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Abstract 

SMC1 (Structural Maintenance of Chromosomes protein 1), well known as one of the SMC 
superfamily members, has been explored to function in many activities including chromosome 
dynamics, cell cycle checkpoint, DNA damage repair and genome stability. Upon being properly 
assembled as part of cohesin, SMC1 can be phosphorylated by ATM and mediate downstream 
DNA damage repair after ionizing irradiation. Abnormal gene expression or mutation of SMC1 can 
cause defect in the DNA damage repair pathway, which has been strongly associated with 
tumorigenesis. Here we focus to discuss SMC1’s role in genome stability maintenance and 
tumorigenesis. Deciphering the underlying molecular mechanism can provide insight into novel 
strategies for cancer treatment. 
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Introduction 
As a member of a subfamily chromosome- 

associated proteins known as SMCs (Structural 
Maintenance of Chromosomes), which are highly 
conserved from bacteria to humans, SMC1 is a core 
component of the cohesin complex that is required for 
sister chromatid cohesion [1-3]. In addition, SMC1 is 
involved in a variety of cellular functions, including 
cell survival [4], chromosome dynamics [5-7], cell 
cycle regulation [8, 9] and DNA damage repair 
[10-12]. Importantly, SMC1-mediated chromosome 
structure stability and DNA damage repair are 
considered as important mechanisms for the 
maintenance of genome integrity. Although there is 
increasing evidence that SMC1 is closely associated 
with various cancer types, current knowledge about 
its role in tumorigenesis remains limited. 

In this review, we summarize the current 
knowledge on SMC1 in cell cycle regulation, genomic 
stability and its mutations in various cancers, and 
discuss the potential role of SMC1 serving as a 
biomarker in clinical cancer diagnosis. 

Overview of SMC1 
The SMC proteins were initially identified 

through genetic studies of chromosome segregation in 
Saccharomyces cerevisiae [13]. Smc1p, characterized 
as the founding member of SMC1 family proteins by 
frequent minichromosome nondisjunction in 
mutations [14], was later shown to be essential for 
viability and maintaining cohesion between sister 
chromatid [13].  

The SMC1 protein contains a N-terminus ATP 
binding domain and a C-terminus ATP hydrolysis 
domain, which are separated by two long coiled-coils 
of 200-450 residues and a central globular hinge 
region [15, 16]. In an antiparallel orientation, these 
two domains form a functional ATPase [17-19], which 
could regulate DNA binding and tethering [20, 21]. 
Furthermore, deacetylation of SMC1 and SMC3 
dimers promotes dissociation of the coiled- coil arms 
[22].  

Classically, SMC1 and SMC3 are believed to 
form a heterodimer in an antiparallel mode as the core 
of cohesin complex, which is required for sister 
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chromatid cohesion during replication [1, 2, 23, 24], 
and is also involved in recombination as part of the 
RC-1 complex with DNA polymerase ε and ligase Ⅲ 
[3, 25, 26]. In humans, two different isoforms of SMC1, 
SMC1A and SMC1B have been discovered. SMC1A is 
the core subunit of the mitotic cohesin complex, which 
is composed of SMC1A, SMC3, Rad21 [27-30] and SA1 
or SA2 [3, 28, 31, 32]. SMC1B is currently thought as a 
meiotic specific subunit of cohesin complex, called 
SMC1B, REC8 or STAG3 respectively [33], which 
plays a key role in sister chromatid pairing and 
preventing telomere shortening [34-36]. Recent 
studies showed that SMC1B is also expressed in 
somatic mammalian cells as a member of a mitotic 
cohesin complex preserving genome stability in 
response to irradiation [37]. 

SMC1 in chromosome dynamics and cell 
cycle 

Under normal conditions, SMC1 as part of 
cohesin, is recruited to chromatin in G1 phase with 
sister chromatid cohesion taking place in S phase, and 
holds sister chromatid together until accurate 
chromosome segregation in M phase during the cell 
cycle [38-41]. In addition, SMC1 was also found to be 
present at centrioles of a centrosome at G0/G1 stage to 
function as a centrosomal protein [42]. During mitosis, 
SMC1 was observed at the spindle poles [43, 44] and 
the active centromere on dicentric chromosomes in 
concomitant with functional kinetochore [45]. It was 
reported that the injection of an antibody specific for 
hSMC1 into human mitotic cells blocked the 
progression of metaphase and led to disorganization 
of the metaphase plate [46]. Cytoplasmic mislocation 
of SMC3 and degradation of SMC1 and RAD21 can 
also be induced by SMC1 knockdown [47]. These 
results demonstrate that SMC1 is tightly associated 
with cell cycle progression and may function as a 
unique regulator. 

SMC1 participates in DNA damage repair 
and genomic stability maintenance 

In addition to the canonical role in sister 
chromatid cohesion, SMC1 is also a core component 
of the tetrameric complex cohesin, which coordinates 
the HR (Homologous Recombination) pathways for 
DNA DSB (Double Strand Breaks) repair [48, 49]. 
SMC1 deletion was found to compromise the DSB 
repair in G2-phase cells [50], but phosphorylation of 
SMC1 is actually the final performer of its function. 
Yazdi and Kim et al. firstly reported that SMC1, which 
is phosphorylated by ATM in serine 957 and 966, acts 
as a downstream effector of a separate branch of the 
S-phase checkpoint pathway, namely the 

ATM/NBS1/SMC1 pathway in response to IR 
(Ionization Radiation) [51-53]. This pathway could 
also be triggered by H/R (Hypoxia and 
Reoxygenation)-induced DNA damage [54]. In this 
pathway, both NBS1 and BRCA1 were required for 
the recruitment and maintenance of activated ATM to 
the site of DSB associated with efficient 
phosphorylation of SMC1 by ATM [52], which could 
be disrupted by the UBD (Ubiquitin Binding 
Domains) of RAD18 [55]. SMC1 could also be 
phosphorylated after exposure to UV irradiation or 
hydroxyurea by ATR as well [56-59]. Furthermore, the 
absence of SMC1A leads to chromosomal aneuploidy 
and aberrations at fragile sites in human fibroblast 
cells [57]. Cells expressing phosphorylation mutant of 
SMC1 show a defective S-phase checkpoint, decreased 
survival and increased chromosomal aberrations after 
IR [60]. However, phosphorylation of SMC1 dose not 
alter the IR-induced G2/M checkpoint, while having 
an effect on G2 phase accumulation [51].  

Increasing evidence demonstrates that the fully 
assembled cohesin is required for phosphorylation of 
SMC1, in other words, SMC1 is phosphorylated as 
part of cohesin [11, 61]. Specifically, SMC1 
phosphorylation requires the phosphorylation of 
NBS1 by ATM, establishing NBS1, whose N- and C- 
terminus are indispensable for the interaction with 
SMC1, as an adaptor in the ATM/NBS1/SMC1 
pathway [51]. NBS1-T278 phosphorylation may be a 
major site assisting SMC1 phosphorylation upon high 
dose of DNA damage [62]. Meanwhile, absence of 
NBS1 causes delay of SMC1 phosphorylation [63]. As 
either regulators or cofactors, several other proteins 
are also uncovered to be involved in regulating the 
SMC1 pathways for cell cycle checkpoint and DNA 
damage repair. For example, knocking down MDC1 
(Mediator of DNA Damage Checkpoint protein 1) 
decreases the phosphorylation of SMC1 [64] and 
prevents activation of the intra-S phase and G2/M 
phase cell-cycle checkpoints after exposure to IR. PTIP 
(Pax2 transactivation domain-interacting protein) 
upstreams 53BP1-ATM-SMC1 pathway, where SMC1 
is phosphorylated at the DNA damage sites, for DNA 
DSBs repair and activation of the DNA 
damage-induced intra-S phase checkpoint [65] (Figure 
1). 

In addition, SMC1 participates in the 
maintenance of genomic stability and is required for 
bipolar mitosis in human cells [66]. ATM anchored at 
spindle pole or a related kinase presumably 
phosphorylates Ser-957 and Ser-966 of SMC1, which 
in turn stimulates its binding to the 
microtubule-associated Rae1 [44]. Overexpression of 
wild-type SMC1, but not the mutant SMC1-S957A, 
SMC1-S966A or SMC1-DBA (Double S957A and 
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S966A) that fails to interact with Rae1, resulted in 
more multipolar and less bipolar spindle phenotypes 
[44, 67].  

Mouse models with SMC1A targeted showed a 
series of phenotypic characteristics in development. 
MGI (Mouse Genome Informatics) database provided 
the valuable information in targeted mutation mouse 
of SMC1AS957AS966A (SMC1Atm1Mbk, tm1: targeted 
mutation 1; Mbk: Michael B Kastan). The phenotype 
of SMC1Atm1Mbk mouse were premature death, 
abnormal hematopoietic and immune system.  

Nevertheless, it is generally believed that SMC1B 
is a meiotic specific member of cohesin. The current 
study showed that SMC1B was also expressed in 
somatic mammalian cells. The cell cycle progression 
of SMC1B-slienced cells was alike to the control cells. 
SMC1B was shown to safeguard genome stability by 
allowing DSB repair following IR whereas its 
depletion had no effect on chromosome cohesion [37]. 
Interestingly, the phenotypes of SMC1B-deficient 
mice were different. Initial observations of mice 

deficient in SMC1B were conducted by Revenkova et 
al. They found that SMC1B-/- mice were viable and 
showed normal mating behavior. However, the 
weight of SMC1B-/- mice was only half of 
heterozygous or wild-type littermates. Both males 
and females were infertile in SMC1B-/- mice. Males 
exhibited meiotic arrest in pachytene. Female meiosis 
progressed through meiosis I until metaphase II, but 
premature loss of sister chromatid cohesion resulting 
in massive aneuploidy [7]. Furthermore, SMC1B-/- 
female mice showed shifting of chiasmata placement 
and missing of cohesion with age [68]. In summary, 
SMC1-mediated DNA damage repair and genomic 
stability maintenance are prevalent under conditions 
of IR or UV radiation, and this process can be 
modulated by its phosphorylation. Thus, it is quite 
clear that alteration of expression and 
phosphorylation mutations could cause dysfunction 
of cell cycle checkpoint and failure of DNA damage 
repair which lead to genomic instability and 
tumorigenesis. 

 

 
Figure 1. Schematic representation of the SMC1 participating in DNA damage repair signaling pathway. After DSB induced, BRCA1, cohesin (SMC1, SMC3 and 
RAD21) and MRN complex (MRE11, Rad50 and NBS1) are recruited to the damage site. Intermolecular autophosphorylation of ATM dimmers leads to release of 
active ATM monomers. Active ATM monomers can phosphorylate substrates such as BRCA1, NBS1 and SMC1. Both BRCA1 and NBS1 are required for the 
phosphorylation of SMC1, fully assembled as part of cohesin, by activated ATM, thus inducing S phase arrest. PTIP, MDC1 and RAD18 are involved in regulating SMC1 
phosphorylation. Green Arrows represent activating events and red perpendicular ends represent inhibitory events. 
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SMC1 and its mutations in tumorigenesis 
The role of SMC1 in cancer 

SMC1, whose abnormality has been enumerated 
as enabling characteristics of cancer, properly appears 
to contribute to chromosome stability, DNA damage 
checkpoint and repair [69]. Thus it is plausible to 
suggest that the expression of SMC1 and its mutations 
are able to influence cells from being normal to 
malignant. SMC1 has been previously found to be 
involved in the pathogenesis of several types of 
tumors associated with up-regulation of its 
expression. SMC1A is over expressed in colorectal 
cancer tissues and its expression level is correlated 
with poor prognosis for late stage patients. Increased 
expression of SMC1A is also profoundly associated 
with distant metastasis and advanced TNM (Tumor 
Lymph Nodes Metastasis) stage of disease. In 
contrast, SMC1A knockdown resulted in a significant 
inhibition of cell proliferation, colony formation, cell 
cycle progression and up-regulation of apoptosis in 
colorectal cancer cells, as well as prevention of colon 
tumorigenesis in nude mouse models [70]. 
Accordingly, SMC1A deficiency results in inhibition 
of cell proliferation, increased apoptosis and 
enhanced chemosensitivity to oxaliplatin [71]. Being 
consistent with its role in tumorigenesis, SMC1A was 
found to be highly expressed in TNBC 
(Triple-Negative Breast Cancer) cell lines, localizing in 
the nucleus, cytoplasm and plasma membrane along 
with SMC3 [72]. Overexpression of SMC1A also 
increases EMT (Epithelial-Mesenchymal Transition) 
in TNBC through the induction of Brachyury, a 
protein encoded by the T gene in humans, which is a 
transcription factor within the T-box complex of genes 
[73]. Moreover, SMC1A is highly expressed in human 
glioma tissues versus surrounding normal tissues and 
U25L cells, while knocking down SMC1A expression 
leads to G2/M arrest, decreased cell growth and cyclin 
B1 expression [74, 75]. SMC1B expression is closely 
related to increased invasiveness and aggressiveness 
of several cancers [76-78]. High SMC1B expression has 
been shown to be associated with pancreatic cancer 
[76] and the radioresistant H1299 cells than in the 
radiosensitive H460 cells [78]. 

Conversely, in other types of tumors, such as 
AML (Acute Myelocytic Leukemia), patients, with a 
moderate to high SMC1A protein expression, show a 
significantly improved cancer-free survival as well as 
overall survival, which suggests that low expression 
of SMC1A protein could have a poor prognosis [79]. 
However, in patients with early-stage head and neck 
cancer, decreased SMC1B expression leads to 
potentially increased genome instability and greater 

cancer progression risk, which could account for the 
risk of SPT (Second Primary Tumor) and/or 
recurrence [80].  

In conclusion, SMC1 expression is dysregulated 
in various human cancers associated with prognostic 
indicators. Aberrant expression of SMC1 is confirmed 
by analysis of SMC1 gene expression data setting at 
Oncomine (Figure 2). 

 

 
Figure 2. Data showed SMC1 genes are aberrantly expressed in human 
cancers compared to their normal tissue. Red represents over-expression, and 
yellow represents low-expression in tumor versus normal tissue. The volume 
indicates the percentage of the two different expression forms. 

 

SMC1 mutations are prevalent in human 
cancers  

SMC1 mutations have been identified in human 
cancers. Being different from other cohesin mutations 
that were heterozygous in nature, SMC1A gene 
locates on chromosome X as a single allele, thereby its 
mutation cannot be heterozygous. The first somatic 
mutation of SMC1A in human tumors was reported in 
2008 wherein Barber et al. identified somatic 
mutations in 4 out of 132 colorectal cancers (F396L/F, 
R434W, I560I/M and V1186I/V) [81]. Later, Cucco et 
al. screened 11 somatic mutations in early colorectal 
adenomas but only one mutation in colorectal 
carcinomas. SMC1A mutations decrease almost 5 fold 
during colon cancer development in early adenomas 
than in colorectal cancers. Mechanistically, 
overexpression of the mutations identified in early 
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adenomas can cause chromosomal instability and 
aneuploidy [82]. 

In addition to colorectal cancer, there has been 
increasing evidences for SMC1 mutations in AML. In 
2013, the Cancer Genome Atlas reported cohesin 
mutations in 26 of 200 de novo AMLs (13%) including 
7 with SMC1A mutations (6/7 missense) [83]. 
Subsequently, the mutation frequency of SMC1A 
among 389 AML patients was evaluated by Thol et al., 
and found 2 male patients with 2 missense mutations 
in SMC1A (A078V, R816S) were identified [84]. 
Moreover, Kon et al. detected 4 different SMC1A 
mutations among 610 myeloid neoplasm samples 
(K190T, R586W, M689V and R807H). Interestingly, 
hemimethylation of the SMC1A promoter was found 
in two female cases. However, the expression of 
SMC1A was not significant different in 17 myeloid 
leukemia cell lines with or without known cohesin 
mutations. However, in cell lines (Kasumi-1, KG-1, 
P31FUJ, MOLM-7 and MOLM-13) with mutated or 
reduced expression of cohesin components, SMC1A is 
significantly reduced in the chromatin-bound 
fractions [85]. There is some evidence t that cohesin 
gene mutations may also act as an initiation of a 
subset of AMLs. Welch et al. indentified 2 SMC1A 
recurrent mutations in AML through whole genome 
sequencing [86]. In addition, a study by Yoshida et al. 
evaluated 2 SMC1A somatic mutations in DS-AMKL 
(Down Syndrome-related Acute Megakaryoblastic 
Leukemia) (R196H, E418_splice) [87]. Similarly, 
Huether et al. indentified 4 mutations of SMC1A in 
pediatric CBF AML (Core Binding Factor Acute 
Myeloid Leukemia) (*insR131, R92G, G1131R, R196C) 
[88]. 

In several other tumor types, mutations of 
SMC1A have been detected as well. Firstly, it was 
reported that SMC1A mutations were found in Ewing 
sarcoma, known as a very rare type of malignant 
tumor whose cancer cells were found in the pediatric 
bone and soft tissue. In the United States, about 200 
children and young adults suffer from it annually and 
it shows a mild preference for males [89]. Substantial 
effort has been made to look for genes that are 
mutated in Ewing sarcoma tumors. Crompton et al. 
identified SMC1A mutations (1%, E141K) in addition 
to STAG2 mutations commonly in Ewing sarcoma 
[90]. In another large scale sequencing study, Guo et 
al. found occasional somatic mutations in SMC1A 
(3%) [91]. Then, 1 SMC1A mutation in pediatric 
Ependymoma (T182_F184del) was identified [88]. 
Finally, Balbas Martinez et al. identified 3% frequent 
somatic mutations in SMC1B in bladder cancer by 
exome sequencing (413, 188) [92]. Interestingly, 
transposon insertional mutagenesis in SMC1B mice 

were found to be more susceptible to intestinal tumor 
[93]. 

Taken together, these studies indicate that SMC1 
mutation could be a significant event in several tumor 
types, albeit with a low mutation rate (1%-4%). Given 
that phosphorylation of SMC1 plays an important role 
in the maintenance of genome stability [66], mutations 
in the serine, threonine or tyrosine residues of SMC1 
that can be phosphorylated have also been extensively 
studied, which were summarized in SMC1A and 
SMC1B data sets at cBioPortal (Figure 3). 

 

 
Figure 3. Mutations of serine, threonine and tyrosine of the two isoforms of 
SMC1, widely existed in human cancers, are exhibited in the form above. These 
mutations dysfunction the effective phosphorylation of SMC1 proteins, thus 
interrupting maintenance of genome stability and DSB repair. Asterisk 
represents nonsense mutation. 
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Conclusion 
As a core part of the cohesin complex, SMC1 is 

required for sister chromatid cohesion and 
maintenance of the genome integrity. Moreover, it can 
be activated to facilitate genome amplification under 
conditions of viral infection [8, 94, 95]. These 
characteristics make SMC1 a pivotal molecular linked 
to human tumorigenesis and ontogenesis [96]. 

We can surmise that SMC1 expression could be 
regulated by other unknown proteins or factors and 
its wax or wane interferes with genome stability 
which finally triggers the onset of cancer, from 
evidence that the expression quantity change of 
SMC1A and SMC1B was found to be existed widely in 
human cancers. Nonetheless, it is still elusive about 
pathways taken by SMC1 per se to complicate the 
maintenance of genome integrity or induced DNA 
damage checkpoint/repair through intricate protein 
interactions. Likewise, SMC1A mutations may lead to 
chromosomal instability by two different ways. On 
one hand, SMC1A mutations are directly associated 
with the classical functions of cohesion. These 
mutations might result in chromosome imbalance 
with chromosome loss or gain through influencing 
correct chromosome segregation. On the other hand, 
cohesion is recently found to be implicated in the 
regulation of gene expression. SMC1A mutations 
could contribute to tumorigenesis via regulating the 
expression of proto-oncogenes or tumor suppressor 
genes, given that cohesin is recently found to be 
implicated in the regulation of gene expression. 
Furthermore, the SMC1 activity can be regulated by 
phosphorylation and acetylation. 

Here, we summarized the expression and 
phosphorylation mutations for the human SMC1 gene 
in cancers. In particular, we focus on the functional 
effects of SMC1 mutations as well as crucial questions 
that need to be addressed in future in order to provide 
a promising target for the treatment of malignant 
tumors. 
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