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Abstract 

Background: As a major subtype of ovarian cancer, high grade FIGO stage IIIc serous ovarian 
carcinoma (HG3cSOC), has various prognosis due to genetic heterogeneity.  
Methods: The transcriptome of 401 primary FIGO IIIc serous ovarian samples was screened, seven 
genes based prognostic model was developed. The prognostic valueof risk score in four different 
cohorts (TCGA-cohort, Poland-cohort, Japan-cohort and USA-cohort) was validated. The 
relationship between risk score and other clinical indicators were analyzed. The guide value of risk 
score for platinum-taxol chemotherapy was also assayed. Tissue microenvironment difference 
among samples with different risk scores was investigated. 
Results: High-risk group (N=200, median survival months: 39.6, 95% CI: 35.9-46.3 months) had a 
significantly worse prognosis than low-risk group (N=201, median survival months: 52.6, 95% CI: 
45.2-64.9 months;). The risk score’s performance was validated in Japan-cohort (N=90, 
Poland-cohort (N=48) and USA-cohort (N=84). The risk score is independent from age, primary 
tumor size, grade and treatment methods and the performance of risk score is uniform in 
subgroups. Furthermore, the risk score predicted the response of HG3cSOC to platinum-based 
regimen after surgery, and this finding was further validated in newly collected China-cohort 
(N=102). Gene Set Enrichment Analysis (GSEA) and tumor infiltration analysis revealed that risk 
score reflected the immune infiltration and cell-cell interaction status, and the migration function of 
candidate genes were also verified.  
Conclusions: The optimized seven genes-based model is a valuable and robust model in predicting 
the survival of HG3cSOC, and served as a valuable marker for the response to platinum-based 
chemotherapy. 

Key words: High grade FIGO IIIc serous ovarian carcinoma, prognosis, model, transcriptome, chemotherapy, 
microenvironment. 

Background 
Ovarian cancer is one of the most lethal cancers 

in women, with 52,100 new case and 22,500 related 
deaths reported in China, 2015[1]. Among the 

subtypes of ovarian cancer, high grade serous 
carcinoma is the most prevalent, of which FIGO Stage 
IIIc is the majority. However, due to genetic 
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heterogeneity and lack of personalized treatment, the 
prognosis of FIGO stage IIIc patients varies even after 
optimal cytoreductive surgery and combined 
platinum-based chemotherapy [2].  

 During the past years, prognostic biomarkers 
were discovered in ovarian cancer. High expression of 
NQO1 was reported to be up-regulated in serous 
ovarian carcinoma and predicts a poor prognosis[3] 
using immunohistochemical staining. Similarly, 
MMSET expression is positively associated with 
aggressiveness and poor clinical outcome[4]. Elevated 
expression of 3-Phosphoinositide-dependent protein 
kinase-1 (PDK1) was also shown to be correlated with 
improved survival[5]. In addition, miRNAs associated 
with ovarian serous carcinoma were also identified[6]. 
Another report revealed AXL to be a therapeutic 
target of the aggressive OSE-derived SOC[7]. 
However, due to the heterogeneity of serous ovarian 
cancer[8, 9], single molecular biomarker is usually not 
robust in across datasets. On the other hand, models 
integrating multiple genes were highlighted in the 
past years to evaluate prognosis in many cancer 
types[10-14]. “Mammaprint” was developed with 70 
genes expression to predict the survival and guide the 
necessity of adjuvant therapy[15]. Another model, 
OncotypeDX, was also shown a good performance for 
predicting prognosis and adjuvant therapy choice in 
several cancers[16]. Nevertheless, multiple gene based 
prognostic model for high grade FIGO IIIc serous 
ovarian carcinoma (HG3cSOC) has not reported yet. 
In this work, we developed a new model to predict 
the clinical outcome of HG3cSOC, verified its role in 
prognosis and treatment choice, and investigated the 
potential mechanisms.  

Methods 
Sample enrollment 

 The FIGO IIIc ovarian serous carcinoma samples 
were obtained with approval of an independent 
ethical committee/institutional review board at 
FUSCC, Shanghai Cancer Center Ethical Committee 
(Shanghai, P.R. China), and written informed 
consents have been obtained from patients involved. 
Thee enrollment criteria listed as below: (i) The 
samples were high grade FIGO stage of IIIc primary 
serous ovarian carcinoma samples. (ii) The samples 
were diagnosed by at least two expertise pathologists. 
(iii) The tissues were preserved in RNA later since 
surgery. (iv) The proportion of tumor cells was no less 
than 80% in the tissue. (v) The median follow-up time 
is no less than 48 months. (vi) no previous adjuvant 
treatment or targeted drugs were used prior to 
surgery. (vii) All the patients started platinum-based 
chemotherapy in two months after surgery. The 

clinical characteristics of the samples were 
summarized in supplementary Table 1. For the 
publicly released datasets, the samples diagnosed as 
not high grade FIGO stage IIIc serous ovarian 
carcinoma after surgery were excluded from each 
dataset. Afterwards, samples without chemotherapy 
treatment or drug records were also excluded. 

Cell proliferation and migration assay 
Cell culture and siRNA transfection protocols 

were described in the supplementary material and 
methods. For migration assay, Transwell filter 
champers (Costar, Corning, NY) were used according 
to the manufacturers’ instructions. 4.0 x 104 cells of 
OVCA433 or 3.0 x 104 cells of SKOV3 were added in 
upper chamber in serum free DMEM medium and 
allowed to incubate at 37℃ for 36 hours (OVCA433) 
or 20 hours (SKOV3). Five random high magnification 
fields were counted for each group, and these 
experiments were repeated at least 3 independent 
times. The siRNA sequences were shown in 
supplementary Table 2. 

Cells in experimental and control cells (1 x 103 
cells/well) were seeded in 100 µL of growth medium 
in 96-well plates for cell proliferation assay. Cell 
proliferation was evaluated by measuring cell 
viability with the Cell Counting Kit 8 assay (Dojindo 
Laboratories, Kumamoto, Japan) according to 
manufacturer’s instructions. 

RT-PCR and Real-Time PCR 
Total RNA from different cell lines were isolated 

using Trizol reagent (Invitrogen, CA) following 
manufacturer’s instructions and total RNA from 
ovarian cancer samples were extracted using 
RNA/DNA Co-Extraction Kit. The purity and 
quantity of the total RNA were measured by a 
NanoDrop 2000 spectrophotometer (Thermo Fisher 
Scientific). When the A260/A280 ratio was between 
1.9 and 2.1, the extracted RNA was determined to be 
pure enough and was used in subsequent 
experiments. First-strand cDNA was synthesized 
from 1μg of total RNA using RT Master Mix (Applied 
Takara, Japan). Real-time PCR was performed 
according to the SYBR Green Kit (Applied Takara, 
Japan) in an ABI PRISM 7900 sequence detector 
(Applied Biosystems, Carlsbad, CA) with β-actin as 
the endogenous control. The relative mRNA levels 
were calculated based on the Ct values relative to the 
β-actin expression. The primers used in this study 
were shown in the supplementary Table 3. 

Data acquisition and preprocessing 
The raw microarray data was acquired from 

GEO (https://www.ncbi.nlm.nih.gov/geo) and 
arrayexpress (http://www.ebi.ac.uk/arrayexpress/) 
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according to the accession number provided 
(GSE32062 for Japan-cohort in GEO, GSE63885 for 
Poland-cohort in GEO, and E-MTAB-386 for 
USA-cohort in arrayexpress). Background correction, 
normalization and log 2 transformation were 
implemented with the manufacture provided R 
packages. The probes in each dataset were matched to 
gene names according to annotation file provided in 
the R packages. If a single gene matches several 
probes, probe with max mean intensity was retained. 
Gene expression data and clinical information of 
TCGA dataset was downloaded from UCSC Xena 
(http://xena.ucsc.edu/public-hubs/), and the data 
was transformed to log 2 RSEM values. Gene 
expression values were z-score transformed to 
eliminate the platform bias and batch effect. 

Gene selection and model development 
 Univariate Cox regression was implemented on 

both TCGA and GSE32062 dataset. Genes 
significantly associated with survival (p<0.05) in both 
datasets were retained. Random forest variable 
hunting was carried out (parameter:100 iterations, 100 
replications, 1000 trees per iteration/replication, and 
other default parameter[17]) to optimize the panel, 
and genes with the highest frequency were used for 
model development. Cox multivariate regression 
model was implemented using the selected genes. The 
risk score was calculated as the following formula: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  �𝛽𝛽𝑖𝑖

𝑛𝑛

𝑖𝑖

𝑥𝑥𝑖𝑖 

Where βi indicates the coefficient and xi refers to 
the relative expression value of corresponding gene. 

Statistical analysis 
 All analyses involved in this study were 

performed with R and R packages. Survival analysis, 
univariate Cox regression and multivariate regression 
was implemented with R package “survival”. The 
five-year survival nomogram using clinical 
information and risk score was plotted with R 
package “rms”. The three-year survival ROC and 
AUC was calculated with R package “pROC”[18]. 
Random forest variable hunting was carried out using 
R package “RandomforestSRC”[19, 20]. Gene Set 
Enrichment Analysis (GSEA)[21] was implemented 
using a java software 
(http://software.broadinstitute.org/gsea/index.jsp), 
and gene expression file and phenotype file 
(high/low-risk group) were prepared according to the 
guideline of GSEA. The parameters were set as: 1000 
permutations, at least 5 genes in a single pathway, 
and used KEGG pathway as reference. Immune cell 
proportion of TCGA primary ovarian serous 

carcinoma samples was analyzed with TIMER[22] 
using provided protocol with default parameters 
(http://liulab.dfci.harvard.edu/).  

Results 
Gene selection and model development 

 The workflow of this article is described in Fig. 
S1a. Correlation analysis was implemented on TCGA 
dataset (N=401) and GSE32062 (N=90) to evaluate the 
association between gene expression and overall 
survival using univariate Cox regression. Genes 
significantly (p<0.05) associated with overall survival 
in both datasets were reserved for further analysis, 
and 11 genes retained. Random forest variable 
hunting was implemented to optimize gene 
combination and narrow down the panel. Seven genes 
were selected to develop the model (supplementary 
Table 4, Figure S1b). The model performed better than 
the 1000 randomized combinations (supplementary 
Table 5). Using overall survival information and 
expression profile of these genes, a multivariate Cox 
proportional hazards model was developed, and the 
risk score was calculated as the following: Risks score 
= (-0.1074*CD3D) + (-0.2262*RAB36) + 
(-0.1740*GADD45G) + (-0.1017*CXCL13) + 
(-0.1197*TSPAN13) + (-0.1933*CXCL9) + 
(-0.0706*IL2RG), where gene name refers to the 
pre-processed relative expression value of 
corresponding gene (Fig. S1c).  

Prognostic value of risk score in TCGA cohort 
 The risk scores of patients enrolled TCGA 

datasets were calculated using the aforementioned 
formula. The patients were divided into high-risk and 
low-risk group using median risk score value as 
cutoff, and overall survival difference between these 
groups was compared (Fig. 1a). Overall, patients in 
high-risk group (N=200, median survival months: 
39.6, 95% CI: 35.9-46.3 months) had a significantly 
poor prognosis than that in low-risk group (N=201, 
median survival months: 52.6, 95% CI: 45.2-64.9 
months; p<0.0001). In addition, progression-free 
survival difference between high/low-risk group was 
also compared (Fig. 1b), and the result indicates that 
progression-free survival in low-risk group (median 
survival months: 20.1, 95% CI: 17.8-23.8 months) is 
also significantly better (p<0.001) than the high-risk 
group (median survival months: 14.7, 95% CI: 
12.5-17.2). The detailed survival information, risk 
score and gene expression profile were shown as Fig. 
1c, and high expression of oncogene and low 
expression of tumor suppressor gene was observed in 
high-risk score samples. The three-year survival 
receiving operating characteristic (ROC) curve using 
risk score and other clinical indicators was calculated 
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to evaluate prognostic value of the clinical 
information (Fig. 1d). The area under curve (AUC) of 
age, primary tumor size, grade, residual tumor size 
and risk score were 0.681, 0.530, 0.523, 0.631 and 0.715, 
respectively, indicating that risk score is an important 
indicator for survival.  

Prognostic value validation 
 Considering the model was developed based on 

the seven gene expression in TCGA dataset and that 
the good performance of risk score may result from 
the over-fitness, independent datasets were employed 
to validate the prognostic effect of risk score. After 
locking the coefficients for seven genes, the risk score 
of each patient in each dataset was evaluated, and 
median risk score value was used as cutoff to 
discriminate the high/low-risk group. The patients in 
high-risk group (median survival months: 50) of the 
Japan-cohort (N=90) had a poorer survival than those 
in low-risk group (median survival month: 74) 
(p=0.0072, Fig, 2a). Since the candidate gene selection 
is partly based on Japan-cohort, over-fitness may also 
exist. Another two totally independent datasets, 
Poland-cohort (N=48) and USA-cohort (N=84) were 
used for further validation. As expected, survival of 
patients in low-risk group was significantly better 
than the high-risk groups (Fig. 2b-c). The 
progression-free survival profile resembles the overall 
survival pattern. In addition, the gene expression 
profile in the low/high-risk group in all these datasets 

resembles that in the training dataset (TCGA). 
Collectively, these results indicate that the risk score 
model is robust in evaluating the survival of 
HG3cSOC. 

Relationship between clinical indicators and 
risk score 

 The relationship between clinicopathologic 
indicators and risk score was evaluated. The risk score 
is independent from age, grade, venous invasion, 
lymphatic invasion, primary treatment outcome and 
primary tumor size (Fig. 3a, p>0.05). Multivariate Cox 
regression considering risk score, primary tumor size, 
age and grade showed that risk score is an important 
clinical indicator for FIGO stage IIIc survival 
prediction (Fig. 3b), while grade and primary tumor 
size were not statistically significantly associated with 
survival. In order to facilitate the utilization of risk 
score and evaluate the importance of risk score, a 
nomogram using clinicopathological indicators 
including age, primary tumor size, residual size and 
risk score was plotted (Fig. 3c) to predict the five-year 
overall survival. According to the nomogram, risk 
score was an important indicator for predicting the 
survival of HG3cSOC. Also, correlation analysis 
between BRCA1/2 mutation and risk score revealed 
that they were independent indicators (Fig. S2). All 
these results above indicate that risk score is an 
important indicator for HG3cSOC. 

 

 
Figure 1. The performance of risk score in TCGA dataset. The overall survival (A) and progression-free survival (B) difference between low-risk and high-risk group. 
Detailed survival information, risk score and gene expression pattern in TCGA dataset (C), and three-year survival ROC using risk score and other clinical indicators 
(D). 
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Figure 2. The performance of risk score in validate dataset. The survival difference between high-risk and low-risk group in Japan-cohort (A), Poland-cohort (B), 
USA-cohort (C). The detailed risk score, survival time and expression pattern was shown in the bottom panel. 

 

 
Figure 3. Relationship between risk score and clinical indicators. The relationship between risk score and other clinical indicators were evaluated using student’s 
t-test (A), multivariate cox regression (B), and five-year survival nomogram (C). 
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Figure 4. The performance of risk score in sub-categories divided by treatment. The survival difference between high-risk and low-risk group was significantly 
different in almost all subcategories, including residual tumor size (A, left to right, Macro-invisible, 1-10mm, 10-20mm and >20mm) and the tested drugs Avastin (B, 
left: untreated; right: treated). 

Prognostic value of risk score in subgroups 
 Since the clinical outcome of FIGO IIIC serous 

ovarian carcinoma is influenced by multiple 
processes, including surgery (residual tumor size) and 
following adjuvant therapy (drugs used in 
chemotherapy), the prognostic value of risk score was 
evaluated in each subcategory according to the 
treatment methods. Firstly, we divided the samples in 
TCGA into four subcategories according to the 
residual tumor size, Macro-invisible, 1-10mm, 
10-20mm and >20mm. In consistent with previous 
results, high-risk samples had a significantly worse 

survival in macro-invisible, 1-10mm and >20mm 
subcategories (Fig. 4a), while not in 10-20mm 
subgroup due to the small sample size (N=32). 

 Chemotherapy is the most common method for 
FIGO stage IIIc ovarian serous carcinoma, and the 
drugs includes carboplatin, paclitaxel, cisplatin and 
doxil, etc. Next, in order to measure the prognostic 
effect of risk score in predicting the patients 
underwent chemotherapy with these drugs, the 
samples were divided into pharmacy-taken group 
and pharmacy-depleted group according to the 
cacography provided in TCGA dataset. In each 
sub-group, samples were further divided into 



Int. J. Biol. Sci. 2018, Vol. 14 
 

 
http://www.ijbs.com 

2018 

high-risk and low-risk group according to the median 
risk score value, as usual. As shown in Fig. S3, the 
prognostic effect of risk score is valuable in most 
subgroups, except for patients without carboplatin 
therapy (p=0.089), which may due to the limited 
sample size, in contrast to the other subgroups. 

 In addition to the classical chemotherapy drugs, 
as a targeted drug, Avastin (also known as 
bevacizumab) was widely used in in serous FIGO IIIC 
ovarian cancer. The risk score performance was also 
evaluated in the samples underwent Avastin 
treatment or not. As expected, both subgroups 
exhibited a similar pattern, and high-risk score group 
had a significantly worse survival (Fig. 4b). 
Collectively, all these results above indicate that 
prognostic effect of the risk score is robust and 
independent of drugs used in chemotherapy and 
targeted drugs. 

Risk score predicted the platinum sensitivity of 
HG3cSOC 

 Clinically, platinum-based chemotherapy is the 
first-line therapy method for HG3cSOC. However, 
drug resistance was observed in a proportion of 
patients, which affect the survival. Thus, we next seek 
to assay whether the risk score could predict the 
response to taxol-platinum chemotherapy. Samples 
received platinum-based chemotherapy in two 

months after surgery was enrolled in TCGA cohort, 
and these samples were further divided into 
platinum-sensitive and platinum-resistant subgroups 
according to the progression-free survival time from 
the last therapy time of first chemotherapy round 
(cPFS) to the progression time period (patients with 
cPFS>6 month were defined as platinum-sensitive 
group, while patients with cPFS<6 month were 
defined as platinum-resistant group), the 
platinum-sensitive group had a significantly lower 
risk score value that the platinum-resistant group 
(Fig. 5a), and the overall and progression-free survival 
time of low-risk is significantly better, compared to 
the high-risk group (Fig. 5b-c). To validate this 
discovery, a new cohort (China-cohort) was collected. 
In consistent with previous result, the patients in the 
platinum-resistant group have high risk score values 
than these in platinum-sensitive group (Fig. 5d) In 
addition, the overall survival and progression-free 
survival of high-risk is significantly worse than the 
low-risk group (Fig. 5e-f). In addition, the risk score 
also could predict the progression-free survival of 
patients in both platinum-sensitive and non-sensitive 
group (Fig. S4a-b). Collectively, these results indicate 
that the risk score is a valuable indicator to predict the 
HG3cSOC patients’ response to the platinum-based 
chemotherapy. 

 

 
Figure 5. Risk score predicted the platinum-based chemotherapy response of HG3cSOC. The risk score difference between high/low risk groups in TCGA (A) 
group. Overall survival (B) and progression-free survival (C) of taxol-platinum treated samples in low/high-risk groups were compared. The corresponding profile was 
similar in China-cohort (D-F). 
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Figure 6. KEGG pathways associated with risk score. The significantly associated KEGG pathways were shown between low-risk and high-risk groups using GSEA. 
The enrichment score and log 10 transformed p values (A), and cell adhesion molecules cams (B), FC gamma mediated phagocytosis (C), natural killer cell mediated 
cytotoxicity (D) were noticed. Correlation analyses indicated that the risk score was significantly associated immune cell infiltration (D). 

 

Risk score reflected the microenvironment 
and cell motility status 

 Gene Set Enrichment Analysis was carried out to 
compare the transcriptomic difference between 
high-risk and low-risk groups by identifying the 
significantly enriched signaling pathways in TCGA 

cohort. As expected, immune pathways were 
significantly enriched (Fig. 6a), including cell 
adhesion molecules CAM pathway (Fig. 6b), gamma 
mediated phagocytosis (Fig. 6c), nature killer cell 
mediated cytotoxicity (Fig. 6d), suggesting that the 
risk score also reflected the status of cell-cell adhesion 
and migration. 
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 In addition, it was noticed that immune cell 
infiltration was significantly enriched, in combination 
with the fact that these seven candidate genes 
includes three immune cell biomarkers (CD3D, 
CXCL13 and IL2RG)[23, 24], we suspected the risk 
score may have reflected the immune cell infiltration. 
To further investigate the correlation between risk 
score and immune cell types, the proportion of 
immune cells (B cell, CD4+ T cell, CD8+ T cell, 
neutrophil, macrophage and Dendritic cells) of 
primary tumor samples in the TCGA cohort was 
analyzed using the TIMER[22], a software calculating 
the proportion of cell types. The correlation between 
risk score and immune cell infiltration was 
determined. As expected, the proportion of all these 
six cells types was significantly and negatively 
correlated with risk score (Fig. 6e). Taken together, 
these results indicate that the risk score reflected the 
microenvironment of serous ovarian carcinoma, 
especially immune cell infiltration. 

 Since the risk score was calculated based on the 
expression of candidate genes, the effectiveness of the 
model relies on the function of these genes. Therefore, 
the functional assays of the other four genes, RAB36, 
GADD45G, TSPAN13 and CXCL9 were implemented. 
Migration nd proliferation assays were carried out 
following knock down of these genes using siRNAs 
using two cell lines (Fig. S5), OVCA433 and SKOV3, 
which were serous ovarian carcinoma cell lines. As 
expected, the migration ability of was significantly 
increased after knock down of any of these four genes 
compared to the control group (Fig.7A-B), which is 
consistent with our previous result that the 
coefficients of these four genes were all negative. 
However, the proliferation rate was not significantly 
altered following RNAi of these genes (Not shown). 
Collectively, these results indicate that the genes 
selected in the model is functional active for migration 
instead of proliferation, and thus predicts survival in 
serous ovarian carcinoma. 

 

 
Figure 7. Functional assay of the candidate genes. After knocking down of these genes, The migration ability of serous ovarian carcinoma cells was up-regulated. A 
showed the image and B is the statistical data. 
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Discussion 
 The various prognoses of high grade FIGO stage 

IIIc serous ovarian carcinoma (HG3cSOC) are due to 
many factors, including tissue-of-origin, satisfactory 
debulking surgery [25] (for example: R0/R1/R2 
surgery), adjuvant therapy method (chemotherapy or 
other treatment methods), and biological 
heterogeneity of cancer. For example, Dapeng et al., 
discovered that different tissue-of-origin had different 
impact on survival and therapeutic effect[7]. Surgery 
type and therapy method are controllable during 
therapy, while biological heterogeneity is not. The 
transcriptome reflected the heterogeneity of ovarian 
cancer[26, 27], thus it was used to develop a 
prognostic model. Our risk score model is 
significantly associated with immune signaling 
pathways, suggesting that the risk score reflected the 
immune infiltration status, and thus associated with 
survival of HG3cSOC across datasets, which is 
consistent with previous results[28-30]. In addition, 
the risk score effectively forecasted the clinical 
outcome of patients treated with platinum-based 
chemotherapy. 

 We used collected tumor tissues to verify the 
predictive value of the risk score and found that it can 
predict the prognosis and chemotherapy sensitivity of 
platinum drugs. Then we used GSEA enrichment 
analysis to look for possible signaling pathways for 
candidate genes to play a role, and found that 
candidate genes are associated with immune 
infiltration and cell adhesion. Therefore, we 
performed a cell migration assay and found that the 
ability to metastasize cells was significantly increased 
after knocking down the four candidate genes. This 
explained that the risk score predicting prognosis may 
be due to invasion and metastasis of candidate genes. 
Our next step is to further study the molecular 
mechanisms behind risk scores, as immunological 
invasion has not been discussed in depth. 

 Although single biomarker for prognosis has 
been widely reported, the robustness is a major 
concern. For example, none of the genes tested was 
significantly associated with survival in over three 
datasets involved this study. Among the genes used 
in the model, CD3D was reported highly associated 
with APOBEC3H across cancers, which correlates 
with T cell infiltration and predicts a good survival in 
high grade serous ovarian carcinoma[23], which is 
consistent with the GSEA results. Despite that the 
prognostic effect and molecular mechanism of RAB36 
was still unknown, the gene is a member of RAS 
superfamily, which has been reported as a prognostic 
gene in serous ovarian carcinoma[31]. The role of 
GADD45G was not reported in ovarian cancer yet, 

while aberrant expression and methylation of 
GADD45G was associated with poor prognosis in 
various cancer types[32-34]. CXCL13 and CXCL9 was 
shown to predict a better survival in ovarian cancer 
and associated with immune evasion[35, 36], while 
TSPAN13 was investigated as a prognostic gene in 
prostate cancer[37]. Our results also indicated that 
knocking down of RAB36, GADD45G, TSPAN13 and 
CXCL9 significantly enhanced the migration ability, 
suggesting that these genes, especially RAB36, may be 
served as potential therapy targets. 

 Although it is noticed that similar work in this 
area has not been reported yet, high grade serous 
ovarian carcinoma classifications based on multiple 
omics data were reported[38, 39], survival difference 
between subgroups was observed. Nevertheless, the 
drawbacks of these studies are obvious. Multiple 
-omics data-based study comprehensively integrated 
the genetic information of samples, but the clinical 
utilization is still a huge challenge. Another defect of 
these studies is lack of validation from independent 
cohorts. Our study used only transcription abundance 
of seven genes, and the results was validated in 
cohorts from four different countries. More 
importantly, the platform for abundance estimation 
were RNA-seq, microarray and Q-RTPCR, indicating 
that it is independent from platforms. 

 Limits of this study exist. Firstly, it is a 
retrospective study, for some of the cohorts used, 
important clinical indicators including surgery type, 
time to recurrence and metastasis is not available due 
to the loss of patients and even if there are strict 
standards, information bias is likely to appear. 
Secondly, the cutoff in each dataset was different 
(using median risk score in each dataset as cutoff). But 
the absolute value of the risk score is approximately 
equal (from 0 to -0.1). Another flaw of this study is 
that the sample size is limited in evaluating the guide 
value of the risk score for platinum-based therapy 
(sample sizes were 119 and 102 in TCGA and 
China-cohort, respectively) due to the unrecorded 
therapy regiment in Poland and Japan-cohort. Further 
multi-centered validation is still needed before this 
model is clinically used. The third limitation of this 
study is that data of different cohorts generates 
different model. Thus, the current model is probably 
not the best one. Our approach is using the largest 
cohorts for gene selection and model development, to 
reduce the effect as more as possible. 

Altogether, the optimized seven genes-based 
model is a valuable and robust model in predicting 
the survival of HG3cSOC, and served as a valuable 
marker for the response to platinum-based 
chemotherapy. 
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