Variables	Miscarriage group	Normal pregnancy control	P value
	(n=91)	(n=71)	
Age, years	29.87 ± 0.50	28.42 ± 0.74	0.107
BMI, kg/m ²	21.07 ± 0.31	20.91 ± 0.29	0.697
Gestational age, weeks	$\textbf{8.02} \pm 0.16$	7.73 ± 0.14	0.166
gravidity	1.26 ± 0.14	1.39 ± 0.16	0.528
Parity (previous births)	0.16 ± 0.04	0.52 ± 0.07	< 0.001 ***
Previous miscarriages	0.58 ± 0.08	0.10 ± 0.05	< 0.001 ***

1 Supplementary Table S1. Comparison of the demographic characteristics and laboratory

2 traits of the study population.

Notes: BMI, body mass index; E_2 , estradiol; P_4 , progesterone. Data are represented as mean \pm

SEM. Independent samples t-test was used, P < 0.05 was considered statistically significant (*P <4

5 0.05, **P < 0.01, ***P < 0.001).

6 7

3

Supplementary Table S2. Primers for quantitative real-time PCR.

Genes	GenBank	Primer sequence (5'-3')	Product
	accession number		size (bp)
Human SGK1	NM_001143676.1	TCATGCCAACATCCTGACCAA (Forward)	102
		TGAATAAAGTCGTTCAGACCCATCC	
		(Reverse)	
Human IRF4	U52682	CCAAGATTCCAGGTGACTC (Forward)	176
		GGATTGCTGATGTGTTCTG (Reverse)	
Human PRL	GQ305133	CATCCATAACCTCTCCTCAG (Forward)	283
		TTGCTCCTCAATCTCTACAG (Reverse)	
Human XIAP	U45880	ACTCTACTACACAGGTATTGG (Forward)	177
		TCAGAACTCACAGCATCAG (Reverse)	
Human	AY340484	GGCTGAGAACGGGAAGCTTGTCAT	272
GAPDH		(Forward)	
		CAGCCTTCTCCATGGTGGTGAAGA	
		(Reverse)	

8

9 Supplementary figure legends

10

11 Supplementary Figure S1 E_2 up-regulates SGK1 activity via estrogen receptor β (ER β) 12 in DSCs. (A) Western blot analysis of DSCs treated with E_2 (10 nM) alone, E_2 plus ER antagonist ICI182780, E_2 plus ER β antagonist PHTPP (1 μ M), or E_2 plus ER α antagonist MPP (1 μ M) for 24h. 13 Blots were probed for phosphorylated SGK1 (p-SGK1), total-SGK1 (t-SGK1), and total β-actin. 14 15 (B) Densitometric quantifications of p- and t-SGK1 to β-actin (left), and mean (SEM) ratio of 16 phosphorylated to total (p/t) SGK1 protein (right). Western blot analysis of DSC lysates pretreated 17 with ESR2 (gene encoding ER β)-specific and non-targeting negative control siRNA. Blots were probed with antibodies to ESR2 protein (C), p-SGK1, and t-SGK1 (D). β-actin was used as the 18 19 loading control. (E) Densitometric quantification of p-SGK1 and t-SGK1 to β -actin (top), and 20 mean (SEM) ratio of p/t SGK1 protein (bottom). Data are represented as arithmetic means \pm SEM for 3 independent samples. **P < 0.01, ***P < 0.001, compared with control group or medium 21 group; $\Delta\Delta\Delta P < 0.001$, compared with E₂ group; ###P < 0.001, compared with E₂+ICI 182780 22 group or E_2 +control siRNA group; +++P < 0.001, compared with E_2 +PHTPP group. 23

25 Supplementary Figure S2 E₂ up-regulates progesterone receptor (PGR) expression, and progesterone (P4) influences SGK1 expression in DSCs. (A) Western blot analysis (left) and 26 quantification (right) of the PGR level relative to β-actin in DSCs treated with LPS (10 ng/mL), E₂ 27 28 (10 nM) or E₂ plus LPS. (B) Immunoblot analysis to detect phosphorylated SGK1 (p-SGK1), total 29 SGK1 (t-SGK1), and total β -actin in DSCs treated with LPS (10 ng/mL), P₄ (10 nM) or P₄ plus LPS. (C) Densitometric quantification of p-SGK1 and t-SGK1 to β -actin, and mean (SEM) ratio 30 31 of p/t SGK1 protein (right). Data are represented as arithmetic means ± SEM for 3 independent samples. **P < 0.01, ***P < 0.001, compared with control group or medium group; $\Delta\Delta P < 0.01$, 32 33 $\Delta\Delta\Delta P < 0.001$, compared with E₂ group or LPS group; ###P < 0.001, compared with LPS group 34 or P₄ group.

24