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Abstract 

Network-based computational method, with the emphasis on biomolecular interactions and 

biological data integration, has succeeded in drug development and created new directions, such as 

drug repositioning and drug combination. Drug repositioning, that is finding new uses for existing 

drugs to treat more patients, offers time, cost and efficiency benefits in drug development, especially 

when in silico techniques are used. MicroRNAs (miRNAs) play important roles in multiple biological 

processes and have attracted much scientific attention recently. Moreover, cumulative studies 

demonstrate that the mature miRNAs as well as their precursors can be targeted by small molecular 

drugs. At the same time, human diseases result from the disordered interplay of tissue- and cell 

lineage-specific processes. However, few computational researches predict drug-disease potential 

relationships based on miRNA data and tissue specificity. Therefore, based on miRNA data and the 

tissue specificity of diseases, we propose a new method named as miTS to predict the potential 

treatments for diseases. Firstly, based on miRNAs data, target genes and information of FDA (Food 

and Drug Administration) approved drugs, we evaluate the relationships between miRNAs and 

drugs in the tissue-specific PPI (protein-protein) network. Then, we construct a tripartite network: 

drug-miRNA-disease Finally, we obtain the potential drug-disease associations based on the 

tripartite network. In this paper, we take breast cancer as case study and focus on the top-30 

predicted drugs. 25 of them (83.3%) are found having known connections with breast cancer in CTD 

(Comparative Toxicogenomics Database) benchmark and the other 5 drugs are potential drugs for 

breast cancer. We further evaluate the 5 newly predicted drugs from clinical records, literature 

mining, KEGG pathways enrichment analysis and overlapping genes between enriched pathways. For 

each of the 5 new drugs, strongly supported evidences can be found in three or more aspects. In 

particular, Regorafenib (DB08896) has 15 overlapping KEGG pathways with breast cancer and their 

p-values are all very small. In addition, whether in the literature curation or clinical validation, 

Regorafenib has a strong correlation with breast cancer. All the facts show that Regorafenib is likely 

to be a truly effective drug, worthy of our further study. It further follows that our method miTS is 

effective and practical for predicting new drug indications, which will provide potential values for 

treatments of complex diseases. 

Key words: drug repositioning, miRNAs, tissue specificity, module distance  

Introduction 

The identification of therapeutic approaches for 
the treatment of cancer is an arduous, costly, and 
often inefficient process. By conservative estimates, it 
now takes over 15 years and $800 million to $1 billion 
to bring a new drug to market [1]. Drug repositioning, 
which is the discovery of new indications for existing 

drugs, is an increasingly attractive mode of 
therapeutic discovery. A repositioned drug does not 
need the initial six to nine years required for the 
development of new drugs, but instead goes directly 
to preclinical testing and clinical trials, thus reducing 
risk and costs [ 2 ]. Repositioning drugs has been 
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implemented in several ways. One of the well-known 
examples is sildenafil citrate, which was repositioned 
from a hypertension drug to a therapy for erectile 
dysfunction [3]. Drugs treat diseases by targeting the 
proteins related to the phenotypes arising from the 
disease. However, drug development does not 
accurately follow the “one gene, one drug, one 
disease” principle, which has been challenged in 
many cases [4] and the traditional drug repositioning 
methods by accident makes it hard to satisfy medical 
needs by successfully repositioning a large number of 
existing drugs. Computational methods are able to 
solve this question by high-level integration of 
available biological data and elucidation of unknown 
mechanisms.  

In recent years, systems biology continues to 
make important progress to solve fundamental 
problems in biology and leading to practical 
applications in medicine and drug discovery [ 5 ]. 
Network-based computational systems biology 
emphasizes the interactions among biomolecules and 
highlights the network concept. Typically, a network 
comprises a set of nodes and edges, and is described 
by graph theory in a mathematical manner [6]. A node 
can be a biological molecule, for example, gene, RNA, 
protein, metabolite, and pathway. A node can also be 
at the phenotype level such as disease and drug. An 
edge can represent the complex interaction between 
two nodes such as protein-protein interaction, 
drug-disease therapeutic relationship, drug-protein 
target relationship, and so on. The accumulation of 
different high-throughput biology data, such as gene 
expression data, miRNA expression data and 
drug-target data, has made the reconstruction of 
biomolecular and cellular networks possible. There 
are many network-based methods to predict the new 
indications of drugs [7,8,9,10,11]. Cheng et al. built a 
bipartite graph composed of the approved drugs and 
proteins linked by drug target binary associations and 
relied on a supervised network-based inference 
method to predict drug-target interactions [12]. Chen 
et al. constructed a general heterogeneous network 
which comprised drugs and proteins linked by 
protein-protein sequence similarity, drug-drug 
chemical similarity, and the known drug-target 
interaction [13]. Yeh et al. [14] developed a network 
flow approach for identifying potential target 
proteins, which have a strong influence on disease 
genes in the context of biomolecular networks. The 
biomolecular networks are weighted by degree of 
co-expression of interacting protein pair. 

More recently, many studies have demonstrated 
that drugs can regulate microRNA (miRNAs) 
expression and mature miRNAs as well as their 
precursors can be targeted by small molecular drugs 

[15,16,17,18]. For example, Miravirsen (SPC3649) is 
the first miRNA-targeted drug in clinical trials, which 
can successfully inhibit miR-122 expression that is 
required by hepatitis C virus replication [19]. The 
expression levels of 32 miRNAs (significant 
up-regulation of 22 miRNAs and down-regulation of 
10 miRNAs) were changed after the treatment of 
trichostatin A in human breast cancer cell lines [20]. 
miRNAs are non-coding small RNAs (∼23 
nucleotides) that downregulate gene expression at the 
post transcriptional level by inhibiting translation or 
initiating mRNA degradation and are dysregulated in 
most of human cancers [21]. Increasingly evidences 
have demonstrated that miRNAs play significant 
roles in many important biological processes, such as 
cell growth [22,23,24], cellular signaling [25], tissue 
development [ 26 ] and disease process [ 27 ,28 , 29 , 
30,31,32]. Although only approximately 2000 miRNAs 
exist in humans, they regulate 30% of all genes [33]. 
miRNAs have been identified to play a crucial role in 
various human disease, especially in cancers. 
Therefore, targeting miRNAs with drugs will provide 
a new type of therapy for complex diseases [34] and a 
new direction for drug repositioning. However, few 
computational researches predict drug-disease 
relationships based on miRNA data. Moreover, many 
genes with tissue-specific expression and function are 
expected to underlie many human diseases [35,36,37]. 

Therefore, in this study, we propose a new 
method based on miRNA data and tissue specificity 
of diseases, named as miTS, to predict potential drugs 
for diseases. The framework of miTS is shown in 
Figure 1. Firstly, we download miRNA expression 
data of diseases from TCGA [38], miRNA-target gene 
relationship data from three experimentally validated 
databases: miRecords [ 39 ], miRTarbase [ 40 ] and 
TarBase [41], and the drug-target gene data from 
Drugbank [42] and KEGG [43]. Secondly, we select 
differentially expressed miRNAs of diseases based on 
a threshold and preprocess the target information of 
FDA approved drugs. Thirdly, we evaluate the 
relationships between miRNAs and drugs in the 
tissue-specific PPI network. And then, we construct a 
tripartite network: drug-miRNA-disease. Finally, we 
obtain the potential drug-disease associations based 
on the tripartite network. In this paper, we take breast 
cancer as case study and evaluate the results from 
CTD (Comparative Toxicogenomics Database) 
benchmark, clinical records, literature mining, KEGG 
pathways enrichment analysis and overlapping genes 
between enriched pathways. In the top-30 drugs, we 
find 5 new drugs for breast cancer. In particular, 
Regorafenib (DB08896) has 15 overlapping KEGG 
pathways with breast cancer and their p-values are all 
very small. In addition, whether in the literature 



Int. J. Biol. Sci. 2018, Vol. 14 

 

 

http://www.ijbs.com 

973 

curation or clinical validation, Regorafenib has a 
strong correlation with breast cancer. All the facts 
show that Regorafenib is likely to be a truly effective 
drug, worthy of our further study. 

Methods 

Datasets                                                                                                                                                                                 

Drug-target data  

FDA-approved drugs of human and their 
corresponding targets are downloaded from KEGG 
database and Drugbank. We merge the two datasets 
and get 1,732 drugs, 1,714 targets and 12,361 
drug-target pairs.  

miRNA-target data  

The target genes of miRNAs are downloaded 

from miRecords, miRTarbase, and TarBase databases. 
We merge the three datasets and get 340 miRNAs, 
2,028 targets and 3,652 miRNA-target pairs.  

miRNA-disease data 

The miRNA-disease curated relationships are 
downloaded from HMDD (the Human MicroRNA 
Disease Database) [ 44 ]. HMDD presents more 
detailed and comprehensive annotations to the 
human miRNA-disease association data, including 
miRNA-disease association data from the evidence of 
genetics, epigenetics, circulating miRNAs, and 
miRNA-target interactions. Finally, we get 578 
miRNAs, 383 diseases and 6,448 miRNA-disease 
relationships. 

 

 
Figure 1. The framework of our method miTS. (A) Data preparation: miRNA expression data of breast cancer got from TCGA, miRNA-target gene data got from 
miRecords, miRTarbase and TarBase, and drug-target gene data got from Drugbank and KEGG. (B) Data preprocessing: we use Z-score to obtain the differentially 
expressed miRNAs for diseases and preprocess the target information of drugs. (C) In the tissue-specific PPI network, the targets of drug and miRNA are mapped to 

the PPI network. Orange nodes represent the target genes of miRNAs. Purple nodes represent the target genes of drugs. Green nodes represent the background 
genes. (D) Based on the module distance algorithm, we construct a drug-miRNA-disease tripartite network, and then based on the tripartite network, we get 

potential drugs for diseases. dA,B represents the association score between a drug and a disease.  
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miRNA expression data 

Taking breast cancer as case study, we download 
the miRNAs expression data related with breast 
cancer from TCGA and get a matrix of 503 rows and 
1,189 columns, row representing miRNA, column 
representing cancer sample, and the values in the 
matrix representing the RPKM (Reads Per Kilobase 
per Million mapped reads) for the miRNAs. We take 
the mean value of the RPKM values for 1,189 samples 
as the final value. 

Disease-gene data 

The genes related with breast cancer are 
downloaded from OMIM [45] database.  

Tissue-specific PPI Interaction network  

We download the mammary tissue-specific PPI 
network marked as “Top Edges” from GIANT 
(Genome-scale Integrated Analysis of gene Networks 
in Tissues) database [ 46 ] (http://giant.princeton. 
edu/) (2017 version). GIANT proposes a 
tissue-specific benchmark to automatically up-weight 
datasets relevant to a tissue from a large data of 
different tissues and cell-types. Finally, we get 15,269 
proteins and 883,071 protein-protein interactions. The 
weights on the edges are proportional to the 
relationships between nodes. In order to apply 
module distance algorithm [ 47 ] (details shown in 
Figure 2) to calculate the relationships between drugs 

and miRNAs, we use the Gaussian kernel 𝑒−𝑤2
 to 

transfer protein-protein closeness 𝑤 to protein-protein 
distance 𝑤′, as shown in formula (1).  

        𝑤′ = 𝑒−𝑤2
                                     (1) 

Screening differentially expressed miRNAs 

In order to obtain the differentially expressed 
miRNAs of breast cancer, we first filter the miRNAs 
expression data downloaded from TCGA. For a 
miRNA , we use formula (2) to calculate its 𝑍 −

𝑠𝑐𝑜𝑟𝑒.  

𝑍 − 𝑠𝑐𝑜𝑟𝑒 =
𝑅−𝑚𝑒𝑎𝑛(𝑟)

𝜎(𝑟)
                     (2) 

Where  is the RPKM value of miRNA ; 

 and  represent mean value and 

standard deviation of r, respectively. Then we choose 

=1.645 (p-value = 0.05) as threshold to screen 

differentially expressed miRNAs. Finally, we get a 
total of 40 differentially expressed miRNAs of breast 
cancer (see Table 1). In Table 1, the miRNAs marked 
by “*” represent they have connections with breast 
cancer in HMDD. We find 34 of 40 (85%) differentially 
expressed miRNAs are related with breast cancer, 
which indicates that miRNAs associated with breast 

cancer tend to be highly expressed in breast cancer 
patients. Then, we choose the 34 miRNAs marked by 
“*” in Table 1 for further study. 

 

Table 1. Differentially expressed miRNAs of breast cancer 

miRNA name Z-score miRNA name Z-score miRNA name Z-score 

hsa-mir-21* 3.32 hsa-mir-375* 2.32 hsa-mir-23a* 1.91 

hsa-mir-22* 2.94 hsa-mir-101-1* 2.29 hsa-mir-199a-2* 1.90 

hsa-mir-10b* 2.93 hsa-mir-200c* 2.28 hsa-mir-126* 1.90 

hsa-mir-30a* 2.85 hsa-mir-25* 2.27 hsa-mir-100* 1.86 

hsa-mir-148a* 2.77 hsa-let-7a-3* 2.21 hsa-let-7c* 1.79 

hsa-mir-99b 2.73 hsa-let-7a-1* 2.21 hsa-mir-151 1.78 

hsa-mir-143* 2.73 hsa-mir-30d* 2.19 hsa-mir-199a-1* 1.73 

hsa-mir-182* 2.72 hsa-mir-92a-2* 2.18 hsa-mir-26a-2* 1.72 

hsa-let-7b* 2.61 hsa-let-7f-2* 2.12 hsa-mir-142 1.72 

hsa-mir-10a* 2.56 hsa-mir-93* 2.03 hsa-mir-29c* 1.70 

hsa-mir-103-1 2.50 hsa-mir-29a* 2.03 hsa-mir-181a-1* 1.69 

hsa-let-7a-2* 2.44 hsa-mir-28 2.00 hsa-mir-141* 1.66 

hsa-mir-30e 2.38 hsa-mir-199b* 1.98   

hsa-mir-183* 2.37 hsa-mir-203* 1.94   

The miRNAs marked by “*” represent they have relationship with breast cancer in 
HMDD. 

 

Construct drug-miRNA-disease tripartite 

network 

The relationship between a miRNA and a drug is 
derived by measuring the correlation between their 
target sets. Because miRNA target genes, drug target 
genes and protein-protein interaction (PPI) networks 
remain largely incomplete, we calculate the distance 
between two modules based on the shortest path in 
incomplete networks [44]. 

Figure 2 gives an example to calculate the 
distance between miRNA A and drug B in a weighted 
tissue-specific PPI network. As shown in Figure 2, 
miRNA A has three target genes, marked as a, b, c and 
drug B has four targets, marked as c, d, e, f. For the 
node a, its distance to targets {c, d, e, f} of drug B are 
0.8, 1.0, 1.1 and 1.9 respectively, so its shortest 
distance to drug B is 0.8. In this way, we can obtain 
the distances between each node in gene set {a, b, c} 
and drug B, and the distances between each node in 
target set {c, d, e, f} and miRNA A, shown in Figure 2. 
Finally, the distance between miRNA A and drug B, 

, is equals to the sum of all the distances divided 

by the total number of nodes related to miRNA A and 
drug B. Here, the total number is 7. 

Through the above calculation process, we get 
1,017 drugs, 25 miRNAs and 25,425 drug-miRNA 
relationships. Combining the drug-miRNA relations 
with the miRNA-breast cancer information, we 
construct a drug-miRNA-breast cancer tripartite 
network.  

Predicting potential drugs for breast cancer 

Based on the drug-miRNA-breast cancer 

r

R r
mean ( )r ( )r

Z - score

,A Bd 
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tripartite network, we predicting potential drugs for 
breast cancer. If a drug and breast cancer have 
common miRNA neighbors, there will be a connection 
between them. Finally, there are 25 common miRNAs 
between drugs and breast cancer. We use formula (3) 
to calculate the average distance between the 25 
miRNAs related to breast cancer and drugs as the 

drug-breast cancer relationship distance score, . 

                             (3) 

Where  𝑑𝐶𝑖,𝐵′represents the distance between the 

i-th miRNA of disease C and the drug B (the 

calculation of 𝑑𝐶𝑖,𝐵′ as shown in Figure 2); n represents 

the number of miRNAs corresponding to disease . 
Here, C= breast cancer and n= 25. 

In order to make the drug-disease distances be 
proportional to their direct correlations, we use 
formula (4) to normalize 𝑑𝐶,𝐵 as 𝑆𝐶,𝐵: 

                         (4) 

Where Maxd and Mind represent the maximum 
and the minimum of all the drug-disease distances, 
respectively; 𝑑𝐶,𝐵 represents the distance between 

disease C and drug B; 𝑆𝐶,𝐵  represents the direct 

association between disease C and drug B. 
 

 
Figure 2. An example for calculating the distance between target set of miRNA 

A and target set of drug B. Orange and purple nodes represent genes related to 
miRNA A and drug B, respectively. Node c is a shared node, so it is marked by 
two colors. 

 

Results 

CTD benchmark verification  

In our study, we choose breast cancer as case, the 
drug-breast cancer associations are ranked in 
descending order according to their scores. In order to 

verify the accuracy of our results, we use the 
drug-breast cancer relationships data in Comparative 
Toxicogenomics Database (CTD) [48] as benchmark. 
As shown in Figure 3, we give the precision curves of 
predicted drug-breast cancer relationship results. For 
each given threshold, the precision of our method is 
calculated by formula (5). 

                             (5) 

Where P represents the number of predicted 
drug-disease pairs; PCTD represents the number of 
drug-disease pairs, which can be found in CTD 
database. 

 

 
Figure 3. The precision of our predictions at different top-x% drug-breast 
cancer pairs. 

 
In Figure 3, we give the precision curves of 

predicted drug-breast cancer pairs at different top-x%. 
From the figure, we find the higher the associations 
ranking, the higher the accuracy. Hence, for the breast 
cancer, we choose top 30 drugs for further analysis. 
The top 30 drugs related to breast cancer are shown in 
Table 2. We validate the 30 drugs by CTD database 
and find 11 (36.7%) of them are marked as 
“therapeutic (T)”, which means that they have a 
highly correlation with breast cancer. In addition, we 
find 14 of the rest 19 drugs also have connections with 
breast cancer in CTD database with inference score 
[49] over 0 and they are marked as “Ref” in Table 2. 
The inference score [46] reflects the degree of 
similarity between CTD chemical-gene-disease 
networks and a similar scale-free random network, 
which is computed as shown below:  

𝑌 = − ln[𝑃{𝐺 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑏𝑜𝑡ℎ 𝐶 𝑎𝑛𝑑 𝐷 |𝑘, 𝑛𝐺) 

𝑃(𝑛𝑜 𝑜𝑡ℎ𝑒𝑟 𝐺 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠 𝐶 𝑎𝑛𝑑 𝐷 |𝑘, 𝑛𝐺)] (6) 

where Y represents the inference score; P 
represents the probability that a vertex in a large 
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network interacts with another vertex decays 
according to a power law [50]; G, C, and D represent a 
gene, chemical, and disease respectively; k represents 
the number of connection between G, C, or D; nG 
represents a gene set. The higher the Y score, the more 
likely the inference network has atypical connectivity 
[51]. That is to say, there are 83.3% (25/30) drugs can 
be found in the CTD database and we predict five 
potential drugs for breast cancer (DB08871, DB00031, 
DB08813, DB08896, and DB06813, marked as boldface 
in Table 2). 

 

Table 2. The top 30 drugs related to breast cancer  

Rank Drugbank ID Drug name Marker Inference 
Score 

Similarity 
Score 

1 DB08818 Hyaluronic 
acid 

Ref 61.1 1.00000 

2 DB00570 Vinblastine T 40.6 0.97977 

3 DB00642 Pemetrexed T 12.38 0.97666 

4 DB01169 Arsenic 
trioxide 

T 212.32 0.96998 

5 DB00242 Cladribine Ref 14.83 0.96343 

6 DB04967 Lucanthone Ref 45.07 0.96120 

7 DB09073 Palbociclib T 53.75 0.96083 

8 DB02701 Nicotinamide Ref 63.26 0.96013 

9 DB01005 Hydroxyurea Ref 32.57 0.95909 

10 DB01204 Mitoxantrone T 25.1 0.95847 

11 DB00309 Vindesine 
sulfate 

T 2.54 0.95388 

12 DB00361 Vinorelbine T 4.36 0.95388 

13 DB08871 Eribulin 
mesylate 

None None 0.95388 

14 DB01394 Colchicine Ref 50.29 0.95213 

15 DB01229 Paclitaxel T 111.41 0.95050 

16 DB01248 Docetaxel T 72.35 0.95050 

17 DB00440 Trimethoprim Ref 6.82 0.94971 

18 DB01179 Podofilox Ref 2.87 0.94918 

19 DB05260 Gallium 
nitrate 

Ref 19.88 0.94671 

20 DB00441 Gemcitabine T 112.67 0.94582 

21 DB00031 Tenecteplase None None 0.94357 

22 DB08813 Nadroparin None None 0.94325 

23 DB00432 Trifluridine Ref 12.49 0.94205 

24 DB01073 Fludarabine Ref 59.43 0.94184 

25 DB00694 Daunorubicin Ref 85.05 0.94044 

26 DB00970 Dactinomycin Ref 98.94 0.93988 

27 DB08896 Regorafenib None None 0.93853 

28 DB06813 Pralatrexate None None 0.93853 

29 DB00563 Methotrexate T 123.36 0.93799 

30 DB00615 Rifabutin Ref 2.89 0.93433 

Ranked by drug-breast cancer similarity score. Marker has three values: 
T(therapeutic), Ref (inferred by genes) and None (no record in CTD database). 
Inference Score represents the score for the inference based on the topology of the 
network consisting of the chemical, disease, and one or more genes used to make 
the inference. 

 

Clinical evaluation 

For the five predicted drugs, we further analyze 
them based on the ClinicalTrials.gov 
(https://clinicaltrials.gov/). ClinicalTrials.gov is a 
registry and results database of publicly and privately 
supported clinical studies of human participants 
conducted around the world. Currently, it lists 

242,537 studies with locations in all 50 states and in 
198 countries (April 25, 2017). From the 
ClinicalTrials.gov, we can find 84 records for drug 
Eribulin mesylate (DB08871) treat breast cancer. For 
example, “Eribulin Mesylate Phase IV Clinical Trial in 
Korean Patients with Metastatic or Locally Advanced 
Breast Cancer (ESKIMO) (NCT01961544)”, the 
purpose is assessing the safety of Eribulin which is 
approved for the treatment of the patients in Korea 
with locally advanced or metastatic breast cancer; 
“Eribulin with Trastuzumab as First-line Therapy for 
Locally Recurrent or Metastatic HER2 Positive Breast 
Cancer (NCT01269346)”, the purpose is evaluating the 
safety and efficacy of Eribulin mesylate in 
combination with trastuzumab as first line treatment 
in female subjects with locally recurrent or metastatic 
human epidermal growth factor receptor (HER2) 
positive breast cancer; “Eribulin Mesylate in Treating 
Patients with Previously Treated Metastatic Breast 
Cancer (NCT01908101)”, and so on. For drug 
Nadroparin (DB08813), we find one record: 
“Prevention of Venous and Arterial Thromboembo-
lism, in Cancer Patients Undergoing Chemotherapy, 
With a Low Molecular Weight Heparin (Nadroparin 
Calcium) (NCT00951574)”, 1200 patients with lung, 
breast, gastrointestinal (stomach, colon-rectum, 
pancreas), ovarian or head and neck cancer 
undergoing chemotherapy will be randomly assigned 
in a 2:1 ratio and in double-blind conditions to a 
treatment with subcutaneous low molecular weight 
heparin (nadroparin calcium, one injection/day) or 
placebo for the overall duration of chemotherapy or 
up to a maximum of 4 months. For drug Regorafenib 
(DB08896), we find three records related with breast 
cancer, “Refametinib in Combination with 
Regorafenib in Patients with Advanced or Metastatic 
Cancer (NCT02168777)”, “Effect of Regorafenib on 
Digoxin and Rosuvastatin in Patients with Advanced 
Solid Malignant Tumors (NCT02106845)”, and so on. 
For drug Pralatrexate (DB06813), we find a clinical 
study of Pralatrexate in 22 female patients with 
previously-treated breast cancer (NCT01118624). 
Only one drug, Tenecteplase (DB00031) was not 
found in ClinicalTrials.gov. 

Literature curation 

In the above section, the top 30 drugs related 
with breast cancer are validated by CTD database and 
Clinical database. After our analysis, we obtain five 
potential drugs (Eribulin mesylate, Tenecteplase, 
Nadroparin, Regorafenib, Pralatrexate) for breast 
cancer. In ClinicalTrials.gov database, only one drug, 
Tenecteplase, cannot be found its corresponding 
record. In this section, we will analyze the five 
potential drugs for breast cancer by literature mining. 
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The summarized results are shown in Table 3.  
Eribulin mesylate (DB08871) is an anticancer 

drug marketed by Eisai Co. under the trade name 
Halaven, which was approved by the U.S. Food and 
Drug Administration (FDA) on November 15, 2010, to 
treat patients with metastatic breast cancer [52]. In 
2016, Kurebayashi J et al. investigated the combined 
effects of Eribulin and antiestrogens. They used a 
panel of eight breast cancer cell lines, including five 
estrogen receptors (ER)-positive and three 
ER-negative cell lines. The results of this study 
demonstrate that Eribulin had potent antitumor 
effects on estrogen-stimulated ER-positive breast 
cancer cells [53]. 

 

Table 3. Literature verification for the five potential drugs 

Drug names Drugbank 
ID 

Original 
indications 

Supported references 
for breast cancer 

Eribulin 
mesylate 

DB08871 anticancer drug [49] [50] 

Nadroparin DB08813 anticoagulan [51] 

Regorafenib DB08896 oral multi-kinase 
inhibitor 

[52][53][54] 

Pralatrexate DB06813 anticancer drug [55][56] 

Tenecteplase DB00031 tissue plasminogen 
activator 

[57][58][59] 

 

Nadroparin (DB08813) is an anticoagulant 
belonging to a class of drugs called low molecular 
weight heparins (LMWHs), which is used in general 
and orthopedic surgery to prevent thromboembolic 
disorders. In 2015, Sun Y et al. [54] used the MTT test 
to observe the effect of different concentrations of 
nadroparin on the growth capacity of breast cancer 
cells MDA-MB-231. The purpose was to study the 
effect of nadroparin in the migration of breast cancer 
cells MDA-MB-231 and its action mechanism. The 
results show that nadroparin can inhibit the growth 
capacity of breast cancer cells MDA-MB-231 and the 
migration and invasion of breast cancer cells 
MDA-MB-231. Its mechanism is to down-regulate 
MMP-2 and MMP-9 expressions after combining with 
Integrin β3. 

Regorafenib (DB08896) is an oral multi-kinase 
inhibitor developed by Bayer which targets 
angiogenic, stromal and oncogenic receptor tyrosine 
kinase (RTK). Regorafenib has been demonstrated to 
increase the overall survival of patients with 
metastatic colorectal cancer [55]. Stalker L et al. using 
regorafenib in mammary tumor cell lines, the results 
show regorafenib may prove clinically useful in 
inhibiting breast cancer cell migration and metastasis 
[ 56 ]. Su J C et al. investigated the potential of 
regorafenib to suppress metastasis of triple-negative 
breast cancer (TNBC) cells through targeting 
SHP-1/p-STAT3/VEGF-A axis and found a 
significant correlation between cancer cell migration 

and SHP-1/p-STAT3/VEGF-A expression in human 
TNBC cells [57]. 

Pralatrexate (DB06813) is an anti-cancer drug. It 
is the first drug approved as a treatment for patients 
with relapsed T-cell lymphoma [ 58 ]. Pralatrexate 
results in increased activity of CASP3 protein, which 
has been found to be necessary for normal brain 
development as well as its typical role in apoptosis, 
where it is responsible for chromatin condensation 
and DNA fragmentation [59].  

Tenecteplase (DB00031) is a tissue plasminogen 
activator (tPA) produced by recombinant DNA 
technology using an established mammalian cell line 
and used as a thrombolytic drug. Nielsen VG et al. 
[ 60 ] to study whether tissue-type plasminogen 
activator (tPA) in plasma obtained from patients with 
breast cancer, lung cancer, pancreatic cancer and 
colon cancer is less than that obtained from normal 
individuals. The results show that tissue-type 
plasminogen activator-induced fibrinolysis in breast 
cancer, lung cancer, pancreatic cancer and colon 
cancer patients is enhanced. Sumiyoshi K et al. [61] 
found that the increase in levels of plasminogen 
activator and type-1 plasminogen activator inhibitor 
in human breast cancer may play a role in tumor 
progression and metastasis. Although we have not 
found the relationship between tenecteplase 
(DB00031) and breast cancer through the literatures, 
the drug had the similar effects as nadroparin [62]. 
Therefore, we infer that tenecteplase is likely to have 
effect on breast cancer. 

KEGG pathway functional enrichment analysis  

In this section, we will further make KEGG 
pathway enrichment analysis on five potential drugs 
and their associated disease. KEGG 
(http://www.kegg.jp/ or http://www.genome.jp/ 
kegg/) is an encyclopedia of genes and genomes [63]. 
Its primary goal is to assign functional meanings to 
genes and genomes both at the molecular and higher 
levels. Thus, drugs or diseases can be associated with 
certain pathways through their related genes. If a 
drug has overlapping KEGG pathways with a disease, 
the drug and the disease may have great relevance. 
That is, the drug may treat or cause the disease by 
acting on the overlapping pathways.  

We use DAVID [64,65] functional annotation tool 
for KEGG pathway enrichment analysis. DAVID 
provides a comprehensive set of functional annotation 
tools for investigators to understand biological 
significance of a large number of genes. For any given 
gene list, DAVID is able to visualize genes on 
BioCarta & KEGG pathway maps, identify enriched 
biological themes, especially GO terms, and so on. 
Therefore, we use DAVID to identify overlapping 
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KEGG pathways between potential drugs and breast 
cancer. The p-value is set to be less than 0.05.  

We find Nadroparin and Regorafenib have 4 and 
15 overlapping KEGG pathways with breast cancer, 
respectively. The details are shown in Table 4. From 
Table 4, we can find their corresponding p-values are 
very small.  

 

Table 4. Overlapping KEGG pathways between potential drugs 

and breast cancer  

Drug Name Overlapping enriched pathways p-value 

Nadroparin hsa05210: Colorectal cancer 
hsa05161: Hepatitis B 
hsa05166: HTLV-I infection 
hsa05200: Pathways in cancer 

0.00897 
0.02098 
0.03704 
0.04687 

Regorafenib hsa04015: Rap1 signaling pathway 3.41E-14 

hsa04014: Ras signaling pathway 7.18E-14 

hsa04151: PI3K-Akt signaling pathway 3.36E-10 

hsa05230: Central carbon metabolism in cancer 4.38E-08 

hsa05215: Prostate cancer 2.21E-07 

hsa05200: Pathways in cancer 1.13E-06 

hsa05218: Melanoma 4.76E-06 

hsa05214: Glioma 1.65E-04 

hsa05221: Acute myeloid leukemia 0.00404 

hsa05205: Proteoglycans in cancer 0.00433 

hsa05220: Chronic myeloid leukemia 0.00660 

hsa04012: ErbB signaling pathway 0.00952 

hsa05206: MicroRNAs in cancer 0.01157 

hsa05231: Choline metabolism in cancer 0.01269 

hsa04722: Neurotrophin signaling pathway 0.01761 

 

 
Although the drug Eribulin mesylate has not 

overlapping functional pathways with the breast 
cancer at present, it can be enriched to “hsa04540: Gap 
junction”. In fact, protein connexin 43 (Cx43), a part of 
intercellular gap junctions, is frequently 
down-regulated in tumors [ 66 ]. Studies have 
demonstrated that gap junctions (GJs) composed of 
connexin (Cx) proteins have the potential to modulate 
drug chemosensitivity in multiple tumor cells [67].  

For drug Tenecteplase, we find one function 
enrichment pathway: “hsa04610: Complement and 
coagulation cascades”. In 2016, based on the 
microarray data of GSE3467 from Gene Expression 
Omnibus(GEO) database, Yu J et al. [68] identified the 
differentially expressed genes (DEGs) between 9 PTC 
samples and 9 normal controls. The purpose was 
predicted key genes and pathways in papillary 
thyroid carcinoma. Their results showed that the 
highly expressed genes in papillary thyroid 
carcinoma were mainly enriched on the “hsa04610: 
Complement and coagulation cascades” functional 
pathway. As for Pralatrexate, because it has only two 
targets: DHFR and TYMS, it has few related KEGG 
pathways. That is the main reason that Pralatrexate 
has no overlapping KEGG pathways with breast 
cancer at present. 

Overlapping genes between enriched KEGG 

pathways 

To further analyze our results, for Eribulin 
mesylate, Tenecteplase and Pralatrexate, we count the 
common genes between enriched pathways of each 
drug and those of breast cancer. The more common 
genes, the stronger relationship between the drug and 
disease. The results are shown in Figure 4A-C, 
respectively. The purple hexagon nodes represent the 
enriched pathways of a drug. The light green circular 
nodes represent breast cancer enriched pathways. The 
width of edges represents the number of common 
genes between two pathway sets. The wider the edge, 
the more the number of common genes. From Figure 
4, we can find the three drugs Eribulin mesylate, 
Tenecteplase and Pralatrexate all have strong 
connection with breast cancer, which further imply 
the three drugs are likely to be the potential 
treatments of breast cancer. 

Discussions and conclusions  
At present, “undruggable” proteins can be 

targeted via their miRNA gene regulators, enabling 
the treatment of diseases that seem impossible to cure. 
Human diseases result from the disordered interplay 
of tissue- and cell lineage–specific processes. 
Therefore, here we propose a new method miTS to 
predict new indications of drugs based on miRNA 
data and the tissue specificities of diseases. Taking 
breast cancer as case study, we predict five potential 
drugs and analyze them from five aspects: CTD 
benchmark, clinical records, literature curation, 
KEGG pathway functional enrichment analysis and 
overlapping genes between enriched KEGG 
pathways. We find five new drugs which are 
supported at least in three ways. In particular, 
Regorafenib (DB08896) has 15 overlapping KEGG 
pathways with breast cancer and their p-values are all 
very small. In addition, whether in the literature 
curation or clinical validation, Regorafenib has a 
strong correlation with breast cancer. All the evidence 
shows Regorafenib is likely to be a truly effective 
drug, worthy of our further study. The results have 
demonstrated the performance of our model and the 
feasibility of drug repositioning based on miRNA 
data and tissue specificity.  

Due to the incompleteness of data, there may be 
some biases in our method. With the continuous 
improvement of data, our method miTS will find 
more effective drugs for disease treatment. All in all, 
our research reveals a promising perspective to 
predict drug-disease relationships and seeks new 
opportunities for drug repositioning. 
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Figure 4. The common genes between enriched pathway sets of drugs and breast cancer. The purple hexagon nodes represent the enriched pathways of a drug. The 
light green circular nodes represent breast cancer enriched pathways. The width of edges represents the number of common genes between two pathway sets. The 
wider the edge, the more the number of common genes. A. The common genes between enriched pathway sets of Eribulin mesylate and breast cancer. B. The 

common genes between enriched pathway sets of Tenecteplase and breast cancer. C. The common genes between enriched pathway sets of Pralatrexate and breast 
cancer. 
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