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Abstract 

Human clear cell renal cell carcinoma (ccRCC) is the most common solid lesion within kidney, and 
its prognostic is influenced by the progression covering a complex network of gene interactions. In 
our study, we screened differential expressed genes, and constructed protein-protein interaction 
(PPI) network and a weighted gene co-expression network to identify key genes and pathways 
associated with the progression of ccRCC (n = 56). Functional and pathway enrichment analysis 
demonstrated that upregulated differentially expressed genes (DEGs) were significantly enriched in 
response to wounding, positive regulation of immune system process, leukocyte activation, immune 
response and cell activation. Downregulated DEGs were significantly enriched in oxidation 
reduction, monovalent inorganic cation transport, ion transport, excretion and anion transport. In 
the PPI network, top 10 hub genes were identified (TOP2A, MYC, ALB, CDK1, VEGFA, MMP9, PTPRC, 
CASR, EGFR and PTGS2). In co-expression network, 6 ccRCC-related modules were identified. They 
were associated with immune response, metabolic process, cell cycle regulation, angiogenesis and 
ion transport. In conclusion, our study illustrated the hub genes and pathways involved in the 
progress of ccRCC, and further molecular biological experiments are needed to confirm the 
function of the candidate biomarkers in human ccRCC. 

Key words: clear cell renal cell carcinoma (ccRCC); differentially expressed genes (DEGs); biomarker; weighted 
gene co-expression network analysis (WGCNA); protein-protein interaction (PPI) 

Introduction 
Renal cell carcinoma (RCC), which makes up 

approximately 3% of all adult malignancies and 
90–95% of adult kidney neoplasm, is being diagnosed 
with increasing incidence and mortality rates 
worldwide [1]. Clear cell renal cell carcinoma (ccRCC) 
is the most common tumor in kidney. However, its 
prognostic is influenced by the progression covering a 

complex network of gene interactions. As the most 
common pathological type of renal cancer, apart from 
surgery, it is both radiotherapy and chemotherapy 
resistant. At present, biomarkers for early detection 
and follow-up of the disease are not available. 
Therefore, targeted therapies are the best choices of 
non-surgical treatment for ccRCC [2]. Many studies 

 
Ivyspring  

International Publisher 



Int. J. Biol. Sci. 2018, Vol. 14 
 

 
http://www.ijbs.com 

267 

revealed that targeted therapies, such as multipotase 
inhibitors, anti-VEGF antibodies and mTOR, had been 
approved for clinical use [3]. However, identification 
of novel therapeutic targets or biomarkers for 
prognostic, diagnostic or predictive use remains a 
priority. 

Currently, gene expression profiles have been 
used to identify genes associated with progression of 
renal cancer [4-7]. Meanwhile, some researchers also 
used integrated approach to screen changes in renal 
carcinogenesis [8, 9]. However, most studies just 
focused on the screening of differentially expressed 
genes and ignored the high degree of interconnection 
between genes, although genes with similar expres-
sion patterns may be functionally related. Weighted 
gene expression network analysis (WGCNA) is a 
systems biology method for describing the correlation 
patterns among genes across microarray or RNA 
Sequence data, and it is an algorithm used for finding 
clusters (modules) of highly correlated genes as well 
as identifying phenotype related modules or genes 
clusters [10]. Nowadays, there are various studies 
revealing the phenotypes-related genes via WGCNA 
method, especially in cancers [11, 12]. For example, 
Zhou et al. found that TOP2A could be used as the 
potential prognostic and progression biomarker for 
pancreatic ductal adenocarcinoma [12]. Wang et al. 
revealed that ASPM could cause cirrhosis and 
eventually led to hepatocellular carcinoma [13]. In this 
study, we attempt to firstly screen differential 
expressed genes, construct protein-protein interaction 
networks and a co-expression network of relations-
hips between genes through a systematic biology 
method based on WGCNA and to identify key genes 
and pathways participating in the carcinogenesis of 
ccRCC [13, 14]. 
Materials and Methods 
Data collection 

Gene expression profile was downloaded from 
Gene Expression Omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo/). Dataset GSE53000 
performed on Affymetrix Human Gene 1.0 ST Array 
[transcript (gene) version] (Affymetrix, Santa Clara, 
CA, USA) was used to screen differential expressed 
genes, construct protein-protein interaction networks 
and co-expression networks and identify hub genes 
and pathways in this study. This dataset included 56 
clear cell renal cell carcinoma samples (including 2 
lymph node metastasis samples and 1 venous 
thrombus samples) and 6 normal kidney samples. 

Study design and data preprocessing 
The study design was performed in a flow 

diagram (Fig. 1). Raw expression data were calculated 

following the pre-processing procedures: RMA back-
ground correction, log2transformation, quantile 
normalization and median polish algorithm summa-
rization using the “affy” R package. Probes were 
annotated by the Affymetrix annotation files. Microa-
rray quality was assessed by sample clustering 
according to the distance between different samples in 
Pearson’s correlation matrices. No samples were 
removed from subsequent analysis in the test dataset 
(Fig. 2A). 

 

 
Figure 1. Flow diagram of study. Data preparing, processing and analysis 
was shown in the flow diagram.  

 

Differentially expressed genes (DEGs) 
screening 

We use the “limma” R package to screen the 
DEGs between ccRCC samples and normal kidney 
samples. The FDR (false discovery rate) < 0.05 and 
|log2fold change (FC)| > 1 were chosen as the cut-off 
criteria (Fig. 2B). Furthermore, we chose the same 
condition and screened differentially expressed genes 
between ccRCC samples and metastasis samples. 

Functional and pathway enrichment analysis 
The Database for Annotation, Visualization and 

Integrated Discovery (DAVID) (http://david.abcc. 
ncifcrf.gov/) is an online program providing a 
comprehensive set of functional annotation tools for 
investigators to understand biological meaning 
behind large list of genes [15]. Enriched biological 
themes of DEGs, particularly GO terms and 
visualization of those on KEGG pathway maps were 
performed using DAVID database, p < 0.05 was set as 
the cut-off criterion. 
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Figure 2. Samples clustering and identification of differentially expressed genes (DEGs) in ccRCC tissues. (A) Samples clustering of GSE53000 to 
detect outliers. (B) The volcano plot of all DEGs. 
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PPI network construction 
We used Search Tool for the Retrieval of 

Interacting Genes (STRING) Database (STRING) 
(http://www.string-db.org/) to assess protein-protein 
interaction (PPI) information [16]. In addition, to 
evaluate the interrelationships of DEGs, we used 
STRING database for analysis and Cytoscape 
software for visualization [17]. Confidence score > 0.4 
was set as significant. 

Hub module selection and functional analysis 
We used plug-in Molecular Complex Detection 

(MCODE) to select hub modules of PPI network in 
Cytoscape [18]. Meanwhile, degree = 5, node score = 
0.2, k-core = 2, and max. depth = 100 were used as 
cut-off criteria. Then we uploaded the genes in hub 
module to DAVID database to perform functional 
analysis. 

Co-expression network construction and 
module functional analysis 

Firstly, expression data profile of DEGs was 
tested to check if they were the good samples and 
good genes. Then, we used the “WGCNA” package in 
R to construct co-expression network for the DEGs 
[19, 20]. At first, the Pearson’s correlation matrices 
were both performed for all pair-wise genes. Then, a 
weighted adjacency matrix was constructed using a 
power function amn = |cmn|β (cmn = Pearson’s 
correlation between gene m and gene n; amn = 
adjacency between gene m and gene n). β was a 
soft-thresholding parameter that could emphasize 
strong correlations between genes and penalize weak 
correlations. Next, the adjacency was transformed 
into topological overlap matrix (TOM), which could 
measure the network connectivity of a gene defined as 
the sum of its adjacency with all other genes for 
network generation. To classify genes with similar 
expression profiles into gene modules, average 
linkage hierarchical clustering was conducted 
according to the TOM-based dissimilarity measure 
with a minimum size (gene group) of 50 for the genes 
dendrogram. To further analyze the module, we 
calculated the dissimilarity of module eigengenes, 
chose a cut line for module dendrogram and merged 
some modules, after which we performed GO 
enrichment analysis and KEGG pathway enrichment 
analysis on gene modules to characterize modules 
related to ccRCC. 

Hub genes and pathway validation 
Here, we chose genes with the most 

connectivities as hub genes and used TCGA KIRC 
data to perform validation using GEPIA database [21]. 
Common pathways in all modules were chosen to 

perform validation on both TCGA data and patients 
tissues. 

Preparation for human ccRCC samples 
The ccRCC and paracancerous tissues samples 

were collected from patients after surgery at 
Zhongnan Hospital of Wuhan University. The 
histology diagnosis was confirmed by two 
pathologists independently. The ccRCC and 
paracancerous tissues were immediately frozen and 
stored in liquid nitrogen or fixed in 4 % PFA after 
collection. The study using ccRCC and paracancerous 
tissue samples for total RNA isolation and qRT-PCR 
analysis was approved by the Ethics Committee at 
Zhongnan Hospital of Wuhan University (approval 
number: 2015029). Informed consent was obtained 
from all subjects. 

Total RNA isolation 
Total RNA from ccRCC tissues were isolated 

using RNeasy Mini Kit (Cat. #74101, Qiagen, 
Germany) according to the manufacturer’s 
instruction. DNase I digestion (Cat. #79254, Qiagen, 
Germany) was used in each RNA preparation to 
remove genomic DNA. After that, total RNA quantity 
was measured using NanoPhotometer (Cat. #N60, 
Implen, Germany). 

Quantitative real time PCR (qRT-PCR)  
The cDNA was synthesized using 1 µg of total 

RNA isolated from patients tissues by ReverTra Ace 
qPCR RT Kit (Toyobo, China) and qRT-PCR was 
performed using 400 ng cDNA per 25 μl reaction. 
Each reaction was conducted with iQTM SYBR® 
Green Supermix (Bio-Rad, China) using 400 or 500 ng 
of cDNA in a final volume of 25 µl. Primers sequences 
and annealing temperature were summarized in 
Supplementary Tab. S1. 

Statistical analyses 
All analyses were performed three times and 

represent data from three individual experiments. 
Two-tailed Student’s t-test was used for significance 
of differences between subgroups. Statistical analyses 
were performed with SPSS 16.0. Statistical 
significance was set at probability values of p < 0.05. 

Results 
Identification of DEGs in ccRCC tissues 

The gene expression profiling of GSE53000 
including 56 ccRCC tissues and 6 normal kidney 
tissues were analysed. Using “limma” package of R 
software, selecting p < 0.05 and |log2fold change 
(FC)| > 1 as the cut-off criteria, 1175 DEGs were 
identified, of which, 533 were upregulated and 642 
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were downregulated (Supplementary Tab. S2). The 
volcano plot of all DEGs is shown in Fig. 2B. 
Meanwhile, we screened 11 genes differentially 
expressed in metastasis samples compared with 
primary ccRCC (Supplementary Tab. S3). 

Functional enrichment analysis of DEGs 
To obtain further insight into the function of 

DEGs of ccRCC, the up- and downregulated DEGs 
were respectively uploaded to the DAVID database. 
GO analysis results showed as to biological process 
(BP), the upregulated DEGs significantly enriched in 
response to wounding, positive regulation of immune 
system process, leukocyte activation, immune 
response and cell activation, and the downregulated 
DEGs significantly enriched in oxidation reduction, 
monovalent inorganic cation transport, ion transport, 
excretion and anion transport. For molecular function 
(MF), the upregulated DEGs significantly enriched in 
protein homodimerization activity, protein dimerize-
tion activity, phospholipid binding, kinase binding 
and identical protein binding, and downregulated 
DEGs significantly enriched in sodium ion binding, 
cofactor binding, alkali metal ion binding, coenzyme 
binding and anion transmembrane transporter 
activity. About cellular component, the upregulated 
DEGs significantly enriched in intrinsic to plasma 
membrane, integral to plasma membrane, cell surface, 
plasma membrane and external side of plasma 
membrane, and downregulated DEGs significantly 
enriched in plasma membrane part, apical plasma 

membrane, apical part of cell, plasma membrane and 
basolateral plasma membrane (Fig. 3A-B). These 
significantly enriched GO terms could help us a lot to 
further understand the role of DEGs played in ccRCC 
development and progression. 

KEGG pathway enrichment analysis of DEGs 
KEGG pathway analysis was performed for all 

DEGs, and we found that complement and 
coagulation cascades, primary immunodeficiency, cell 
adhesion molecules (CAMs), glycolysis / 
gluconeogenesis and glycine, serine and threonine 
metabolism were most significantly enriched (Fig. 4).  

PPI network construction 
Based on the string profile obtained from 

STRING analysis tool (Supplementary Tab. S3), the 
PPI network of DEGs consisted of 949 nodes and 4774 
edges, including 367 upregulated genes and 414 
downregulated genes. We considered the top 10 
DEGs with high degree of connectivity as the hub 
genes of ccRCC (TOP2A, MYC, ALB, CDK1, VEGFA, 
MMP9, PTPRC, CASR, EGFR and PTGS2), which may 
play a critical role in tumorogenesis and proliferation. 

Hub module selection and validation  
Degree cut-off = 5, node score cut-off = 0.2, 

k-core = 2, and max. depth = 100 as the criterion, top 3 
significant modules were selected by using plug-in 
MCODE. Gene Ontology analysis of each module was 
performed in DAVID database (Fig. 5). 

 

 
Figure 3. GO analysis of DEGs. (A) upregulated DEGs with fold change > 2. (B) downregulated DEGs with fold change < -2. BP: biological process, CC: cellular 
component, MF: molecular function. 
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Figure 4. KEGG enrichment analysis of all DEGs with |fold change| > 2. All differentially expressed genes (DEGs) were analysed by KEGG enrichment. Fold 
change > 2 was set as cut-off value. 

 

Weighted co-expression network construction 
and analysis 

We used “WGCNA” package in R, after the 
quality assessment for expression data matrix of 
GSE53000, select the power of β = 6 (scale free R2 = 
0.92) to ensure a scalefree network (Fig. 6A-D). After 
putting the DEGs with similar expression patterns 
into modules by average linkage clustering, a total of 
7 modules were identified (Fig. 6E). Except grey 
module, Gene Ontology was performed for other 6 
modules so as to explore the underlying biological 
process correlated to ccRCC. In Fig. 7, we could find 
that DEGs in blue module significantly enriched in 
hexose biosynthetic process, oxidation reduction and 
monosaccharide biosynthetic process. In brown 
module, DEGs were enriched in immune response, 
defense response and inflammatory response. In 
green module, DEGs were enriched in M phase, 
nuclear division and mitosis. In red module, DEGs 
were enriched in blood vessel morphogenesis, blood 
vessel development and vasculature development. In 
turquoise module, DEGs were enriched in ion 
transport, monovalent inorganic cation transport and 
cation transport. In yellow module, DEGs were 

enriched in immune response, T cell activation and 
lymphocyte activation. In Fig. 8, we found the 
common pathways related to renal carcinoma: 
PI3K/AKT pathway, Rap1 pathway, NF-kappa B 
pathway and insulin associated pathways. 

Hub genes and pathway validation 
In Supplementary Fig. S1-2, we performed 

validation of hub genes using TCGA KIRC data and 
microarray data (GSE53000). We found that CASR 
and PTGS2 were tumor suppressors in both 
microarray and RNA-Seq data; CDK1, EGFR, MMP9, 
MYC, PTPRC, TOP2A and VEGFA were oncogenes in 
the common expression data. To perform the pathway 
validation, we chose the common pathway related to 
renal carcinogenesis and validated the key molecules 
using qRT-PCR. We found PIK3CD, PIK3CG and 
NFKB2 were upregulated in tumor samples and 
PIK3CB, AKT1, AKT2, AKT3, RAP1A and RAP1B were 
downregulated in tumor samples (Fig. 9). To further 
validate the pathway, we use TCGA KIRC data to 
perform the validation as well (Fig. 10). And we found 
that there were 7 genes deregulated in common 
validation sets (PIK3CB, PIK3CD, PIK3CG, AKT2, 
AKT3, NFKB2, RAP1A, Fig. 11). 
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Discussion 
Clear cell renal cell carcinoma is biologically 

heterogeneous and has variable clinical courses, 
therefore, it is essential to understand the molecular 
mechanism for better diagnosis and treatment of 
ccRCC. In this study, we investigated the gene 
expression profile of GSE53000, including 56 clear cell 
renal cell carcinoma samples (including 2 lymph node 
metastasis samples and 1 venous thrombus samples) 
and 6 normal kidney samples to explore the molecular 
mechanism of ccRCC and find some biomarkers, 
which might be helpful therapeutic targets by using 

bioinformatics analysis. 
In this study, results showed that expressions of 

total 1175 genes were altered between normal kidney 
tissues and ccRCC tissues at FDR < 0.05. Among the 
1175 DEGs, 533 were upregulated and 642 were 
downregulated. PPI network analysis and WGCNA 
analysis were performed to identify protein-protein 
interactions and gene co-expression modules related 
with the clinical features of ccRCC. In addition, 
functional and pathway analysis were also performed 
to find ccRCC-related biological process and 
pathways. 

 

 
Figure 5. Module analysis of PPI network. (A) Module rank 1. (B) GO enrichment analysis of module rank 1. (C) Module rank 2. (D) GO enrichment analysis 
of module rank 2. (E) Module rank 3. (F) GO enrichment analysis of module rank 3. 
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Figure 6. Determination of soft-thresholding power in the weighted gene co-expression network analysis (WGCNA). (A) Analysis of the scale-free 
fit index for various soft-thresholding powers (β). (B) Analysis of the mean connectivity for various soft-thresholding powers. (C) Histogram of connectivity 
distribution when β = 6. (D) Checking the scale free topology when β = 6. (E) Dendrogram of all differentially expressed genes clustered based on a dissimilarity 
measure (1-TOM). 

 
According to the GO analysis of DEGs, we found 

that upregulated DEGs were significantly enriched in 
immune response, cell activation, leukocyte activation 

and positive regulation of immune system process; 
downregulated DEGs were significantly enriched in 
ion transport, monovalent inorganic cation transport, 
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cation transport and anion transport. Giraldo NA et al. 
investigated that the infiltration and the localization 
of DC, and the expression of immune checkpoints 
(PD-1, LAG-3, PD-L1, and PD-L2) in relation with 
prognosis in the tumor microenvironment modulated 
the clinical impact of CD8(+) T cells in ccRCC [22]. In 
addition, Balan M et al. also reported that c-Met can 
promote increased survival of renal cancer cells 
through the regulation of HO-1 and PD-L1 [23]. 
Ciarimboli G et al. found that OCT2 played a decisive 
role in the renal secretion of creatinine and the process 
could be inhibited by OCT2 substrates [24]. Pochini L 
et al. also discovered that OCTN cation transporters 
were associated with several pathologies [25]. 
Meanwhile, KEGG pathway analysis revealed those 

glycolysis/gluconeogenesis and glycine, serine and 
threonine metabolisms were significantly enriched. 
Many studies illustrated that carcinogenesis could 
have very closely correlation with metabolism [26-28]. 
As to renal carcinoma, significant progress had been 
made to understand the metabolic derangements 
present, which had been derived through 
translational, in vitro, and in vivo studies. So far, von 
Hippel-Lindau (VHL) loss was the well-characterized 
metabolic features linked to renal cancer [29]. And 
several metabolic pathways were altered, including 
glycolysis and oxidative phosphorylation due to VHL 
loss and the influence caused by increasing expression 
of hypoxia-inducible factor [30-35]. 

 

 
Figure 7. GO enrichment analysis of 6 genes modules. (A) blue module, (B) brown module, (C) green module, (D) red module, (E) turquoise module and 
(F) yellow module. 
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Figure 8. KEGG pathway enrichment analysis of 6 genes modules. (A) blue module, (B) brown module, (C) green module, (D) red module, (E) turquoise 
module and (F) yellow module. 

 
Furthermore, protein-protein interaction netw-

ork analysis demonstrated that TOP2A, MYC, ALB, 
CDK1, VEGFA, MMP9, PTPRC, CASR, EGFR and 
PTGS2 had the highest degree of connectivity among 
DEGs. TOP2A and CDK1 played an important role in 
regulation of cell cycle, which might modulate the 
tumor proliferation [36-38]. MYC, as an oncogene, 
encoded a transcription factor, triggered selective 
gene expression amplification to promote cell growth 
and proliferation [39]. Shroff EH et al. demonstrated 
that MYC overexpression causes RCC and pointed to 
the inhibition of glutamine metabolism [40]. ALB was 
reported to be an independent prognostic factor for 
patients with mRCC treated with angiogenesis- 
targeted therapy [41]. VEGFA, as a member of 

PDGF/VEGF growth factor family, induced prolifera-
tion and migration of vascular endothelial cells, and 
was essential for both physiological and pathological 
angiogenesis, which played a vital role in renal 
carcinogenesis [42, 43]. MMP9 (matrix metallo-
proteinase-9) was reported to have a strong 
correlation with tumor invasion and migration 
[44-46]. PTPRC, as an essential regulator of T- and 
B-cell antigen receptor signaling, might influence 
tumor proliferation via immune regulation [47]. CASR 
was a robust promoter of differentiation in colonic 
epithelial cells and functions as a tumor suppressor in 
colon cancer [48]. EGFR, upregulated in ccRCC, was a 
receptor tyrosine kinase involved in many important 
aspects of cell biology that are related to 
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tumorigenesis [49-51]. PTGS2 was reported to be an 
prognostic biomarker for poor clinical outcome of 
upper tract urothelial cancer [52]. 

WGCNA analysis found six modules with 
highly relevant expression pattern. Then Gene 
Ontology enrichment analysis was performed to 
explore the biological process of each module. Blue 
module including 244 DEGs was involved in 
glycometabolic process such as hexose biosynthetic 
process, monosaccharide biosynthetic process and 
hexose metabolic process. Many studies had 
mentioned the close relationship between metabolism 
and renal carcinoma [53, 54]. Brown module including 

199 DEGs was associated with immune response. 
Meanwhile, yellow module including 182 DEGs also 
participated in immune response, which revealed the 
correlation between renal cancer and immune 
regulation. 125 DEGs in green module were enriched 
in cell cycle regulation, playing a critical role in tumor 
proliferation. Red module including 71 DEGs was 
closely related to angiogenesis and vascular repair, 
relating to the prognosis of ccRCC. Turquoise module 
including 326 DEGs has a strong correlation to ion 
transport, which might participated in the tumor 
migration and invasion.  

 

 
Figure 9. Pathway validation using qRT-PCR analysis. (A) PIK3CB, (B) PIK3CD, (C) PIK3CG, (D) AKT1, (E) AKT2, (F) AKT3, (G) NFKB2, (H) RAP1A and (I) 
RAP1B. 
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Figure 10. Pathway validation using TCGA KIRC data. (A) PIK3CB, (B) PIK3CD, (C) PIK3CG, (D) AKT1, (E) AKT2, (F) AKT3, (G) NFKB2, (H) RAP1A and (I) 
RAP1B (* p < 0.05; ** p < 0.01; *** p <0.001). 

 

 
Figure 11. Venn plot of common deregulated genes. Blue: 
downregulated genes; red: upregulated genes. 

In conclusion, by using a series of bioinformatics 
analysis, we have illustrated the hub genes and 
pathways which may be involved in the progress of 
ccRCC, based on differentially expressed genes 
between ccRCC samples and normal kidneys. 
However, further molecular biological experiments 
are needed to confirm the function of the candidate 
biomarkers in ccRCC. 
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