources present powerful 
high-throughput solutions for us to pursue a larger 
whole-genome SNP transferability study between 
cattle and water buffalo in the near future.  For ex-
ample, with the whole genome assembly available in 
both species, we would be able to further examine 
how sequence conservation causes the scored SNP 
sites, how sequence divergence causes the partially 
scored or non-scored SNP sites and what sequence 
contexts make SNPs remain polymorphic or result in 
copy number variations in water buffalo. 

Supplementary Material 

Supplementary Table 1 

[http://www.biolsci.org/v07p0018s1.pdf] 
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