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Abstract 

Tandem mass spectrometry (MS/MS)-based de novo peptide sequencing is a powerful method for 
high-throughput protein analysis. However, the explosively increasing size of MS/MS spectra dataset 
inevitably and exponentially raises the computational demand of existing de novo peptide 
sequencing methods, which is an issue urgently to be solved in computational biology. This paper 
introduces an efficient tool based on SW26010 many-core processor, namely SWPepNovo, to 
process the large-scale peptide MS/MS spectra using a parallel peptide spectrum matches (PSMs) 
algorithm. Our design employs a two-level parallelization mechanism: (1) the task-level parallelism 
between MPEs using MPI based on a data transformation method and a dynamic feedback task 
scheduling algorithm, (2) the thread-level parallelism across CPEs using asynchronous task transfer 
and multithreading. Moreover, three optimization strategies, including vectorization, double 
buffering and memory access optimizations, have been employed to overcome both the 
compute-bound and the memory-bound bottlenecks in the parallel PSMs algorithm. The results of 
experiments conducted on multiple spectra datasets demonstrate the performance of SWPepNovo 
against three state-of-the-art tools for peptide sequencing, including PepNovo+, PEAKS and 
DeepNovo-DIA. The SWPepNovo also shows high scalability in experiments on extremely large 
datasets sized up to 11.22 GB. The software and the parameter settings are available at 
https://github.com/ChuangLi99/SWPepNovo. 

Key words: Large-scale MS/MS spectra analysis, de novo peptide sequencing, high performance computing, 
SW26010 

Introduction 
In post-genomic era, proteomics has become the 

most active research fields, and mass spectrometry 
has developed into a leading technology for 
large-scale analysis of proteins, including 
high-throughput analysis of proteins and 
determination of their primary structures[1]. There 
are two basically methods for protein analysis using 
MS/MS spectra: database-search based peptide 
sequencing and de novo peptide sequencing [2]. 

Database-search based peptide sequencing, 
which aims at retrieving all candidate sequences from 

a specified protein sequence database for each 
MS/MS spectrum [3], is a widely used method for 
protein analysis [4][5][3][6]. In database searching, it 
is generally assumed that the genomes are precisely 
sequenced, and the protein-coding genes and RNA 
genes are just annotated completely. But the latter is 
not satisfactory because a lot of alternatively spliced 
genes do not exist in now available databases [7]. The 
major limitation of this method is its highly 
dependence on the protein database. In addition, due 
to the use of the relatively simple scoring modules, it 
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is easy to miss the identification by database 
searching. Thus, the database searching methods 
cannot provide a complete solution for protein 
analysis. 

Many efforts have directed their attention to the 
development of de novo sequencing methods for 
protein analysis. Various de novo sequencing 
methods such as PepNovo+ [7], PEAKS [8], pNovo 
[9], and UniNovo [10] have been developed in recent 
years. De novo sequencing can directly extract a 
protein sequence from a MS/MS spectrum without 
knowledge of the organism or even the genomic 
sequences[11], and it can process post-translational 
modifications (PTMs), sequence variations and the 
mass spectra with low signal-to-noise ratio that 
cannot be effectively processed by database searching 
methods[12]. As a consequence, de novo peptide 
sequencing, as an irreplaceable tool to discover new 
proteins and PTMs, has been widely acknowledged in 
the research of proteomics at present. 

However, the number of MS/MS spectra data 
has been increasing sharply benefits from the 
technological breakthroughs of the modern 
spectrometry in recent years [13]. Besides, the protein 
and peptide analysis criteria have become more 
demanding, e.g. with chemical and post translational 
modifications and/or when considering enzyme 
semi-unconstrained searches[14]. Accordingly, 
analyzing this huge amount of MS/MS data using de 
novo peptide sequencing becomes a significant 
challenge for proteome researchers. Without 
developing more powerful and efficient de novo 
peptide sequencing algorithms, the computational 
bottlenecks that we can expect is that the scope of 
discoveries will be limited to small-scale MS/MS 
spectra data. Breakthrough of efficient de novo 
sequencing method is crucial for large-scale protein 
analysis in computational biology [15]. 

Fortunately, various high performance 
computing systems (HPCS) such as Intel Many 
Integrated Core Architecture (MIC) [16] and Graphics 
Processing Unit (GPU) [17] have recently been 
developed to improve the computational efficiency. 
GPU can support parallel programming language 
such as Open Computing Language (OpenCL) [18] 
and Compute Unified Device Architecture 
(CUDA)[19], which is widely-used in computational 
biology research. MIC architecture, which contains 
60+ cores and 512-bit-wide vector units, is a 
coprocessor designed to highly parallel multithreaded 
application with high memory requirements. A 
similar architecture, SW26010 many-core processor, 
has recently been developed at National Research 
Center of Parallel Computer Engineering & 
Technology for protein and peptide analysis. This 

paper proposes an efficient parallel PSMs algorithm 
for large-scale MS/MS spectra data analysis on 
SW26010. The main contribution and innovation of 
this study can be summarized as follows: 
• We design and implement the parallel PSMs 

algorithm using a two-level parallelization 
mechanism. To our best knowledge, our 
algorithm is the first attempt to improve the 
efficiency of large-scale MS/MS spectra data 
analysis and processing. 

• We present a high-effective structural optimized 
MS/MS data organization to overcome the 
memory access bandwidth bottleneck and 
propose a highly scalable intra-MPE 
communication scheme, which gets a 
parallelization efficiency of over 85%. 

• We adopt the SW26010 processor for large-scale 
protein analysis that uses the parallel PSMs 
algorithm. In design realization, we also employ 
asynchronous task transfer and propose a series 
of effective optimization strategies to decrease 
the communication costs between the 
management processing elements (MPEs) and 
computing processing elements (CPEs) and to 
balance the workload on each CPE, which results 
in a 10× speedup compared with the 
un-optimized version. 

• We also prove the scalability of SWPepNovo by 
scaling the size of datasets and the number of 
SW26010 nodes. We obtain an ideal speedup on 
a multi-node cluster that contains three SW26010 
processors with a total of 4096 CPE. 
Experimental results show that our method has 
an excellent performance on scalability and 
without sacrificing accuracy and correctness in 
the de novo peptide sequencing results. 
We believe that the techniques we use can guide 

the design of similar work on the neo-heterogeneous 
SW26010 many-core architecture. The software and 
the parameter settings are available from 
https://github.com/ChuangLi99/SWPepNovo. Users 
without access to TaihuLight, SWPepNovo can be run 
as a multi-threaded (OpenMP) application on a MPI 
cluster. 

The rest of this paper is organized as follows. 
Section II gives the MS/MS-based de novo peptide 
sequencing, the Sunway TaihuLight supercomputer 
and the related work. Section III provides details of 
computational design and optimization strategies. 
The experiment performance is evaluated in Section 
IV. Finally Section V, we validate our results with a 
previous study and conclude the paper. 
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Backgrounds 
In this section, we started with an introduction to 

the background knowledge for MS/MS-based de 
novo peptide sequencing and SW26010 many-core 
processor (The main processor of the Sunway 
TaihuLight Supercomputer), and then present the 
existing parallel works in protein and peptide mass 
spectra analysis. 

 De novo peptide sequencing 
De novo peptide sequencing aims to deduce an 

amino acid sequence according to MS/MS spectrum 
without the use of a protein sequence database. Figure 
1 shows the processing flow of MS/MS spectra 
analysis using de novo sequencing methods, which 
mainly includes three key parts: 

1) Experimental spectra generation: First, the 
mixed proteins digest into mixed peptides using by 
enzymes. And then the peptides will be fragmented 
and ionized (e.g., higher energy collisional 
dissociation (HCD) [20], collision-induced 
dissociation (CID) [21]) in liquid chromatography 
tandem mass spectrometry (LC-MS/MS). Finally, the 
MS/MS spectra will be output. Figure 2 is a MS/MS 

spectrum, which contains the measured m/z and 
intensity of the fragments, represented by the peaks 
[10]. Different ionization methods have dramatic 
impact on the propensities for producing particular 
fragment ion types. For example, in CID, there are six 
series of fragment ions, which are denoted by type 
fragments C-terminal x, y and z and N-terminal a, b 
and c type fragments [12], as shown as Figure 3. 

2) Spectrum graph generation: The spectrum 
graph is constructed through transforming an 
effective peak set into a spectrum graph where each 
node in spectrum graph is the m/z value. The nodes 
are connected if the difference of the two m/z values 
equals to an amino acid mass. 

 3) Match scoring: First, the candidate peptides 
are reconstructed based on the spectrum graph. A 
candidate peptide is a path where the accumulative 
value of the weights equals to the parent mass. Then, 
the similarity of the experimental MS/MS spectrum 
and candidates are calculating using scoring 
algorithm, the top one(s) is the result of the 
calculation. Finally, the identified MS/MS spectrum 
was merged as the final peptide sequence. 

 

 
Figure 1. Workflow of the de novo peptide sequencing. 
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Figure 2. An example of MS\MS spectrum 

 
 

 
Figure 3. The type of fragmentation ions. 

 

Sunway TaihuLight supercomputer 
The Sunway TaihuLight supercomputer, which 

developed by the NRCPC, is now ranked third in the 
latest TOP 500 list of October 2018, and have installed 
in the National Supercomputing Center in Wuxi. The 
peak performance of Sunway TaihuLight is 125.436 
Pflops. The sustained LINPACK performance is 
93.015 Pflops, leading to a performance-per-watt of 
6051 MFLOPS/W [22]. The Sunway TaihuLight 
architecture consists of four levels: the entire 
computing system, a super node, a cabinet, and a 
computing node. All computing nodes in entire 
computing system are connected with Sunway 
Network which is a customized network. A total of 
1024 TB of memory and 20PB of storage are in 
Sunway TaihuLight. The system software is a 64-bit 
Sunway RaiseOS [23]. 

The SW26010 is the core of an embedded 
Sunway TaihuLight system[24], which the general 
architecture is illustrated in Figure 4. The processor 
includes four core-groups (CG) which equip with a 
single management processing element (MPE) and 
8x8 computing processing elements (CPE), one 
memory controller (MC) and 8 GB physical memory 
[22]. SW26010 processor supports two user 
programming modes: (1) Chip-sharing mode; and (2) 
CG private mode. The Chip-sharing mode offers 
specific for applications with high memory 
requirements. In its CG private mode, the SW26010 
processor serves as a NUMA (Non-uniform memory 

access) Architecture. 
To some degree, the programming on CPE 

cluster is similar to GPU. MPE plays the role of the 
normal CPU and is mainly responsible for task 
management, Input/Output and communication. 
CPE cluster play the role of the accelerate card which 
determine the computational power [25]. The peptide 
spectrum match scoring in de novo peptide 
sequencing requires more computing power. To run 
de novo peptide sequencing with an favorable 
performance, the CPE's optimization mechanisms are 
indispensable. 

Related Works 
Previous research has shown that many efforts of 

the acceleration of protein identification are focused 
on developed parallel database searching based 
peptide sequencing. Lee adopted the graph-based 
in-memory distributed system to develop a novel 
sequence alignment algorithm [26]. Qi You developed 
a fast tool that can highly efficient analyze 
genome-editing dataset [27]. In [28], Li considered the 
redundant candidate peptides in PSMs, and adopted 
inverted index strategy for speeding up tandem mass 
spectrometry. And also, some of the prevalent peptide 
sequencing methods adopted high performance 
computing (HPC) technology and cloud computing 
[29]. Notably, Zhu presented an efficient 
OpenGL-based Multiple peptide sequence alignment 
implementation on GPUs hardware [30]. In[31], a 
based-GPU feature detection algorithm was presented 
by Hussong to reduce the running time of PSMs. 

As another most powerful method for protein 
analysis, de novo peptide sequencing has drawn 
limited attention in proteomics. A pioneering research 
on speeding up de novo peptide sequencing was done 
by Frank [32]. In [32], Frank presented a 
discriminative boost ranking-based match scoring 
algorithm, which using machine learning ranking 
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algorithms and producing identical speedup results 
while maintaining the same identification result. 
Another efficient real-time de novo sequencing 
algorithm, namely Novor, was recently presented by 
Ma [33]. Compared with other de novo peptide 
sequencing methods, Novor shows a very fast 
sequencing speed. PEAKS [8], which developed by 
Ma, does the best job as acceleration de novo peptide 
sequencing. Although Peaks achieves great 
performance both in the speed and accuracy of de 
novo peptide sequencing analyses, it is a commercial 
software which cannot freely available to academic 
users. 

Recently Sunway TaihuLight supercomputer 
provide tremendous compute power to researchers. 
There are a few early development experiences on 
Sunway TaihuLight supercomputer. Chen et al. [34] 
designing and implementing a parallel AES 
algorithm, and the result shows that the parallel AES 
algorithm achieved a good speed-up performance. 
Fang et al. [35] have implemented and optimized a 
library, namely swDNN, which that supports efficient 
deep neural networks (DNNs) implementation on 

Sunway TaihuLight supercomputer. In [36], a 
SW26010-based programming framework was 
presented for Sea Ice Model (SIM) algorithm. 
According to the experiment results, the 
programming framework for SIM algorithm offers up 
to 40% performance increase.  

Computational Design  
In this section, we present the efficient de novo 

peptide sequencing for large-scale MS/MS spectra 
analysis on SW26010. Our algorithm design is benefits 
of both the fact that the inherent parallelism of the 
match scoring progress and each CPE in CG enables 
eight single-precision or simultaneous double- 
precision floating points operations, and combines: (1) 
the task-level parallelism between MPEs using a data 
transformation method and a dynamic feedback task 
scheduling algorithm, (2) thread-level parallelism 
across CPEs using asynchronous task transfer and 
multithreading. The diagram in Figure 5 illustrates 
the algorithm framework of our implementation. 

 

 
Figure 4. The architecture of the SW26010 manycore processor. 

 



Int. J. Biol. Sci. 2019, Vol. 15 
 

 
http://www.ijbs.com 

1792 

 
Figure 5. The algorithm framework of our implementation.  

 
Our two-level parallelization scheme on 

SW26010 many-core architecture combines: (1) 
task-level parallelism between MPEs using a dynamic 
feedback task distribution method (based on MPI), 
and (2) thread-level parallelism across CPEs (based on 
aThread). 

The Task-level Parallelism between MPEs 
In the task level parallel part, the dataset is 

divided into properly-sized chunks depending on the 
length of peptide and the integral multiple of CG 
when handling a large-scale MS/MS spectra dataset. 
Then, all MPE in CG continues to process these 
chunks in a coarse-grained parallel fashion. Since each 
CG in SW26010 has its own dedicated random access 
memory (RAM), and the communication mode is 
limited to register communication, assignment and 
scheduling of tasks is critical to improve the parallel 
performance. To support de novo peptide sequencing 
tasks for large-scale dataset effectively and efficiently, 
we use a MS/MS data transformation method to 
optimize the original sequences reading format and 
implement a dynamic distribution framework to 
assign MS/MS data chunks to MPE. The precise 

details about data transformation and dynamic 
distribution framework are in subsections later. 

Data Transformation 
In order to better match the SW26010 

capabilities, our parallel implementation is not 
directly loading MS/MS spectra dataset, but 
transforming them into a format. As the Figure 6 
shows, the transformation process consists of two 
steps: Sorting by spectrum sequence length, and 
concatenation. 

Sorting: In the SW26010 processor architecture, 
each MPE manages 64 CPE for parallel processing. 
This means that the threads in CPE will have to wait 
for each other to finish their workload instead of 
continuing on independently. As shown, for the 
purpose of shortening the waiting time, all the 
MS/MS spectrum are sorted by the length of 
spectrum to minimize deviation between neighboring 
threads. The time complexity is O(N2), where N is the 
quantity of the amino acid sequences of this sorting 
process. 

Concatenation: Even though sorting by length 
has somewhat balanced workload in each MS/MS 
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spectrum, various MS/MS spectrum still have 
different parent mass. To overcome this issue, 
spectrum within a spectrum groups are concatenated 
with spectrum to form spectrum groups. The lengths 
of spectrum groups within a spectra chunk are nearly 
equal to the size of the biggest spectrum in that set. 
Each thread will achieve workload balancing by 
inserting spectrum terminators between the 
concatenated spectra. The time complexity is O(N3), 
where N is the quantity of the amino acid sequences 
of this sorting process. 

Dynamic Distribution Framework 
As is shown in Figure 7, a random set of chunks 

is executed to explore the availability of CGs, which 
includes information about computing time and load 
balancing. Then, based on feedback in the previous 
step, we have defined a feedback regulatory factor for 
each CG. Finally, we adjust the amount of the chunks 
assigned to the CG according to the feedback 
regulatory factor of each MPE. 

 

 
Figure 6. The MS/MS data transformation. 

 

 
Figure 7. A flowchart of the task distribution framework. 
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Figure 8. Feedback and adjustment mechanism based task dynamic scheduling process.  

 
In implementation, choosing an appropriate load 

parameters as the feedback regulatory factor is very 
important to eliminate system bottleneck and balance 
the load dynamically. Our priority is the CPE of 
SW26010 processor utilization. In order to calculate 
CPE utilization, we have extracted the real-time 
information parameters from the file /proc/stat/. 
Besides, since the length of task queue decides that 
whether the scheduler can keep the consistence with 
the system requirements. Too long computing time of 
a task queue can result that the many-core system will 
be in the state of overload. Thus, the average task 
queue length is also important to the feedback 
regulatory factor. In our experiment, we obtained the 
single CPE average queue length from the related 
parameters in file /proc/loadavg/. The detailed steps of 
dynamic feedback task scheduling process are 
described in the Figure 8. The experimental results 
show that the dynamic feedback task distribution can 
keep the system load imbalance below 9 percent in 
most cases. 

The intra-MPE Communication Scheme 
Because of the CPEs do not have cache and the 

latency of accessing DDR3 memory is fairly high, how 
to explicitly manage the use of local device memory 
(LDM) in the SW26010 architecture is critical. Direct 
memory access (DMA) has been widely 

acknowledged as an efficient method to transfer data 
between LDM and memory. Thus, we adopt the 
asynchronous DMA-fetching strategy, which 
presented by Sunway TaihuLight, to overlap data 
transfers from shared memory to local device 
memory. Figure 9 illustrates this strategy. 

The Thread-level Parallelism across CPEs 
In neo-heterogeneous SW26010 many-core 

architecture, the CPE cluster plays the role as a 
coprocessor which dominates the computing power. 
In order to fully utilizing the parallel 
super-computing power of the CPE cluster, it is vital 
to coordinate the relationship between CPE and MPE. 
SW26010 supports four kinds of programming 
models to combine CPE and MPE, which can be used 
to implement and optimize parallel application. By 
employing the dynamic parallel mode, the task 
distribution between the CPEs should be taken 
seriously. In our implementation, we adopt the 
dynamic parallel programming model, which is 
shown in Figure 10. MPE and CPE in SW26010 serve 
different functions during the computation. MPE is 
serving as a job manager, which responsible for tasks 
allocations, and CPE used as computing node is 
primarily responsible for receiving and executing 
tasks and returning results to the corresponding MPE. 

In the thread level parallel part, the chunks are 
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consecutively loaded into a separate CG for de novo 
sequencing. The peptide sequencing executed on the 
CG consists of four phases. In the first phase, each 
MS/MS spectrum obtains the spectrum graph in 
MPE. The spectrum graph is constructed through 
transforming an effective peak set into a spectrum 
graph where each node in spectrum graph is the m/z 
value. The nodes are connected if the difference of the 
two m/z values equals to an amino acid mass. In the 
second phase, the candidate peptide dataset are 
reconstructed based on the spectrum graph. A 
candidate peptide is a path where the sum of the 
weights equals to the parent mass. In the third phase, 
each MPE distributes each spectrum graph and the 
corresponding candidate peptides to the CPE cluster. 
In the last phase, the candidate peptides are scored in 

CPE cluster. The pseudo-code of the parallel PSMs 
algorithm shown in table A the algorithm 1. The 
parallelization at this level is implemented through a 
special accelerate thread library, called aThread. 

We further employ an optional asynchronous 
task-loading strategy as shown Figure 11. First we set 
a list of processes to load only reads. When other 
processes on the active run-queue are computing 
scores, these processes is responsible for loading new 
read spectra chunks. Once the loading and 
computation are completed, all processes in the 
run-queue will receive the load data. When using 8 
processes in our experiments, this strategy reduces 
the computational idle time between two read blocks 
by more than 85%. 

 

 
Figure 9. Asynchronous data transfer strategy. When an chunk in one buffer is scored, the subsequent chunk is being fetched to the other buffer using DMA-fetching intrinsics. 

 
Figure 10. The dynamic parallel programming model 
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Figure 11. Asynchronous task-loading strategy. 

 
Table A. Algorithm 1 Parallel PSMs algorithm 

 
 

Optimization Strategies 
In our experiments, the dataset size up to 10 GB 

and the excessive data replication exist in scoring 
process. Thus, a native parallel implementation is not 
a perfect solution. To get better performance for 
large-scale de novo peptide sequencing, we employ 
three optimization strategies, including vectorization, 
memory access optimization, and double buffering. 

The performance increase of optimization strategies is 
shown in Table I.  

 

Table I. Execution Time Before and After Optimization 

Methods Execution time 
(seconds) 

Benefits 

Before Optimization 418s 0 
Vectorization 385s 7.8% 
Memory Access Optimization 379s 9.3% 
Double-buffering  364s 12.9% 
With Both Optimization 352s 19.5% 

 

Vectorization 
Vectorization is critical to run the codes 

efficiently in neo-heterogeneous systems. In the 
Sunway TaihuLight architecture, each CPE in CG can 
process eight floating point operations within an 
instruction cycle. SW26010 many-core processor is 
specially offered SIMD processing unit and 
corresponding instructions. Moreover, the original 
automatic vectorization does not support an efficient 
binary file generation. Therefore, vectorization is a 
key point of the optimization process for efficient 
implementation of de novo peptide sequencing. 

In our implementation, since the data 
dependence exists in the innermost loop, the first task 
is modifying dependent statements to eliminate data 
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dependence. Then, too achieve an efficient utilization 
of all available CPEs computing resources by utilize 
vectorization, we adopt inter loop vectorization 
operation to manually expand the inner loop. When 
the variable mapping operations has occurred in 
function, SIMD store or SIMD load, the standard type 
must be a 32 bytes boundary alignment. In the 
practice implementation code process, we derive a 
data padding to make each memory access to be 
naturally aligned natural. As the key of the entire 
optimization process, the vectorization technique 
achieved a performance of 57 Glops. 

Memory Access Optimization 
As described in Figure 4, each CPE contains a 

user controlled Scratch Pad Memory. The 
improvement of replacing caches by Controlled 
Scratch Pad Memory is more initiative and efficient 
for programmers. Meanwhile, the compiling system 
supports a collective communication interface and 
DMA intrinsic, which provides asynchronous 
transmission mode between the Scratch Pad Memory 
in CPE and main memory of MPE. If the sum of data 
transmitted is equal to the multiple of 128 byte, the 
limit on maximum peak performance of DMA 
intrinsic can achieve. Typically DMA supports three 
kinds of models to transmit data. In its single-CPE 
mode, each Scratch Pad Memory exchanges data 
within main memory individually. In its broadcast 
mode, data in the main memory are scheduled to 
CPEs. The single-row mode, each row of SPMs 
transfers data with main memory. In our work, we 
have used the single-CPE mode to design and 
implement parallel PSMs algorithms which can make 
full use of the compute resource. 

During the optimization process, each Scratch 
Pad Memory sequentially receives a dataset of 
candidate peptides from main memory. Each CPE 
completes scoring and sends the top one to main 
memory respectively. Note that the number of data 
transferred must be a multiple of 128 byte. The DMA 
intrinsic can reduce the number of memory access 
during each round of scoring. We have obtain optimal 
performance and get higher speedup of SW26010 
using DMA intrinsic. 

The Double-buffering Mechanism 
Although the DMA intrinsic can be reduce the 

cost of memory access, the parallel efficiency and 
scalability still have a huge margin of improvement, 
especially in the part of candidate peptides scoring. 
For best performance and minimal communication 
consumption, we have used the double-buffering 
mechanism to overlap communication cost and 

computation cost. Our design is based on the 
following insights. 

1. In Scratch Pad Memory, CPEs will allocate a 
double memory space to accommodate the data of 2 
groups when the multi-cycle DMA has read/write 
operations. 

2. The typical approach to hide memory access 
performance is to make the two sets buffer from each 
other. When one set serves as the message buffer, the 
other one is calculated.  

3. The DMA bandwidth between LDM and 
memory are affected by initial dimension of loops. 
And a memory space in Scratch Pad Memory is 
required for data buffered storage when several 
rounds of DMA has a high number of write and read 
operations. 

Based on the above design philosophy, we have 
implemented the double-buffering mechanism in 
parallel PSMs algorithm to accelerate de novo peptide 
sequencing. In our implementation, the memory 
access overhead in double buffering mechanism 
divided into two parts: unsheltered part P, which 
includes all the cost of transmitting the data in the first 
round and last round. Another is the overlapping cost 
part P * (N - 1). Eq. (1) shows the speedup of 
optimization by using the double buffering 
mechanism: 

[ ]max / , ( 1)
TSpeedup

T CoreNumber P N P
=

× − +  (1) 

In the candidate peptides scoring process, the 
communication cost is much less than the 
computation cost. Eq. (1) indicates that the speedup of 
CG is nearly CoreNumber when P is negligible 
because it's not measurable. On the basis of the 
theoretical analysis and the experimental results in 
the subsequent sections, we conclude that parallel 
PSMs algorithm gains better optimization 
performances with the double buffering mechanism 
by adequately utilize the advantage of the CG. Table I 
shows the performance of peptide sequencing with 
parallel PSMs algorithm before and after the 
optimization. 

Experimental Results and Discussions 
A series of experiments were performed to 

evaluate the performance and scalability of our 
proposed SWPepNovo implementation. In this 
section, we will first introduce the experimental 
environments and dataset. And then compare the 
performance of SWPepNovo and some of 
state-of-the-art de novo peptide sequencing tools. 
Finally, we evaluate the scalability and accuracy of 
SWPepNovo. 
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Experimental setup 
In the experiments, we have implemented and 

evaluated the parallel PSMs algorithm on Sunway 
SW26010 many-core architectures. The configuration 
of the Sunway TaihuLight System listed in the Table 
II. The experimental spectra data used in the 
experiments was obtained from https://www.iprox.org/, 
which generated by tandem spectrometry experiment 
that analyzed a mixture of liver cancer [37]. In order to 
accurately measure the speedup, three different 
datasets and parameters are used in the experiments, 
as show as the Table III. We mainly considered the 
scale of the MS/MS dataset to test the sequencing 
speed, in which Dataset.1, Dataset.2 and Dataset.3 are 
acted as small, medium and large computing scale 
respectively. 

 

Table II. The Sunway TaihuLight System Configuration 

CPU SW26010 processor 
Processor Node 4 CGs (4 MPEs and 256 CPEs) 
OS Sunway Raise OS 2.0.5 (based on Linux) 
Instruction Sunway-64 Instruction Set 
Compile language Fortran, C, C++ 
Parallel programming interface OpenACC 2.0, OpenMP 3.1, MPI 3.0 

 

Table III. De novo peptide sequencing parameters.  

Dataset Instrument Enzyme Tolerance PTMs Tag 
length 

Size 

Dataset.1 LTQ Trypsin Precursors: 
2Da 
Fragment: 
0.75Da 

C+57:M+16  
6 

51.5MB, 
18,172 
spectra 

Dataset.2 QSTAR AspN Precursors: 
2Da 
Fragment: 
0.75Da 

C+57:M+16  
6 

272MB, 
52,503 
spectra 

Dataset.3 LTQ Trypsin Precursors: 
2Da 
Fragment: 
0.75Da 

C+57:M+16  
6 

486MB, 
106,616 
spectra 

 

Performance on a single SW26010 node 
Firstly, we have compared the single SW26010 

performance of proposed SWPepNovo 
implementation to PepNovo+. Three different 
datasets (see Table III) were used in the experiments 
to enhance the accuracy of the experimental results. 
Note that the entire de novo peptide sequencing 
progress on a Sunway TaihuLight node with a 
SW26010 processor. 

In order to show the SWPepNovo excelled in 
speed, we also performed the experiment on 
PepNovo+, DeepNovo-DIA and Peaks, which 
executed on an Intel E5-2640 CPU running Linux 
CentOS 6.5. PepNovo+, operated via command-line 
interface, is freely available to the researchers. 
DeepNovo-DIA and PEAKS, the state-of-the-art 

implementation of de novo peptide sequencing using 
exhaustive listing of sequences, achieves the optimal 
performance compared with the existing de novo 
sequencing methods. Table IV shows the running 
time comparison between SWPepNovo, PepNovo+, 
DeepNovo-DIA and PEAKS. As we can see in Table 
IV, the SWPepNovo spends considerably less than 
PepNovo+ and Peaks. Notably, in Exp.3, SWPepNovo 
spent 385 seconds in total, remarkably lower than 
PepNovo+ 8967 and PEAKS 4521. 

 

Table IV. The comparison of running time of three sequencing 
methods 

Methods Exp.1 Exp.2 Exp.3 
PEAKS 728s 2100s 4264s 
PepNovo+ 1397s 4038s 8188s 
DeepNovo-DIA  152s 381s 825 s 
SWPepNovo+ 73s 175s 352s 

 
Figure 12 illustrates the average speed of 

SWPepNovo on three different datasets. The average 
parent precursor mass of the Dataset.3 is 1097 Da, and 
the length of corresponding average peptide is 10. 
SWPepNovo can easily de novo peptide sequence 
more than 291 MS/MS spectrum per second, while 
PepNovo+ only get in 13 spectrum per second, and 
PEAKS only get in 25 spectrum per second. 

 

 
Figure 12. De novo sequencing speeds (spectra/second) of SWPepNovo, 
PepNovo+ and PEAKS. 

 

 
Figure 13. Performance of SWPepNovo. 
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As Figure 13 shows, SWPepNovo achieves up 28 
times speedup on a SW26010 against the PepNovo+. 
This validates that the parallel PSMs algorithm get 
high parallel efficiency and speedup ratio using a 
single SW26010 many-core processor. 

Performance on the SW26010 cluster 
In order to evaluate the performance of 

multi-node acceleration, we have implemented the 
SWPepNovo on a SW26010 cluster. The impact of the 
number of nodes in SW26010 cluster on the 
performance of SWPepNovo is illustrated in Figure 
14. As shown in Figure 14, it shows the performance 
of SWPepNovo against the number of nodes in 
SW26010 cluster, where the X axis represents the 
number of SW26010 processor in the cluster and the Y 
axis represents speedup. In the experiment of three 
nodes, we got 47 times speedup in Dataset.1, 51 times 
speedup in Dataset.2 and 52 times in Dataset.3. The 
performance of SWPepNovo increased with the size 
of the cluster. The advantage of SWPepNovo over 
PepNovo+ gets more significant as the cluster size 
increases. 

 

 
Figure 14. Performance of SWPepNovo on multi-nodes. 

 

Performance for processing large-scale 
datasets 

To illustrate the large-scale data-processing 
capacity of our parallel PSMs algorithm, we also 
performed the experiment on SWPepNovo with 
extremely large datasets. The extremely large datasets 
are formed by merging Dataset.1, Dataset.2 and 
Dataset.3. Figure 15 shows the execution time of 
SWPepNovo with the dataset size increasing from 
0.51GB (120,212 spectra) up to 11.22GB (2,644,664 
spectra). With a 11.22 GB of dataset, SWPepNovo took 
only 78.5 minutes. From Figure 15 we also can see that 
SWPepNovo+ can de novo sequence extremely large 
spectra datasets with a linear increase in execution 
time with the dataset size. Meanwhile, the validity is 

demonstrated by comparing the SWPepNovo results 
with PepNovo+. This validates that the parallel PSMs 
algorithm achieves much higher executive 
performance than the original serial PSMs algorithm 
without sacrificing the accuracy and correctness of the 
de novo peptide sequencing results. 

 

 
Figure 15. Performance of SWPepNovo on datasets sized 0.51-11.22GB. 

 

Accuracy analysis 
In this subsection, we verified the accuracy of 

SWPepNovo by comparing the resultant cosine values 
of SWPepNovo to PepNovo+. The results are 
presented in Table V. This validates that SWPepNovo 
achieves much higher executive performance than 
PepNovo+ without sacrificing the accuracy and 
correctness of the results. 

 

Table V. Accuracy analysis of SWPepNovo. 

Dataset Cosine of SWPepNovo Cosine of PepNovo 
Dataset 1 0.98546 0.98546 
Dataset 2 0.97852 0.97852 
Dataset 3 0.98365 0.98365 

 

Conclusions 
As the size of the MS/MS spectra dataset 

increases rapidly, the excessive computation time 
taken by de novo peptide sequencing has become a 
critical concern in computational biology. This study 
presents SWPepNovo, a parallel PSMs algorithm to 
accelerate large-scale de novo peptide sequencing on 
Sunway TaihuLight Supercomputer. The 
experimental results demonstrate that the parallel 
PSMs algorithm can significantly reduce the execution 
time of large-scale MS/MS spectra analysis without 
sacrificing accuracy in the results. 
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