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Abstract 

Metformin is a widely used antidiabetic drug for type 2 diabetes that can play a cardioprotective role 
through multiple pathways. It is a recognized agonist of AMP-activated protein kinase (AMPK) that 
blocks mitochondrial complex I. The NLRP3 inflammasome has been demonstrated to be activated 
in diabetic cardiomyopathy (DCM). However, the role of metformin in regulating the NLRP3 
signaling pathway in DCM remains unclear. It has been reported that AMPK can inhibit NLRP3 by 
activating autophagy. The aim of this study was to investigate whether metformin can inhibit the 
NLRP3 inflammasome by activating the AMPK/mTOR pathway in DCM. In this study, 
streptozotocin-induced C57BL/6 mice and high glucose-treated primary cardiomyocytes from 
neonatal mice were treated with metformin or an AMPK inhibitor compound C. Echocardiography, 
hematoxylin-eosin and Masson staining showed that the function and morphology of the diabetic 
hearts were improved after metformin treatment, whereas these parameters deteriorated after 
intervention with an AMPK inhibitor. Immunohistochemical staining, immunofluorescence staining 
and western blot assays indicated that the expression levels of mTOR, NLRP3, caspase-1, IL-1β and 
GSDMD-N were decreased in the diabetic model treated with metformin and were reversed after 
the administration of an AMPK inhibitor in vivo and in vitro. Mechanistically, our results demonstrated 
that metformin can activate AMPK, thus improving autophagy via inhibiting the mTOR pathway and 
alleviating pyroptosis in DCM. Thus, we provide novel information for the treatment of DCM. 
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Introduction 
Diabetes can cause a variety of complications, 

including diabetic cardiomyopathy (DCM), which is 
closely related to the increased morbidity of heart 
failure and arrhythmia [1]. Mitochondrial dysfunc-
tion, metabolic abnormalities, autophagy, inflamma-
tion and cell death have been indicated to be involved 
in cardiac hypertrophy and myocardial fibrosis, thus 

enhancing the risk of heart failure in DCM [2]. 
Although various medications are used to control 
hyperglycemia and restore cardiac function, the 
morbidity and mortality rates of DCM continue to 
increase. Thus, the mechanisms and treatment of 
DCM still need to be further elucidated. 

Metformin, which can promote the uptake and 
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utilization of glucose in liver, muscle and adipose 
tissue, is the most widely used drug for treating type 2 
diabetes [3]. Recent studies have shown that metfor-
min possesses anti-tumor, anti-aging and cardiopro-
tective effects in addition to its hypoglycemic effect 
[4-6]. Some important molecular biological 
mechanisms of metformin are its downregulation of 
mitochondrial respiratory chain complex I and its 
upregulation of phosphorylation of AMP-activated 
protein kinase (AMPK) [7]. AMPK is regarded as a 
sensor of cellular energy and modulates many cellular 
statuses [8]. Studies have shown that metformin can 
protect the heart through inhibiting inflammation, 
autophagy, apoptosis and other pathways via AMPK 
[9, 10]. However, studies of the molecular 
mechanisms underlying the cardioprotective function 
of metformin remain insufficient.  

The nucleotide-binding domain, leucine-rich- 
containing family, pyrin domain-containing-3 
(NLRP3) inflammasome is a multiprotein complex 
consisting of NLRP3, apoptosis-associated speck-like 
protein containing a caspase-1 recruitment domain 
(ASC) and caspase-1 [11]. Previous studies have 
indicated that hyperglycemia activates NLRP3, which 
promotes the autocatalytic activation of pro-caspase-1 
to cleaved caspase-1. Then, cleaved caspase-1 
facilitates the maturation of pro-IL-1β [12]. This 
process causes inflammation-related programmed cell 
death, which can progress to DCM. The downregul-
ation of the NLRP3 inflammasome restores cardiac 
function in DCM models [13, 14]. Notably, AMPK 
activation attenuates NLRP3 inflammasome 
upregulation in some pathological processes, such as 
diabetes, pain, ischemic stroke and endoplasmic 
reticulum stress [15-17]. Furthermore, previous 
studies indicated that autophagy could downregulate 
the NLRP3 inflammasome via the mTOR signaling 
pathway [18]. Therefore, we investigated whether 
metformin is involved in regulation of NLRP3 
inflammasome via the AMPK/mTOR pathway in 
DCM. 

In the present study, we investigated the effects 
of metformin on the NLRP3 pathway in high 
glucose-treated cardiomyocytes and diabetic mice and 
further explored the underlying mechanisms of 
metformin involved in the AMPK/mTOR signaling 
pathway. Our results provide novel insight into the 
mechanism of metformin in the regulation of DCM. 

Materials and Methods 
Mouse model establishment 

Male mice (C57BL/6, 8 weeks old) were bred at 
the Second Affiliated Hospital of Harbin Medical 
University. All mice were housed in standard 

conditions (temperature 22±1 °C; 12 h light and dark 
cycles) and fed conventional diets. The mice were 
divided randomly into four groups (n=5). The control 
group was administered normal saline intragastrically 
daily. The diabetes mellitus (DM) group received 
intraperitoneal injections of 50 mg/kg freshly 
prepared streptozotocin (STZ, Sigma) dissolved in 
citrate buffer (10 mM, pH=4.5) daily for five days. One 
week after the injections, tail vein blood glucose 
values≥16.7 mmol/L measured by glucometer 
(Accu-Chek, Roche Diagnostics) proved successful 
model establishment. Some mice with DM were 
administered metformin (Sigma, 200 mg/kg/day) [9] 
with or without intraperitoneal injection of the AMPK 
inhibitor compound C (Selleckchem Chemicals, 
Houston, TX, USA, 20 mg/kg/day) for eight weeks as 
previously described [16]. Then, the mice were used 
for the following experiments. The experiments were 
approved by the Ethics Committee of Harbin Medical 
University. The use of animals in the experiments was 
in accordance with the Interdisciplinary Principles 
and Guidelines for the Use of Animals in Research, 
Testing, and Education by the New York Academy of 
Sciences, Ad Hoc Animal Research Committee. 

Cell culture and transfection 
Primary cardiomyocytes were isolated from 1- to 

3-day-old neonatal C57BL/6 mice according to 
previous methods [19]. Dulbecco's modified Eagle's 
medium (DMEM) with 10% fetal bovine serum (FBS) 
and 1% penicillin/streptomycin (Hyclone, Logan, 
USA) were used to culture the cardiomyocytes, which 
were divided into four groups and treated with low 
glucose (5.5 mM glucose, control) or high glucose (30 
mM glucose, HG) with or without metformin (2 mM, 
HG+Met) or the AMPK inhibitor compound C (10 
μM, HG+Met+compound C) for 24 h according to a 
previous study [20]. The control group was also 
treated with a corresponding amount of mannitol for 
osmolarity. All cells were incubated at 37 °C with 5% 
CO2.  

Echocardiography 
Mice were anesthetized via intraperitoneal 

injection of avertin for echocardiography. Ejection 
fraction (EF) and fractional shortening (FS) of the left 
ventricle were derived by two-dimensional M-mode 
echocardiography with a Vevo1100 high-resolution 
imaging system (VisualSonics, Toronto, ON, Canada). 

Hematoxylin and eosin (HE) and Masson’s 
trichrome staining 

Left ventricle samples were fixed in 4% 
paraformaldehyde at room temperature, embedded in 
paraffin and cut into 5-μm-thick sections. Subseque-
ntly, the sections were separately stained with HE and 
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Masson’s trichrome [21]. Finally, the morphological 
changes and collagen content of the cardiac tissues 
were observed by fluorescence microscopy (Nikon 
80i, Otawara, Tochigi, Japan). 

Immunohistochemical analyses 
Left ventricle samples were also stained with 

primary antibodies against caspase-1 (Cell Signaling 
Technology, MA, USA, 1:200), NLRP3 (Boster 
Biological Technology, Wuhan, China, 1:200) and 
IL-1β (R&D Systems, Minneapolis, MN, 1:200) at 4 °C 
overnight, followed by secondary antibodies. Next, 
the sections were stained with diaminobenzidine. 
Finally, a fluorescence microscope (Nikon 80i) was 
used to obtain images of the tissues. 

Immunofluorescence staining 
Primary cardiomyocytes were treated with 4% 

buffered paraformaldehyde for 20 min and then 
blocked with 1% BSA and 0.1% Triton-X for 2 h at 
room temperature. Next, the cells were treated with a 
primary antibody against the N terminal of 
gasdermin D (GSDMD-N) (Bioss, Beijing, China, 
1:200) at 4 °C overnight, followed by treatment with a 
secondary antibody for 1 h at room temperature [22]. 
The nuclei were stained with DAPI (Beyotime, 
Shanghai, China), and the results were captured using 
a fluorescence microscope. 

 Protein extraction and western blot analyses 
Briefly, total protein was extracted, and the 

samples were separated via 10% SDS-PAGE and then 
transferred onto nitrocellulose membranes. Subse-
quently, the membranes were blocked with 5% nonfat 

milk dissolved in PBS for 2 h at room temperature. 
Next, the membranes were probed with primary 
antibodies against collagen I (Abcam, Cambridge, UK, 
1:800), collagen III (Abcam, 1:800), NLRP3 (1:800), 
caspase-1 (1:1000), IL-1β (1:1000), GSDMD-N (1:1000), 
p-AMPK (Cell Signaling Technology, 1:800), AMPK 
(Cell Signaling Technology, 1:800), LC3 (Cell 
Signaling Technology, 1:1000), mTOR (Cell Signaling 
Technology, 1:1000) and GAPDH (ZSGB-BIO, Beijing, 
China, 1:1000) at 4°C overnight. The membranes were 
then washed with PBST three times and incubated 
with the corresponding secondary antibodies for 1 h 
at room temperature. GAPDH was used as an internal 
control. The western blot bands were imaged and 
quantified using the GelDox XR System (Bio-Rad, CA, 
USA) and Quantity One software. 

Mitochondrial complex I activity assay 
Mitochondrial complex I activity was detected 

using a Complex I Activity Assay kit (MitoSciences, 
Eugene, OR) according to the manufacturer’s 
instructions. Cell proteins were extracted and loaded 
on 96-well plates and incubated with a mitochondrial 
complex I antibody for 3 h at room temperature. A 
Nano Drop spectrophotometer was used to measure 
the optical density (OD 450 nm). 

Data analyses 
The values in this study were analyzed with 

GraphPad Prism 6 and are shown as the mean ± SD. 
Unpaired Student’s t-tests were used for comparisons 
between two groups. Differences among different 
groups were analyzed using one-way ANOVA. 

P<0.05 was considered statis-
tically significant. 

Results 
Metformin restores the 
function and morphology 
of cardiac tissue in 
diabetic mice 

We established a STZ- 
induced diabetic model with 
C57BL/6 mice. Echocardiogr-
aphy indicated that the 
function of the left ventricle 
deteriorated in the DM group, 
as shown by the EF and FS 
values. Metformin significan-
tly improved cardiac function 
in diabetic mice (Fig. 1A-C). 
HE and Masson’s trichrome 
staining indicated myocardial 
hypertrophy and collagen 
deposition in the DM group, 

 

 
Figure 1. Cardiac function and morphology in diabetic mice treated with or without metformin. (A) 
M-mode echocardiograms of the left ventricles are shown. EF (B) and FS values (C) are shown. (D) The results of HE 
and Masson’s trichrome staining are shown. Scale bar, 60 μm. (E and F) Western blot analysis of collagen I and 
collagen III expression in the different groups. *P<0.05 compared to the control group, #P<0.05 compared to the 
DM group. n=5. 
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which were improved after metformin treatment (Fig. 
1D). The protein expression levels of collagen I and 
collagen III were significantly increased in the DM 
group, and these changes were alleviated after 
treatment with metformin (Fig. 1E and F).  

NLRP3 pathway changes are ameliorated by 
metformin in diabetic hearts 

Immunohistochemistry and western blot 
analyses indicated that NLRP3, caspase-1 and IL-1β 
were significantly overexpressed in the cardiac tissues 
of diabetic mice and were decreased after the 
administration of metformin (Fig. 2A-D). These data 
demonstrated that metformin could exert a cardiac 
protective effect and inhibit the NLRP3 pathway in 
diabetic hearts. 

The effects of metformin on the NLRP3 
pathway in high glucose-treated 
cardiomyocytes 

To confirm the effects of metformin on the 
NLRP3 pathway in vitro, primary cardiomyocytes 
from C57BL/6 mice were cultured in 5.5 mmol/L 
(control) and 30 mmol/L glucose (high glucose, HG) 
and treated with or without metformin for 24 h. 
Western blotting was conducted to detect the protein 
expression levels of NLRP3, caspase-1 and IL-1β. The 

results showed that high glucose remarkably 
enhanced the expression levels of NLRP3, caspase-1 
and IL-1β in cardiomyocytes. After metformin 
treatment, these increases were alleviated signifi-
cantly (Fig. 3A-C). We also detected the expression 
level of GSDMD-N, a key enzyme in the process of 
pyroptosis, using immunofluorescence staining and 
western blotting. Metformin inhibited the expression 
of GSDMD-N (Fig. 3D and E). These results were 
consistent with the animal experiments described 
above. 

Metformin activates mitochondrial complex 
I/p-AMPK expression 

A previous study proposed that mitochondrial 
complex I is a the direct target of metformin, and thus 
regulates the phosphorylation of AMPK [23]. In our 
study, the activity of mitochondrial complex I was 
increased in HG-treated cardiomyocytes, whereas it 
was significantly downregulated after metformin 
treatment (Fig. 4A). In addition, p-AMPK was 
reduced dramatically in high glucose-treated 
cardiomyocytes, whereas it was improved after 
metformin treatment (Fig. 4B). Moreover, a similar 
effect was observed in the cardiac tissues of diabetic 
mice (Fig. 4C). 

 

 
Figure 2. NLRP3, caspase-1 and IL-1β expression levels in vivo. (A) Immunohistochemistry analysis was performed to detect the expression of NLRP3, 
caspase-1 and IL-1β. Scale bar, 60 μm. The results were quantified and statistically analyzed. Western blotting analyses were conducted to detect the expression levels 
of NLRP3 (B), caspase-1 (C) and IL-1β (D). *P<0.05 compared to the control group, #P<0.05 compared to the DM group. n=5. 
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Figure 3. NLRP3, caspase-1, IL-1β and GSDMD-N expression levels in vitro. Primary cardiomyocytes were treated with 5.5 mmol/L (control) and 30 
mmol/L glucose (HG). The cardiomyocytes in the HG group were treated with or without 2 mM metformin. Western blotting was used to detect the expression 
levels of NLRP3 (A), caspase-1 (B) and IL-1β (C). The expression levels of GSDMD-N were detected by an immunofluorescence assay (D) and western blotting (E). 
Scale bar, 100 μm. *P<0.05 compared with the control group, #P<0.05 compared to the HG group. n=3. 

 
An AMPK inhibitor blocked the suppressive 
effect of metformin on the NLRP3 pathway via 
regulating autophagy in vitro 

Next, to gain insight into the relationships 
among metformin, AMPK and the NLRP3 pathway, 
the AMPK inhibitor compound C (10 μM) was 
administered with metformin to high glucose-treated 

cardiomyocytes (HG+Met+compound C). Figure 5A 
shows that compound C effectively inhibited 
p-AMPK expression. Upon combination with the 
AMPK inhibitor, the protective effect of metformin on 
the NLRP3 pathway was abrogated, as shown by the 
increased expression levels of NLRP3, caspase-1, 
IL-1β and GSDMD-N (Fig. 5B-F). 

 Furthermore, previous studies revealed that 
autophagy could be activated by AMPK and 
that the NLRP3 inflammasome was negatively 
regulated by autophagy [18]. Thus, the protein 
expression levels of LC3 and mTOR were 
measured. The results demonstrated that the 
levels of LC3 II were significantly reduced in 
HG-treated cardiomyocytes and were impro-
ved after metformin treatment. However, this 
amelioration was abolished after treatment 
with compound C (Fig. 5G). The expression 
levels of mTOR were increased in the HG 
group, and metformin suppressed the 
expression of mTOR. Nevertheless, compound 
C increased the expression level of mTOR (Fig. 
5H). These results confirmed that metformin 
activated p-AMPK and autophagy, thus 
inhibiting the NLRP3 inflammasome. 

 

 
Figure 4. Metformin activates mitochondrial complex I/p-AMPK expression. (A) 
The activity of mitochondrial complex I was detected in cardiomyocytes. (B) The protein 
expression levels of p-AMPK and AMPK in cardiomyocytes were detected by western 
blotting. GAPDH was used as internal control. n=3. (C) The expression levels of p-AMPK 
and AMPK in mice were detected. n=5. *P<0.05 compared to the control group. #P<0.05 
compared to the HG or the DM group. 
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Figure 5. An AMPK inhibitor blocked the suppressive effect of metformin on the NLRP3 pathway in cardiomyocytes. In HG-induced 
cardiomyocytes treated with 2 mM metformin or 2 mM metformin and 10 μM compound C, the expression levels of p-AMPK and AMPK (A), NLRP3 (B), caspase-1 
(C) and IL-1β (D) were detected by western blotting. The expression levels of GSDMD-N were determined by western blotting (E) and immunofluorescence staining 
(F). Scale bar, 100 μm. LC3 (G) and mTOR (H) were detected by western blotting. *P<0.05 compared to the control group, #P<0.05 compared to the HG group. 
&P<0.05 compared to the HG+Met group. n=3. 

 

 
Figure 6. An AMPK inhibitor blocked the protective effect of metformin on cardiac function. (A) M-mode echocardiograms of the left ventricles are 
shown. (B) EF and FS values are shown. (C) HE and Masson’s trichrome staining are shown. Scale bar, 60 μm. (D and E) Western blot analysis of collagen I and collagen 
III expression in the different groups. *P<0.05 compared to the control group, #P<0.05 compared to the DM group, &P<0.05 compared to the DM+Met group. n=5. 

  
Metformin inhibits the NLRP3 pathway via 
AMPK/mTOR-dependent effects in diabetic 
mice 

Echocardiography indicated that the effects of 
metformin on improving the cardiac function of 
diabetic mice were abrogated by compound C (Fig. 

6A and B). Myocardial hypertrophy and collagen 
deposition were increased after treatment with 
metformin and compound C, as shown by HE and 
Masson’s trichrome staining (Fig. 6C) as well as the 
increased expression levels of collagen I and collagen 
III (Fig. 6D and E). In addition, the results indicated 
that metformin increased p-AMPK and LC3 II levels 



Int. J. Biol. Sci. 2019, Vol. 15 
 

 
http://www.ijbs.com 

1016 

and decreased mTOR levels. In contrast, these 
changes were reversed by compound C (Fig. 7A-C). 
Furthermore, western blotting and immunohistoche-
mical staining indicated that compound C abolished 
the effects of metformin on decreasing NLRP3, 
caspase-1 and IL-1β (Fig. 7D-H). 

Discussion 
Recently, extensive studies on the cardioprotec-

tive effects of metformin in DCM have been 
conducted, but whether metformin could alleviate 
NLRP3 inflammasome changes in DCM is unknown. 

In the present study, NLRP3 inflammasome levels in 
both cardiac tissues of diabetic mice and HG-induced 
cardiomyocytes were significantly reduced after the 
administration of metformin. Moreover, p-AMPK and 
autophagy were activated by metformin. However, 
the inhibition of AMPK by compound C blocked the 
effects of metformin on autophagy and the NLRP3 
pathway. Our study verified that metformin could 
inhibit the NLRP3 inflammasome via AMPK/mTOR 
signaling in DCM (Fig. 8). We thus proposed a new 
mechanism for metformin’s cardioprotective function.  

 

 
Figure 7. Metformin inhibits the NLRP3 pathway via AMPK/mTOR-dependent effects in diabetic mice. The expression levels of p-AMPK and AMPK 
(A), LC3 (B), mTOR (C), NLRP3 (D), caspase-1 (E) and IL-1β (F) were detected by western blotting. (G & H) Immunohistochemistry analysis was performed to detect 
NLRP3, caspase-1 and IL-1β expression. Scale bar, 60 μm. *P<0.05 compared to the control group, #P<0.05 compared to the DM group, &P<0.05 compared to the 
DM+Met group. n=5. 
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Figure 8. Graphical abstract of how metformin inhibits the NLRP3 pathway via 
AMPK/mTOR-dependent effects in DCM. 

 
Previous studies showed that in DCM, the 

NLRP3 inflammasome could regulate cell death and 
fibrosis, which are vital to the structure and function 
of diabetic hearts [24-26]. Inhibiting the NLRP3 
inflammasome and inflammatory factors significantly 
alleviated DCM. For example, Luo et al. [27] found 
that NLRP3 gene silencing exerted a protective effect 
in DCM. In addition, a variety of drugs have been 
shown to inhibit the NLRP3 pathway in DCM. Luo et 
al. [28] indicated that rosuvastatin, a type of 
anti-hyperlipidemic agent, inhibited the NLRP3 
inflammasome via the MAPK pathway in DCM. Ye et 
al. [29] found that dapagliflozin, a sodium-glucose 
cotransporter 2 (SGLT2) inhibitor, could suppress the 
expression of the NLRP3 inflammasome by increasing 
AMPK phosphorylation and alleviating DCM in mice. 
These authors also demonstrated that better inhibition 
effects were gained after combination with saxagl-
iptin, a dipeptidyl peptidase-4 inhibitor (DPP4I). 
However, research on the effects of the classic oral 
hypoglycemic drug metformin on the NLRP3 
inflammasome in DCM is lacking. In our study, 
NLRP3, caspase-1 and IL-1β were downregulated by 
metformin both in vivo and in vitro. Our findings 
highlight the mechanism of metformin and the need 
for further study. 

Rather than relying on its indirect hypoglycemic 
effects, metformin has multiple mechanisms of 
protecting cardiac function. The results of the UK 
Prospective Diabetes Study (UKPDS), a large study of 
cardiovascular events in diabetes, verified that 
although there was no significant difference in the 
reduction of glycosylated hemoglobin among 
metformin, sulfonylurea and insulin treatments, 

metformin could reduce all-cause mortality and 
diabetes-related endpoint events more effectively [30, 
31]. In addition, other studies have shown that 
metformin can alleviate the cardiac dysfunction 
caused by global ischemia via activating AMPK in 
nondiabetic mice without affecting blood glucose 
[32-35]. This evidence suggests that metformin exerts 
cardiovascular protective effects independent of its 
hypoglycemic effects [36]. Our results illustrated that 
metformin protects cardiac function by directly 
suppressing the NLRP3 inflammasome. 

A recent study proposed that mitochondrial 
complex I is a direct target of metformin and thus 
regulates the phosphorylation of AMPK [23]. AMPK 
functions as a cell energy sensor and controls a variety 
of pathophysiological mechanisms, such as autoph-
agy, apoptosis and protein synthesis [37]. AMPK is 
considered to be a key factor regulating cardiac 
metabolism and function. Autophagy, the process of 
organism self-clearance and self-purification that 
facilitates the turnover of damaged organelles and 
proteins, is inhibited in diabetic hearts and is 
manifested by decreased LC3 and activation of the 
mTOR signaling pathway [38]. Accumulating 
evidence indicates that autophagy can decrease 
NLRP3 inflammasome levels via the mTOR signaling 
pathway [18, 39, 40]. Mechanistically, autophagy can 
downregulate the NLRP3 inflammasome through 
multiple mechanisms, including directly inhibiting 
NLRP3 inflammasome activation by clearing endoge-
nous NLRP3 agonists (e.g., damaged mitochondria), 
degrading lysosomes to inhibit the maturation and 
secretion of IL-1β and destroying the components of 
the NLRP3 inflammasome (e.g., NLRP3 and ASC) [40, 
41]. In this study, we showed that metformin 
increased p-AMPK levels and decreased mTOR and 
NLRP3 inflammasome levels. However, the AMPK 
inhibitor compound C abolished the effects of 
metformin on autophagy and pyroptosis. Therefore, 
we demonstrated that metformin inhibits the NLRP3 
pathway via mitochondrial complex I/AMPK/ 
mTOR-dependent effects in diabetic mice. 

In conclusion, our findings strongly demonstrate 
that metformin possesses cardioprotective and anti- 
inflammatory effects by activating AMPK/autophagy 
and subsequently inhibiting the NLRP3 inflammas-
ome in DCM. Collectively, we provide a comprehen-
sive understanding of the molecular mechanisms of 
metformin treatment in DCM. 
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apoptosis-associated speck-like protein containing a 
caspase-1 recruitment domain; DCM: diabetic cardio-
myopathy; DM: diabetes mellitus; DMEM: Dulbecco's 
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