Supplementary materials:

Gene	Forward primer sequence (5'-3')	Reverse primer sequence (5'-3')
MARK4	GCGGGAAGAAATCAAAGAGGC	TAGGTGGCGGTCACTTCGTTGT
HPRT	CAGTCAACGGGCGATATAAAAGT	CCAGTGTCAATTATATCTTCAACAATCA
CLONE-1	TTAGATATCCCCAGTCCCCTGGGACCCGGA	TAAGAATTCAGGCGATGCCAAAGGGAGACC
GSP-5		TCTTCTTCCTCCTGCCGCTTGCGCTCCCGC
GSP-3	CGGCTCCCCTTCATCCAGCACAGCCAGAA	
2235/3007-р	TTGCGATCGCCCGATTCCCCTGGAGTGT	TAGTTTAAACGTGTGGGGGTATTTACAAGGA
871/1467-p	GTCTCGAGTTCAGCAATGAGTTCACAC	TAGCGGCCGCGCTGGAGCTTGTTCCATT
2235/2508-	TTGCGATCGCCCGATTCCCCTGGAGTGT	TAGTTTAAACTGGAGATGCGGGTGACGA
2482Wt-p		
2235/2508-	TTGCGATCGCCCGATTCCCCTGGAGTGT	TAGTTTAAACTGGAGATGCGGGTGACGAGG
2482Mut-p		GAAGTCGGGGCCAGGGCGGTG
2235/2502-р	TTGCGATCGCCCGATTCCCCTGGAGTGT	TAAGTTTAAACCGGGTGACGAGGG
2434/2533-	ATTGCGATCGCGGCCTGCGGGGGAGTTCTC	TAAGTTTAAACGGCGGCTCAGAGCTCGA
2502Mut-p	TTCGGCCGCGTGG	GGTCGTTGGAGATCCGGGTGAC
2434/2533-	ATTGCGATCGCGGCCTGCGGGGAG	TAAGTTTAAACGGCGGCTCAGAGCTCGA
2502Wt-p	TTCTCTTCGGCCGCGTGG	GGTCGTTGGAGATGCGGGTGAC
2434/2533-	ATTGCGATCGCGGCCTGCGGGGGAGTTCTC	TAAGTTTAAACGGCGGCTCAGAGCTCGAGG
R1-p	TTCCGCCGCGTGGCGGGCACCGCCCTGGC	TCGTTGGAGATGCGGGTGACGAGGGGTGAC
	CTTCCGCACCCTCGTCAC	GAGGGTGCGGA
2434/2533-	ATTGCGATCGCGGCCTGCGGGGGAGTTCTC	TAAGTTTAAACGGCGGCTCAGAGCTCGAGG
R2-p	TTCCGCCGCGTGGCGGGCACCGCCCTGGC	TCGTTGGAGGTGACGAGGGATGCGGGTGAC
	CTTCCGCACCCTCGTCAC	GAGGGTGCGGA

Table S1. Sequences of primers used to clone MARK4 cDNA and construct vectors.

T 11 CA	~	c ·	1.0	C) TD 1 1 .1 C		
Table S7	Sequence	of nrimers	used for	SNP identificat	tion and	genotyning
14010 52.	Sequence	or primers	ubeu 101	Sivi identified	non und	genotyping.

Primer Target region		Forward (5'-3')	Reverse (5'-3')	Product size (bp)	
P1	Exon1 (from	TTCATAGAGCACGTTGGGAGACC	AGGGATGCCTGAAACTGGTTCTC	552	
P2	51 th bp) Exon 2- 3	AGAACGAGGGCTGTCTGTGAAAGG	CAGAGTCTCCTCCCTTCTGCCTG	412	
Р3	Exon 4- 5	CCGGCCATTGTAGTGAAGCTCT	ACCCGGACTCAAGCCACACC	361	
P4	Exon 6	TTCCCACTGAGGCCAAATTGG	GGACACATGGAGCCATTGGAG	481	
P5	Exon 7	TCCACTTTGGGATGAGGACAGG	TCCTGGGCAGAAGAGGTGTCTG	461	
P6	Exon 8- 9	GAGCTCCTGTCACTTCTGTTGGG	TTGGCTCCGCTCTGCGTGAC	764	
P7	Exon 10-11	AGTACGAGATGCGGAAACAAGTGG	CAGTTTCTAACGCATTCCTGAGCC	638	
P8	Exon 12	TGTGATTTATGTGGCACCTCTGG	CAGGGTGCGAAAAATGTGACC	508	
P9	Exon 13	CCAAGGTCTCCCGTGATAGCCTT	TCCCTCACCGAAGAGCACCTG	297	
P10	Exon 14	GGGTAGCTGGAGGTTTCTGATCTCA	CCGTTTAGAGGGATCGAGGGTAAC	570	
P11	Exon 15	TGGACTCCCAGCCCTCCATAG	AAAGGCTGGTGCTCAGGAATGG	425	
P12	Exon16	AGGAGGCTGGGAAATGGAGTCTC	AACGGAGGCGATGCCAAAGG	601	
P13	Exon16	CTCGTCACCCGCATCTCCAA	CACCCAAAGCGGTGGTTTCT	1107	
P14	2581	TAACCTCTTCCTCTTCCTCGCCCCC TTCGCTGCA	CCTCAGTTTCCCTTTCTGC	287	

Breed	Number	Genotype	Number	Genotype frequency			All	Allele	
				AA	AG	GG		А	G
Jinhua		AA	0				Number	1	65
	33	AG	1	0.00	0.03	0.97	Frequency	0.02	0.98
		GG	32						
		AA	0				Number	2	48
Neijiang	25	AG	2	0.00	0.08	0.92	Frequency	0.04	0.96
		GG	23						
		AA	0				Number	1	25
Erhualian	13	AG	1	0.00	0.08	0.92	Frequency	0.04	0.96
		GG	12						
		AA	0				Number	1	63
Wuzhishan	32	AG	1	0.00	0.03	0.97	Frequency	0.02	0.98
		GG	31						
		AA	0				Number	8	50
Bamei	29	AG	8	0.00	0.28	0.72	Frequency	0.14	0.86
		GG	21						
		AA	0				Number	2	50
Tibet	26	AG	2	0.00	0.08	0.92	Frequency	0.04	0.96
		GG	24						
		AA	87				Number	318	236
Duroc	277	AG	144	0.31	0.52	0.17	Frequency	0.57	0.43
		GG	46						
		AA	24				Number	54	6
Yorkshire	30	AG	6	0.80	0.20	0.00	Frequency	0.90	0.10
		GG	0						

Table S3. Genotypic and allelic frequencies for the g.2581A>G MARK4 polymorphism in eight pig breeds.

Figure S1. Histological analysis of differences in adipocyte size in back fat tissue obtained from castrated and intact male pigs. (A) Observation of adipocyte size with H&E staining. (B) Statistical analysis of adipocyte number per visual field. *, p<0.05.

MARK4 mRNA CCTGGCC**TTCCGCA**CCCTGGTCACCCGCATCT 2235/2508-2482Wt CCTGGCC<u>TTCCGCA</u>CCCTCGTCACCCGCATCT 2235/2508-2482Mut CCTGGCC<u>AAGGCGT</u>CCCTCGTCACCCGCATCT

В

Figure S2. Detection of ssc-miR-7134-3p target site on *MARK4* using the dual-luciferase system. (A-C) The assay was implemented with fragments containing the region spanning 2235 to 3007 (A), 2235 to 2508 (B), and 2235 to 2502 (C). The bold characters indicate the location of the mutation. All relative luciferase values were normalized to negative controls. **, p<0.01; *, p<0.05.

Figure S3. Alignment and phylogenetic analysis of MARK4 amino acid sequences from different species. (A) MARK4 sequence alignment. Identical amino acids are shadowed in black. The regions from residue 51 to 399, and from residue 651 to 752 are identical and are not shown. (B) Homology of MARK4 amino acids among four species. (C) Phylogenetic analysis based on the MARK4 amino acid sequence. The analysis was performed with human (h), pig (p), mouse (m) and rat (r) sequences.