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Abstract 

Circular RNAs (circRNAs) are a large group of endogenous non-coding RNAs which are key 
members of gene regulatory processes. Those circRNAs in human paly significant roles in health and 
diseases. Owing to the characteristics of their universality, specificity and stability, circRNAs are 
becoming an ideal class of biomarkers for disease diagnosis, treatment and prognosis. Identification 
of the relationships between circRNAs and diseases can help understand the complex disease 
mechanism. However, traditional experiments are costly and time-consuming, and little 
computational models have been developed to predict novel circRNA-disease associations. In this 
study, a heterogeneous network was constructed by employing the circRNA expression profiles, 
disease phenotype similarity and Gaussian interaction profile kernel similarity. Then, we developed 
a computational model of KATZ measures for human circRNA-disease association prediction 
(KATZHCDA). The leave-one-out cross validation (LOOCV) and 5-fold cross validation were 
implemented to investigate the effects of these four types of similarity measures. As a result, 
KATZHCDA model yields the AUCs of 0.8469 and 0.7936+/-0.0065 in LOOCV and 5-fold cross 
validation, respectively. Furthermore, we analyze the candidate association between 
hsa_circ_0006054 and colorectal cancer, and results showed that hsa_circ_0006054 may function 
as miRNA sponge in the carcinogenesis of colorectal cancer. Overall, it is anticipated that our 
proposed model could become an effective resource for clinical experimental guidance. 
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Introduction 
Circular RNAs (circRNAs) are a class of 

endogenous non-coding RNAs with a covalently 
closed continuous loop that lacks 5’-3’ polarity 
structure. The first circRNA was found in 1976 in an 
electron microscopy-based study of RNA viruses [1]. 
Nonetheless, due to the structural specificity, 
unknown function and low abundance of circRNAs, 
they were initially assumed to be artefacts or 
mis-splicing products and did not attract much 
attention [2]. In recent years, thanks to the 
development of high-throughput sequencing 
technology and other techniques [3], an increasing 
number of circRNAs have been identified in 
thousands of living organisms including archaea, 
plants and animals [4-7]. The biogenesis mechanisms 

of circRNAs mainly include intron pairing-driven 
[8-10], lariat-driven [11], and RNA-binding 
protein-driven circularization [12]. In addition, 
circRNAs can regulate gene expression at 
transcriptional or post-transcriptional levels by 
titrating microRNAs (miRNAs), regulating 
transcription and interfering with splicing [13, 14]. 
CircRNAs play a critical role in biological processes 
including transcription, mRNA splicing, RNA decay 
and translation [15]. Therefore, the misregulation of 
circRNAs may cause abnormal cellular functions and 
growth defects and are involved in diseases. 

Several circRNAs have been reported to be 
associated with human diseases, such as glioma 
tumorigenesis, osteosarcoma, colorectal cancer and so 
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on. Circ-FBXW7 is reduced in glioblastoma clinical 
samples compared with their paired tumor-adjacent 
tissues, and circ-FBXW7 expression is also positively 
associated with glioblastoma patients overall survival 
[16]. circPVT1 is significantly up-regulated in the 
osteosarcoma tissues, and circPVT1 may be a 
biomarker for the diagnosis of osteosarcoma [17]. 
hsa_circ_0081001 is reported correlated with poor 
prognosis, and its expression level may dynamically 
monitor the condition changes of osteosarcoma [18]. 
Has_circ_001569 is highly expressed in cell 
proliferation and invasion of colorectal cancer, 
compared with non-cancerous samples [19]. 
Has_circ_0054633 is found to be upregulated in the 
peripheral blood of patients with type 2 diabetes, and 
it could be used as a candidate biomarker for the 
diagnosis for pre-diabetes and type 2 diabetes [20]. 
Upregulation or downregulation of circRNAs in 
specific disease tissues compared with normal 
samples could indicate their diagnostic potential to be 
new biomarkers. However, disease-related circRNAs 
are generally detected by analyzing RNA-seq or 
microarray data, then low throughput biological 
experiments are used to validate the abnormal 
expression such as RT-PCR, northern blot and so on. 
Furthermore, these experiments are expensive and 
time-consuming. 

The CircR2Disease database is constructed, 
which collects experimentally validated 
circRNA-disease associations from published 
literatures [21]. Detecting the potential 
circRNA-disease associations is significant to 
understand the complex disease mechanism. To date, 
little efforts have made to develop the computational 
methods for circRNA-disease association prediction. 
Network-based models and machine learning 
methods have been widely applied to the prediction 
of bipartite biological associations. For example, 
KATZ measure is a network-based method to 
calculate the similarity between nodes in a 
heterogeneous network [22]. The KATZ measure has 
been successfully applied to social networks [23], and 
predict gene-disease associations [24], miRNA-disease 
associations [25, 26], lncRNA-disease associations [27] 
and microbe-disease associations [22]. Here, we 
propose a KATZ-based method for human 
circRNA-disease association prediction 
(KATZHCDA). In this study, the heterogeneous 
network is constructed by integrating known 
circRNA-disease associations, circRNA similarity 
network and disease similarity networks, where 
circRNA similarity is calculated from the circRNA 
expression and Gaussian interaction profiles (GIP) 
kernel while disease similarity is calculated from the 
disease phenotype and GIP kernel. By integrating the 

heterogeneous network and KATZ measure, the 
KATZHCDA model is developed to predict novel 
circRNA-disease associations. 

To evaluate the performance of KATZHCDA 
model, the leave-one-out cross validation (LOOCV) 
and 5-fold cross validation (5-fold CV) are 
implemented. In addition, the prediction performance 
of different kinds of similarity measures are 
investigated. As a result, the KATZHCDA model 
achieved the best performance with AUCs of 0.8469 
and 0.7936+/-0.0065 based on LOOCV and 5-fold 
cross validation, respectively. Finally, we analyze the 
candidate association between hsa_circ_0006054 and 
colorectal cancer, and results shown that 
hsa_circ_0006054 may be targeted by six miRNAs 
including hsa-miR-153, hsa-miR-194, hsa-miR-217, 
hsa-miR-431, hsa-miR-503, hsa-miR-646, and function 
as hsa-miR-217 sponge in the carcinogenesis of 
colorectal cancer. Overall, our framework is an 
effective resource for clinical experimental guidance. 

Materials and Methods 
Human circRNA-disease associations 

The known cricRNA-disease associations were 
derived from the CircR2Disease, which is a manually 
curated database for experimentally validated 
circRNA-disease associations. Here, we extract the 
circRNA-disease associations of human, in which the 
circRNAs own common circRNA ID with circBase 
and the diseases listed in the Online Mendelian 
Inheritance in Man (OMIM) [28, 29]. The gold 
standard dataset contains 312 distinct 
circRNA-disease associations involving 275 circRNAs 
and 36 diseases (Figure 1). The degree distributions of 
circRNAs and diseases in the bipartite of gold 
standard circRNA-disease association network are 
illustrated in Figure 2. The adjacency matrix A of gold 
standard circRNA-disease associations is constructed, 
and A(i,j) is equal to 1 when there is a known 
association between circRNA c(i) and disease d(j), 
otherwise 0. 

CircRNA expression profile similarity 
To calculate the similarity among circRNAs, we 

downloaded the expression profiles of circRNAs from 
exoRBase database (http://www.exorbase.org) [30]. 
After converting the circRNA ID of CircR2Disease 
into exoRBase, we obtained expression profile data for 
149 circRNAs. Each record of circRNA expression 
profiles has 90 dimensions representing the 
expression levels based on RNA-seq data spanning 
normal individuals and patients with various 
diseases. A quick overview of the expression levels of 
149 circRNAs in different kinds of samples is also 
shown (Figure 3). Based on the circRNA expression 
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profiles, the Pearson correlation coefficient was used 
for similarity measurement, and a pair of circRNAs 
with a higher correlation score is considered to be 
more similar. Given expression profiles of two 
circRNAs denoted by X=(x1,..., xn) and Y=(y1,…,yn), 
then the Pearson correlation coefficient can be 
calculated as follows: 

 (1) 
where xi and yi represent the expression values of two 
circRNAs in different human tissues or cell lines 
respectively, N denotes the number of components in 
the circRNA expression profiles. 

Disease phenotype similarity 
The disease phenotype similarity was 

downloaded from MimMiner [31], which measure 
disease similarity by computing similarity between 
Mesh terms appearing in the phenotype descriptions 
of diseases from OMIM database [32]. Here, let 
SD_DP represent the disease phenotype similarity 
matrix in gold standard dataset, in which each entry is 
the phenotype similarity score between diseases d(i) 
and d(j). 

GIP kernel similarity 
Based on assumption that similar circRNAs 

exhibit a similar interaction or non-interaction with 
the diseases and vice versa, the GIP kernel is used to 
measure the topology similarity for circRNAs and 
diseases as follows [33]: 

  (2) 

  (3) 
where c(i) denotes the binary vector encoding the 
presence or absence with each disease, i.e., the i-th 
row of the adjacency matrix A. nc denotes the number 
of circRNAs. Similarly, d(i) denotes the binary vector 
encoding the presence or absence with each circRNAs 
according to the i-th column of the adjacency matrix 
A. nd denotes the number of diseases. 

 

 
Figure 1. Bipartite graph of the circRNA-disease associations. The rectangles represent the diseases, and the circles represent the circRNAs. An edge corresponds 
to the gold standard circRNA-disease associations. 

1

2 2
1 1

( )( )
_ ( , )

( ) ( )

N
i i

i
N N

i i
i i

x x y y
SC EP X Y

x x y y
=

= =

− −
=

− −

∑
∑ ∑



Int. J. Biol. Sci. 2018, Vol. 14 
 

 
http://www.ijbs.com 

1953 

 
Figure 2. Pie graph of degree distribution for circRNAs or diseases. (A) Degree proportion of circRNAs. (B) Degree proportion of diseases. 

 

 
Figure 3. Heatmap of circRNAs in different samples. 

 

Integrated similarity for circRNAs and 
diseases 

The circRNA expression profile similarity and 
disease phenotype similarity cannot cover all the 
circRNAs and diseases in the gold standard dataset. 
Therefore, the GIP kernel similarity for circRNAs and 
diseases were integrated based on known 
circRNA-disease associations. Finally, the circRNA 
similarity matrix was calculated by integrating 
circRNA expression profile similarity (SC_EP) and 

GIP kernel similarity (SC_cGIP) for circRNAs as in 
Equation (4), and the disease similarity matrix was 
computed by integrating the disease phenotype 
similarity (SD_DP) and GIP kernel similarity 
(SD_dGIP) for diseases as in Equation (5). 

  (4) 

  (5) 

_ (1 ) _ [0,1]SC SC EP SC cGIPα α α= + − ∈

_ (1 ) _ [0,1]SD SD DP SD dGIPβ β β= + − ∈
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KATZHCDA 
KATZ measure is a graph-based method to 

calculate the similarity between nodes in a 
heterogeneous network [23]. The number of walks 
between nodes and walk length are considered to be 
two effective similarity metrics in the network. So, 
counting the number of walks of different lengths 
between circRNA node and disease node can be used 
to measure the circRNA-disease associations. Here, 
heterogeneous network is constructed by integrating 
the circRNA similarity network, disease similarity 
network and the known circRNA-disease associations 
(Figure 4). However, with the variation of parameters 
α and β, the heterogeneous network is also changed. 
Anyway, the adjacency matrix of the heterogeneous 
network could be denoted as follows: 

  (6) 

where SC represents the adjacency matrix of circRNA 
similarity network, SD represents the disease 
similarity network, A represents the adjacency matrix 
of known circRNA-disease associations. 

Based on the known circRNA-disease 
association adjacency matrix, the number of walks of 
length l between circRNA ci and disease dj can be 

calculated by computing Al(i,j). Furthermore, 
heterogeneous network A* can be used for the 
prediction of new circRNA-disease associations. To 
get a single measurement of each circRNA-disease 
pair, all walks of different lengths are integrated. 
Because different lengths of walks have different 
contribution, a nonnegative parameter γ is introduced 
to dampen the contribution of longer walks. 
Therefore, the potential associations between circRNA 
ci and disease dj could be calculated by: 

  (7) 

All walks of network can be shown as: 

  (8) 

where S represents the similarities of all the 
circRNA-disease pairs. However, it is not necessary to 
consider all the path lengths. Path of longer lengths in 
sparse circRNA-disease network may be insignificant 
or meaningless. Therefore, we set k to be 2, 3 and 4, 
and the final prediction scores for potential 
associations are calculated. 

 

 
Figure 4. The flowchart of the KATZHCDA model. 
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Experiments and Results 
Performance evaluation 

The LOOCV and 5-fold CV are implemented on 
the gold standard human circRNA-disease 
associations in CircR2Disease database to evaluate the 
performance of KATZHCDA model. In each round of 
LOOCV, a known circRNA-disease pair is removed in 
turn as test sample and the other known 
circRNA-disease pairs are used as training samples. 
Then, the receiver operating characteristic (ROC) 
curve is used to evaluate the prediction performance 
of KATZHCDA model, which plots the true positive 
rate (TPR, sensitivity) against false positive rate (FPR, 
1-specificity) over various score thresholds. Here, 
sensitivity (SEN) refers to the percentage of positive 
cases that are correctly identified, and specificity 
(SPE) means the percentage of negative cases that are 
correctly predicted. In this way, the area under the 
curve (AUC) is calculated from the corresponding 
area under ROC curve. In addition, in the framework 
of 5-fold CV, the gold standard human 
circRNA-disease associations are randomly divided 
into five equal size subjects. One of them is retained as 
testing samples while the remaining datasets are 
regarded as training samples in turns. This process 
randomly repeated 100 times, and the average AUC 
values and standard deviations were obtained. 

Effect of parameters 
There are four parameters in the KATZHCDA 

model, including the α and β, the number of walks k 
and nonnegative parameter γ. When α(β)=1, only 
circRNA expression profile similarity matrix (disease 
phenotype similarity) was considered. While when 
α(β)=0, only topology similarity of known 
circRNA-disease network was used. To evaluate the 
performances with different types of similarity 
matrices, various values were set for α and β. Here, 
when the values of α and β take 0, 0.1, …, 0.9, 1, the 
values of LOOCV AUC were calculated. In addition, 
based on the suggestion by Zou et al., γ is selected on 
the basis of γ < 1/||A||2 [26]. Therefore, γ is set as 
0.01 by following precious studies [22]. Furthermore, k 
is another parameter that have a very large influence 
on the prediction results for circRNA-disease 
associations. Because of the circRNA-disease network 
is very sparse, so too long walks may be meaningless. 
Here, we implement a series of comparison 
experiments to evaluate the performance of 
KATZHCDA by adjusting the parameter k. LOOCV 
was implemented when k was set as 2, 3, 4 (Figure 5). 
The highest LOOCV AUC values were 0.8469 (α=0.5, 
β=0.8), 0.8443 (α=0.6, β=0.7), and 0.8438 (α=0.6, β=0.7) 
when k was set from 2 to 4, respectively. As a result, 

we found the LOOCV AUC value of this model are 
highest when α, β and k was set as 0.5, 0.8 and 2, 
respectively. Because little gap between these highest 
LOOCV AUC values, 5-fold CV was also 
implemented (Table 1). Results showed that the 
average AUC values keep an increasing trend when k 
increased from 2 to 4. Based on the opposite trend of 
LOOCV and 5-fold, we infer it may be caused by the 
5-fold CV each round was removed too many 
effective edges of the heterogeneous network and the 
longer walks maybe make up this shortcoming. 
Therefore, we set α as 0.5 and β as 0.8 in the following 
analysis.  

 

 
Figure 5. Effect of parameter α and β when k was set as 2, 3 and 4. 
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Table 1. 5-fold CV experimental results of setting parameter k. 

5-fold CV (Average 
AUC) 

k = 2 k = 3 k = 4 

α=0.5, β=0.8 0.7616+/-0.0062 0.7764+/-0.0066 0.7833+/-0.0075 
α=0.6, β=0.7 0.7561+/-0.0067 0.7710+/-0.0070 0.7763+/-0.0065 

 

Comparison with different similarity measures 
In this study, different kinds of information were 

used to measure the similarity of circRNAs and 
diseases. These types of similarity measures conclude 
circRNA expression profile similarity, disease 
phenotype similarity, GIP kernel similarity. In order 
to evaluate the usefulness of these similarity 
measures, LOOCV and 5-fold were implemented to 
compare the experimental results (Table 2, Figure 6). 
From the LOOCV results, we obtained the highest 
AUC of 0.8469 by integrating the circRNA expression 
profile similarity, disease phenotype similarity, GIP 
kernel similarity for circRNAs and diseases. However, 
the highest average AUC of 0.7936 by integrating 
disease phenotype similarity and GIP kernel 
similarity for circRNAs in 5-fold CV. In both LOOCV 
and 5-fold CV, the experiment results showed that 
GIP kernel similarity for circRNAs and diseases are 
very effective for the prediction of circRNA-disease 
associations. 

Candidate circRNA for the specific disease 
To illustrate the application of KATZHCDA 

model for the disease-associated circRNA prediction, 
the miRNA-circRNA and miRNA-disease 
associations are introduced. It has reported that 
circRNAs can act as competing endogenous RNAs 
(ceRNAs) to sequester miRNAs and prevent their 
interactions with target mRNAs [13]. Here, we 
analyze hsa_circ_0006054 as a putative candidate for 
playing a role in colorectal cancer as shown in Figure 
7. Firstly, the potential miRNA targets on 
hsa_circ_0006054 are predicted with the TargetScan 
perl script, and strong experimentally validated 
miRNA targets are obtained from miRTarBase [34]. 
Then, the hsa_circ_0006054-miRNA-mRNA 
regulatory network is constructed. In addition, 
miRNA-related dysfunctions are widely associated 
with various diseases. Therefore, we download the 
experimentally verified miRNA-disease associations 
from HMDD [35], and mark the colorectal cancer 
related miRNAs in the hsa_circ_0006054-miRNA- 
mRNA network. The results showed that 
hsa_circ_0006054 may be targeted by six miRNAs 
including hsa-miR-153, hsa-miR-194, hsa-miR-217, 
hsa-miR-431, hsa-miR-503, hsa-miR-646, and function 
as hsa-miR-217 sponge in the carcinogenesis of 
colorectal cancer. 

 

 
Figure 6. Prediction performance of KATZHCDA model with different 
similarity measures in the framework of LOOCV. (A) Performance comparison 
among five similarity measures when k was set as 2. (B) Performance 
comparison among five similarity measures when k was set as 3. (C) 
Performance comparison among five similarity measures when k was set as 4. 
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Table 2. 5-fold CV experimental results with different similarity measures. 

Similarity measures 5-fold CV (k=2) 5-fold CV (k=3) 5-fold CV (k=4) 
Similarity measure1 (α=1, β=0) 0.3256+/-0.0092 0.3184+/-0.0111 0.3922+/-0.0110 
Similarity measure2 (α=1, β=1) 0.4258+/-0.0120 0.4106+/-0.0097 0.3914+/-0.0099 
Similarity measure3 (α=0, β=0) 0.7405+/-0.0077 0.7659+/-0.0079 0.7786+/-0.0070 
Similarity measure4 (α=0, β=1) 0.7647+/-0.0060 0.7799+/-0.0067 0.7936+/-0.0065 
Similarity measure5 (α=0.5, β=0.8) 0.7616+/-0.0062 0.7764+/-0.0066 0.7833+/-0.0075 

 

 
Figure 7. The hsa_circ_0006054-miRNA-mRNA network in colorectal cancer. 

 

Discussion and Conclusion 
Increasing evidences show circRNAs are closely 

correlated with different type of diseases such as 
atherosclerosis [36], Lung adenocarcinoma [37] and so 
on. Several investigations have been carried out to 
study the specifically dysregulated circRNA with 
diseases, which are regarded as biomarkers for 
disease diagnosis, therapeutic and prognosis. 
Upregulation and downregulation of circRNAs could 
be detected by high throughput RNA sequencing 
techniques in disease tissues compared with adjacent 
tissues. Based on these biological techniques, 
disease-related circRNA databases have laid a 
significant foundation for the research of circRNA 
functions. Of these databases, circR2Disease database 
manually collected the experimentally validated 
circRNA-disease associations [21]. However, little 
computational models have constructed for 
predicting potential circRNA-disease associations. 
Based on the assumption that circRNAs with similar 

functions tend to get involved in similar disease 
association patterns while similar diseases are more 
likely associated with the abnormal abundance of 
functional similar circRNAs. In this study, circRNA 
expression profiles, disease-phenotype similarity 
matrix, and known circRNA-disease associations 
were integrated to construct the heterogeneous 
network. Furthermore, because the heterogeneous 
network is very sparsity, GIP kernel similarities for 
circRNAs and diseases are also added to measure the 
similarities of circRNA-circRNA and disease-disease 
pairs. Then, KATZ model was used to measure the 
associations between circRNAs and diseases by 
integrating the walks with different lengths in the 
circRNA-disease heterogeneous network. The 
experimental results showed that KATZHCDA model 
could become an effective computation tool to predict 
the circRNA-disease associations. 

The good performance of KATZHCDA mainly 
attributes to the following aspects. Firstly, the 
application of KATZ model guaranteed the basic 
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effectiveness of our proposed method. The KATZ 
model employs the simple measure on the 
heterogeneous network, and succeed in predicting 
disease-related biological molecules. Secondly, 
reliable biological datasets are used to establish the 
circRNA similarity network and disease similarity 
network. Furthermore, KATZHCDA can predict the 
scores between circRNA and diseases simultaneously 
for all diseases. Hence, KATZHCDA is a useful 
biomedical resource for circRNA-disease association 
identification. 

Despite the effectiveness of KATZHCDA model, 
it should be noted that KATZHCDA still has some 
limitations. First, the model mainly depends on the 
known circRNA-disease associations, which may 
cause possible bias by imbalanced training samples. 
The parameters were also influenced by the sparsity 
of the associations. With the addition of more links 
between circRNAs and diseases, the model may 
obtain higher prediction scores. Moreover, other 
kinds of information of circRNAs or diseases could be 
integrated to improve the predictive performance, 
such as miRNA-based circRNA similarity, 
circRNA-protein similarity, disease semantic 
similarity and so on. In addition, KATZHCDA is not 
applicable to predict novel circRNA-disease 
associations that without any known associations. 
Therefore, integrating more data sources and 
appropriate algorithms would improve the predictive 
performance. 
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