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Abstract 

Meiotic recombination caused by meiotic double-strand DNA breaks. In some regions the 
frequency of DNA recombination is relatively higher, while in other regions the frequency is lower: 
the former is usually called “recombination hotspot”, while the latter the “recombination coldspot”. 
Information of the hot and cold spots may provide important clues for understanding the 
mechanism of genome revolution. Therefore, it is important to accurately predict these spots. In 
this study, we rebuilt the benchmark dataset by unifying its samples with a same length (131 bp). 
Based on such a foundation and using SVM (Support Vector Machine) classifier, a new predictor 
called “iRSpot-Pse6NC” was developed by incorporating the key hexamer features into the general 
PseKNC (Pseudo K-tuple Nucleotide Composition) via the binomial distribution approach. It has 
been observed via rigorous cross-validations that the proposed predictor is superior to its 
counterparts in overall accuracy, stability, sensitivity and specificity. For the convenience of most 
experimental scientists, the web-server for iRSpot-Pse6NC has been established at 
http://lin-group.cn/server/iRSpot-Pse6NC, by which users can easily obtain their desired result 
without the need to go through the detailed mathematical equations involved. 
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Introduction 
Meiotic recombination occurs at each generation 

in diploid organisms, which is caused by meiotic 
double-strand DNA breaks (DSBs)[1](Figure 1). 
Meiosis can guarantee not only the stability of the 
chromosome number of species but also a species 
evolving mechanism to adapt to the environment 
changes [2]. Recombination can lead to a change in 
genetic information between homologous chromo-
somes. Thus, it is one of main driving forces in 
genome evolution. The frequency of DNA 
recombination in some regions is relatively higher as 

referred to recombination hotspots, while in other 
regions the frequency is lower referred to the 
recombination coldspots [3-5]. 

There have been many in-depth studies of 
recombination sites [3; 6-9]. Gerton et al. [3] mapped 
double-strand break sites on chromosomes in the 
Saccharomyces cerevisiae (S. cerevisiae), and found that 
hotspots were non-randomly associated with regions 
of high GC base composition, while coldspots were 
non-randomly associated with the centromeres and 
telomeres. Some hotspots that require transcription 
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factor binding are called α hotspots, and others are 
called β hotspots [3]. Recently, there have been new 
developments on the research of recombination sites. 
ChIP experiments showed that substantial Spo11 
persists at Rec8 binding sites during DSB formation 
[10]; PRDM9, as a catalytic H3K4 trimethylated 
histone trimethylase, is involved in the initiation of 
recombination and recombination with recombination 
hot spots [11], found that the regions with high 
nucleosome occupancy have high recombination rate 
in the yeast genome [12]. 

The correct identification of recombination spots 
can provide important clues for understanding the 
evolution mechanism. Generally, biochemical 
experiments can produce accurate information for 
determine recombination spots. However, with the 
development of high-throughput sequencing 
technique, more and more genome data were 
generated, thus, determining recombination spots 
with these wet-experiments requires more and more 
expensive experimental materials and long 
experimental period. Machine learning-based 
methods are a good choice for timely and accurately 
identifying the recombination spots. Up to now, some 
methods have been developed to identify 
recombination spot. Jiang et al. firstly developed a 
new model based on gapped dinucleotide 
composition and random forest (RF) to predict 
meiotic recombination hotspots and coldspots in S. 
cerevisiae [13]. In the meantime, Zhou et al. established 
an SVM-based model to discriminate hotspots from 
coldspots in S. cerevisiae by using codon composition 
[14]. Subsequently, Liu et al. proposed to use the 
increment of diversity combined with quadratic 
discriminant for predicting the recombination spots 
[15]. Chen et al. developed a new DNA sample 
descriptor called pseudo dinucleotide composition 
(PseDNC) to improve prediction accuracy for the 
recombination hotspots and coldspots [16]. According 

to the concept of PseDNC, Li et al. [17] and Qiu et al. 
[18] also developed different prediction models to 
address this problem. Liu et al. incorporated the 
weight of features into recombination hotspots 
prediction model [19]. A predictor called 
iRSpot-DACC was also presented to predict 
recombination hotspots and coldspots [20]. Recently, 
the same problem was further investigated by 
including the Z curve approach [21], and the 
ensemble learning approach [22].  

Although the aforementioned methods could 
achieve quite encouraging results, further studies are 
needed due to the following reasons. (i) The DNA 
samples used to train the models are with different 
length, which prevents them from establishing a 
widely useful model because users do not know how 
long the working length should be used for a query 
DNA sequence. For example, in using the 
aforementioned methods to scan a chromosome, we 
do not know the optimal width of the scan window 
[23] for the biological sequence concerned. In fact, for 
the published webserver based on those methods, 
only a prediction will be given even for a chromosome 
with a length of thousands base pairs. However, there 
are many recombination points in the genome. 
Therefore, most of those models are quite limited for 
practical applications. (ii) Some works [13; 14; 21; 24] 
used codon composition or coding region information 
to formulate DNA samples. However, recombination 
spots are not always located in coding regions. Some 
non-coding regions may also contain recombination 
spots. Thus, these methods could not identify 
recombination spots in the intergenic regions. (iii) The 
prediction results are still far from satisfactory yet; the 
accuracy should be further improved. (iv) Only three 
webservers were published. For the convenience of 
most experimental scientists, more user-friendly 
webservers in this regard are needed. 

 

 
Figure 1. The schematic drawing to show the meiotic recombination pathways in a DNA system. 
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The present study was devoted to develop a 
more powerful predictor in this area by considering 
the aforementioned four issues. To make the new 
predictor more clear in logical development and more 
useful in practical application, the Chou’s 5-step rules 
[25] were followed as reported in a series of recent 
studies (see, e.g., [26-35]). 

Materials and Methods 
Benchmark dataset: hot/cold spots DNA 
sequences 

According to the Chou’s 5-step rules, the first 
prerequisite to establish an effective predictor for a 
biological system is to construct or select a high 
quality benchmark dataset. In this study, the raw data 
was derived from Gerton et al. [3], who used DNA 
microarray as the single-gene resolution method to 
estimate the DSBs formation adjacent to each ORF for 
the S. cerevisiae loci. They measured the ratio of 
DSB-rich probes hybridized to total genomic probes. 
Based on the experimental data, Jiang et al. [13] 
constructed a benchmark dataset including 490 
recombination hotspots and 591 coldspots.  

So far most of the existing models [13-20] were 
built up based on such benchmark dataset.  The 
length distribution of original samples was shown in 
Figure 2. It was noticed that the length distributed in a 
wide range from the shortest one of 131 bp to the 
longest one of thousands bp. To overcome such a 
shortcoming, we rebuilt the benchmark dataset 
according to the strategy that recombination hotspots 
were correlated with peaks of G+C base composition 
[3]. By doing so, we unified the length of each sample 
to 131 bp because the length of shortest sequence is 
131 bp. For those sequences with >131 bp, we chose 
their subsequences with 131 bp that have the 
maximum GC content. As a result, the new dataset 
also has 490 samples for recombination hotspots and 
591 samples for recombination coldspots, but all the 

sequences are 131 bp long now. The new benchmark 
dataset can be downloaded from the link at 
http://lin-group.cn/server/iRSpot-Pse6NC. 

Hexamer composition and its PseKNC vector 
 How to translate a DNA sequence D with L 

bases into a vector is the second important step to 
develop a predictor for discriminating recombination 
hotspots from recombination coldspots. This is 
because all the existing machine-learning algorithms 
can only handle vectors but not sequences as 
elaborated in [36]. But a vector in a discrete 
framework might totally lose all the sequence-order 
or pattern information. To deal with this problem, the 
PseAAC (Pseudo Amino Acid Composition) was 
introduced [37]. Ever since the concept of PseAAC 
was proposed, it has been swiftly penetrated into 
many biomedicine and drug development areas [38; 
39] as well as nearly all the areas of computational 
proteomics (see, e.g., [40-48] and a long list of 
references cited in a recent review paper [49]). 
Encouraged by the successes of using PseAAC to deal 
with protein/peptide sequences, its idea has been 
extended to deal with DNA/RNA sequences [16; 22; 
24; 32; 50] in computational genomics via PseKNC 
(Pseudo K-tuple Nucleotide Composition) [51; 52]. 
According to [53], for a DNA sample with L nucleic 
acid residues:  

𝐃𝐃 =  R1R2R3 ⋯R𝑖𝑖 ⋯R𝐿𝐿       (1) 

its general form of PseKNC can be formulated as:   

𝐃𝐃 = [ϕ1   ϕ2    ⋯    ϕ𝑢𝑢    ⋯    ϕΓ]𝐓𝐓       (2) 

where T is the transposing operator, the subscript Γ is 
an integer, and its value and the components 
ϕ𝑢𝑢 (𝑢𝑢 = 1, 2,⋯ ) will depend on how to extract the 
desired features and properties from the DNA 
sequence. In this study, their definitions are described 
below. 

 

 
Figure 2. The length distribution of benchmark dataset samples. 
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 K-tuple (or called K-mer) nucleotide 
composition has important biological significance [54] 
that the whole DNA sequence can be uniquely 
determined from the K-tuple nucleotide frequency 
distribution; i.e., the frequency distribution of K-tuple 
nucleotide contains mostly the information of the 
DNA sequence. And K-mer nucleotide composition 
has been widely used in gene identification [55] and 
other regulatory element recognition [24; 56-59]. 
Several studies [60,61] have shown that hexamer 
(6-mer) distribution has unique properties among 
species and different DNA fragments. Thus, we have 
the dimension of PseKNC in Eq.2 is:  

Γ = 4𝐾𝐾 = 46 = 4096      (3) 

and its components given by: 

ϕ𝑢𝑢 = 𝑛𝑛𝑢𝑢
∑ 𝑛𝑛𝑖𝑖4096
𝑖𝑖=1

= 𝑛𝑛𝑢𝑢
(𝐿𝐿−𝐾𝐾+1)

     (4) 

where 𝑢𝑢 and L denote the number of the u-th hexamer 
and the length of the sample sequence, respectively. 
Thus, the DNA sample has been uniquely defined in a 
4096-D PseKNC vector. 

The rule for ranking features 
The DNA sequence is represented by a set of 

4096 features, which may bring out three problems 
[62-63]: (1) containing some redundant or irrelevant 
information; (ii) leading to an over-fitting model and 
reducing its flexibility; (iii) causing the curse of 
dimensionality and dyscalculia. However, we can 
improve these problems by means of the feature 
selection approach [64]. Many effective feature 
selection techniques have been proposed, such as 
diffusion Maps [65], principal component analysis 
(PCA) [66-68], analysis of variance (ANOVA) [69; 70], 
recursive feature elimination algorithm [71; 72] and 
geometry preserving projections (GPP) [73] and so on. 
These techniques are all quite efficient in alleviating 
the interference from noise or irrelevant features so as 
to improve the prediction quality. 

Here, let us define a prior probability given by 

𝑃𝑃𝑖𝑖 = 𝑚𝑚𝑖𝑖
𝑀𝑀

   (𝑖𝑖 = 1 or 2)   (5) 

where M is the total occurrence times of all 
hexamers in the benchmark dataset (including both 
positive and negative samples), and 𝑚𝑚𝑖𝑖 represents the 
number of hexamers in the i-th type with i = 1 
referring to the positive subset whereas i=2 referring 
to the negative subset.  

Now, the probability of the j-th hexamers 
occurring in type i can be formulated as  

𝑃𝑃(𝑛𝑛𝑖𝑖𝑖𝑖) = ∑ 𝑁𝑁𝑗𝑗!

𝑚𝑚!�𝑁𝑁𝑗𝑗−𝑚𝑚�!
𝑁𝑁𝑗𝑗
𝑚𝑚=𝑛𝑛𝑖𝑖𝑖𝑖 𝑃𝑃𝑖𝑖𝑚𝑚(1 − 𝑃𝑃𝑖𝑖)𝑁𝑁𝑗𝑗−𝑚𝑚 (6) 

where 𝑁𝑁𝑗𝑗 represents the total occurrence number 

of a given j-th hexamer in the benchmark dataset. The 
smaller the P(𝑛𝑛𝑖𝑖𝑖𝑖), the lower the probability of the j-th 
hexamer randomly occurring in type i, meaning the 
hexamer has more biological  significance. The 
confidence level (CL) of the j-th hexamer occurring in 
i-th type of sample is defined by: 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 = 1 − 𝑃𝑃(𝑛𝑛𝑖𝑖𝑖𝑖)  (𝑖𝑖 = 1 or 2)                         (7) 

Suppose:  

𝐶𝐶𝐶𝐶𝑗𝑗 = max (𝐶𝐶𝐶𝐶1,𝑗𝑗 , 𝐶𝐶𝐶𝐶2,𝑗𝑗)  (𝑗𝑗 = 1,2,⋯ , 4096)   (8) 

thus the 4096 hexamers can be ranked according to 
the values of Eq.8. 

Support vector machine 
Support vector machine (SVM) is a supervised 

machine learning algorithm based on statistical 
learning theory, and has been successfully applied in 
the field of bioinformatics [74]. The basic idea of SVM 
is to transform the data into a high dimensional 
feature space and then determine the optimal 
separating hyper plane. For a brief formulation of 
SVM and how it is working, see the papers [75; 76]; for 
more details about SVM, see a monograph [77]. In this 
study, we used the free software LIBSVM 3.20, which 
was developed by Chang and Lin [78]. Due to its good 
performance for classification, the radial basis kernel 
function was used to obtain the best classification 
hyper plane. The two parameters, C and γ, which 
were preliminarily optimized through a grid search 
strategy.  

The proposed predictor thus built up is called 
iRSpot-Pse6NC, where “i” stands for “identify”, 
“RSpot” for “Recombination Spots”, and “Pse6NC” 
for “Pseudo 6-tuple Nucleotide Composition”.  

Results and Discussion 
Cross-validation 

 To evaluate the quality of a new predictor, one 
needs to consider the following two things: (i) what 
metrics should be used to measure its performance? 
(ii) what test method should be adopted to calculate 
these metrics? In literature, the following four metrics 
are usually used to measure a predictor’s quality [79]: 
(i) overall accuracy (Acc); (ii) stability (MCC); (iii) 
sensitivity (Sn); and (4) specificity (Sp). But their 
conventional expressions directly taken from math 
books are lack of intuition and difficult to understand 
by most biological scientists. Fortunately, by means of 
the symbols introduced by Chou in studying signal 
peptides [23], the four conventional metrics can be 
converted to a set of intuitive ones [16; 80; 81] as given 
below: 
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Sn = 1 − 𝑁𝑁−+

𝑁𝑁+                                                           0 ≤ Sn ≤ 1   

Sp = 1 − 𝑁𝑁+−

𝑁𝑁−                                                       0 ≤ Sp ≤ 1       

Acc =  Λ = 1 − 𝑁𝑁−++𝑁𝑁+−

𝑁𝑁++𝑁𝑁−                                     0 ≤ Acc ≤ 1         
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−

𝑁𝑁−
�
                     −1 ≤ MCC ≤ 1     

 

   (9) 

where 𝑁𝑁+ represents the total number of positive 
samples investigated, while 𝑁𝑁−+  is the number of 
positive samples incorrectly predicted to be of 
negative one; 𝑁𝑁−  the total number of negative 
samples investigated, while 𝑁𝑁+−  the number of the 
negative samples incorrectly predicted to be of 
positive one. 

As pointed out by many recent publications (see, 
e.g., [22; 32; 33; 50; 82-90]), the meanings of Sn, Sp, 
Acc, and MCC have become crystal clear when using 
Eq.9.  

With a set of intuitive metrics, the next thing is 
how to test their values. As is well known, the 
independent dataset test, subsampling (or K-fold 
cross-validation) test, and jackknife test are the three 
cross-validation methods widely used for testing a 
prediction method [91]. To reduce the computational 
cost, in this study we adopted the 5-fold 
cross-validation (namely K=5), as done by many 
investigators with SVM as the prediction engine (see, 
e.g., [24; 26; 92-95]). 

Comparison with existing methods  
Listed in Table 1 are the metrics rates (Eq.9) 

achieved by iRSpot-Pse6NC via the 5-fold 
cross-validation on the benchmark dataset. For 
facilitating comparison, listed there are also the 
corresponding rates obtained by iRSpot-PseDNC [16], 
iRSpot-KNCPseAAC [18], and IDQD [15] using 
exactly the same cross-validation method and same 
benchmark dataset. As we can see from the table, the 
rates achieved by iRSpot-Pse6NC are remarkably 
higher than its cohorts in all the four metrics, clearly 
indicating the proposed predictor is indeed superior 
to the existing predictors in this area. 

 

Table 1. A comparison of the proposed predictor with the 
existing ones.  

Method Sna Spa Acca MCCa 
iRSpot-Pse6NCb  0.7571 0.9103 0.8408 0.6805 
iRSpot-PseDNCc 0.6234 0.9052 0.7792 0.5585 
iRSpot-KNCPseAACd 0.6102 0.8951 0.7660 0.5334 
IDQDe 0.6959 0.7509 0.7259 0.4469 
aSee Eq.9 for the metrics definition 
bProposed in this paper 
cFrom [16] 
dFrom [18] 
eFrom [15] 

Feature analysis 
As mentioned in section 2.3, the dimension for 

the hexamer vector is 4096, which is too large to avoid 
the high-dimension problems. To exclude the noise 
and redundant features, we used the incremental 
feature selection (IFS) to find out the best feature 
subset to maximize accuracy. We initially ranked the 
4096 hexamers according to Eqs.5-8. Subsequently, the 
4096 feature subsets were obtained, in which the first 
feature subset contained the first hexamer, the second 
feature subset was produced by adding the second 
hexamer into the first feature subset, and so on. 
Thirdly, the SVM with 5-fold cross-validation was 
adopted to examine the accuracies of 4096 feature 
subsets. By using Acc as vertical coordinates and 
feature number as horizontal coordinates, we plotted 
IFS curve in Figure 3. One may notice that the peak of 
the curve is 84.08%, which is located at horizontal 
coordinate of 381. This result (84.08%) is dramatically 
higher than that (71.04%) of all features. Meanwhile, 
we also dramatically reduced the considered features 
from 4096 to 381, indicating that our proposed feature 
selection technique could pick out the optimal 
hexamers so as to further improve the prediction 
quality. Accordingly, the 381 hexamers were selected 
to form the optimal feature subset to train the 
prediction model. 

To further investigate the performance of the 
optimal model across the entire range of SVM 
decision values, we drew the ROC curve [96] in 
Figure 4. It shows that the AUC (the Area Under ROC 
Curve) reaches the value of 0.9084, indicating that the 
proposed method is quite promising and holds very 
high potential to become a useful high-throughput 
tool for predicting recombination spots. 

 

 
Figure 3. The 5-fold cross-validated IFS curve for predicting recombination 
hotspots and coldspots. An IFS peak of 84.08% was observed when using the top 
381 hexamers to perform prediction. 

 



Int. J. Biol. Sci. 2018, Vol. 14 
 

 
http://www.ijbs.com 

888 

 
Figure 4. The ROC curve for identifying recombination spots by using 381 optimal hexamers. The AUC of 0.9084 was obtained in 5-fold cross-validation. The 
diagonal dot line denotes a random guess with the AUC of 0.5. 

 
Figure 5. A heat map to illustrate the CL of the 4096 different hexamers. The color scale is ranged from blue (low CL) through green and yellow to red (high CL). See 
the main text for further explanation. A higher resolution version can be found at http://lin-group.cn/server/iRSpot-Pse6NC/heatmap2.jpg. 

 
For further analyzing the contributions of 

different features in the prediction model, a heat map 
[97] was provided (Figure 5), which is a graphical 
representation of a matrix by using different colors 
according to its CL values scaled between 0 and 1. As 
we can see from Figure 5, for the 4096 different 
hexamers, the majority of them are blue or green, 
indicating that most of them are irrelevant to the 
recombination spot recognition.  

It can be seen from Figure 5 that those regions 
with high GC content, e.g., the hexamers CGCCGG, 
AGCCGG and GCAGCT, GCCGGA, AGTGGG are 
with the CL values ranking top five among all the 
features and with the confidence level of CL > 98.3%. 

Moreover, we performed a detail analysis on the 
381 optimal hexamers with CL>98.3% to investigate 
the relationship between the features and GC content 
(Figure 6). In this figure, abscissa coordinate denotes 
the GC content distribution from 0% -100%, and the 

vertical axis indicates that the percentage of positive 
and negative samples at the GC content shown on the 
abscissa. It can be seen from the figure that the 
optimal hexamers with high GC content have a higher 
proportion in positive samples, whereas hexamers 
with lower GC contents have a higher proportion of 
negative samples. This means that there is a close 
relationship between GC content and the hot spots, 
once again proofing that the way we handled the data 
is fully valid. 

Web-server and user guide 
As pointed out in [25] and demonstrated in 

many follow-up publications (see, e.g., [28; 30; 32; 35; 
81; 98-116]), user-friendly and publicly accessible 
web-servers represent the future direction for 
developing practically more useful predictors. 
Actually, a new prediction method with the 
availability of a user-friendly web-server would 
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significantly enhance its impacts [36; 49]. In view of 
this, the web-server for iRSpot-Pse6NC has been 
established. Furthermore, to maximize the 
convenience of most experimental scientists, the 
step-by-step instructions are given below. 

Step 1. Open the web server at http://lin-group. 
cn/server/iRSpot-Pse6NC and you will see the top 
page of`iRSpot-Pse6NC shown on your computer 
screen (Figure 7).  

Step 2. Click on the WEB SERVER button to start 
the prediction. Either type or copy/paste the query 
DNA sequences into the input box at the center of 
Figure 7. The input sequences should be in the FASTA 
format. And click on the Submit button to see the 
predicted result. 

Step 3. Click on the DOWNLOAD button to 
download the benchmark data sets used to train and 
test the iRSpot-Pse6NC predictor. 

Step 4. Click on the CITATION button to find 
the relevant papers that document the detailed 
development and algorithm of iRSpot-Pse6NC. 

Step 5. Click on the HELP button to view the 
relevant instructions and the caveat when using it. 
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Figure 6. The graph to show the relationship between the important features and GC content. 

 
Figure 7. A semi-screenshot for the top page of the iRSpot-Pse6NC webserver at http://lin-group.cn/server/iRSpot-Pse6NC. 
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