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Abstract 

Circular RNA (circRNA) is a closed-loop structural non-coding RNA molecule which plays a significant 
role during the gene regulation processes. There are many previous studies shown that circRNAs can be 
regarded as the sponges of miRNAs. Thus, circRNA is also a key point for disease diagnosing, treating and 
inferring. However, traditional experimental approaches to verify the associations between the circRNA 
and disease are time-consuming and money-consuming. There are few computational models to predict 
potential circRNA-disease associations, which become our motivation to propose a new computational 
model. In this study, we propose a machine learning based computational model named Gradient 
Boosting Decision Tree with multiple biological data to predict circRNA-disease associations 
(GBDTCDA). The known circRNA-disease associations’ data are downloaded from cricR2Disease 
database (http://bioinfo.snnu.edu.cn/CircR2Disease/). The feature vector of each circRNA-disease 
association pair is composed of four parts, which are the statistics information of different biological 
networks, the graph theory information of different biological networks, circRNA-disease associations’ 
network information and circRNA nucleotide sequence information, respectively. Therefore, we use 
those feature vectors to train the gradient boosting decision tree regression model. Then, the leave 
one out cross validation (LOOCV) is adopted to evaluate the performance of our computational 
model. As for predicting some common diseases related circRNAs, our method GBDTCDA also 
obtains the better results. The Area under the ROC Curve (AUC) values of Basal cell carcinoma, 
Non-small cell lung cancer and cervical cancer are 95.8%, 88.3% and 93.5%, respectively. For further 
illustrating the performance of GBDTCDA, a case study of breast cancer is also supplemented in this 
study. Thus, our proposed method GBDTCDA is a powerful tool to predict potential circRNA-disease 
associations based on experimental results and analyses. 
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Introduction 
Circular RNAs (circRNAs) are one kind of short 

non-coding RNAs [1] which have no exposed 
terminating 5'-cap and 3'-polyadenylated tail 
structures and are closed loops, which are unlike the 
linear RNAs that have terminated with 5′ caps and 3′ 
tails [2]. It is this closed loops structure that makes 
more difficult to detect circRNAs in organisms [3-5]. 
At the same moment, the closed loops structure 
makes circRNA more stable and conversed to be 

regarded as a biomarker to mark some diseases. With 
the development of basic sequence technologies and 
high-throughput technologies, more and more 
circRNAs functions are revealed [6]. Many studies 
have shown that circRNAs can work as the sponges 
for competing endogenous RNAs or miRNAs [7-9], 
which makes circRNAs also can be treated as diseases 
biomarkers. Secondly, circRNAs also have effects on 
the alternative splicing and transcription process by 
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isolating the translation start position to modulate 
protein expression [10, 11]. Thirdly, circRNAs are 
involved in modulating the expression of parental 
genes [12]. What’s more, circRNAs also function as 
the retinol-binding protein (RBP) sponges, which can 
strengthen the interaction between the MBL protein 
and circMbl [10] or get involve in translating as 
templates. In addition, increasing numbers of 
evidences and studies have shown that circRNAs play 
significant roles in disease diagnosis and treatment 
[13]. Especially for various cancers [14, 15], 
cardiovascular disease [16], diabetes [17], etc. Current 
researches of the associations between circRNAs and 
diseases are relatively advanced works, which might 
be based on the pathway circRNA-miRNA-mRNA to 
explore potential knowledge. 

 Recently, people pay more and more attention to 
exploring complicated associations between circRNAs 
and other biological molecules such as circRNA- 
miRNA, circRNA-lncRNA, and so on. In order to 
better promote the researches of circRNA, some 
useful databases are constructed to collect the 
information of circRNAs, which include circBase 
(http://www.circbase.org/) [18], Circ2Traits 
(http://gyanxet-beta.com/circdb/) [19] and 
circR2Disease (http://bioinfo.snnu.edu.cn/ 
CircR2Disease/) [20]. CircRNA can obtain highly 
nuclease-resistant ability because of the particular 
closed loops structures. A stable closed loop structure 
of circRNAs also helps circRNAs own longer 
half-lives than the usual linear RNAs [21], which can 
be regarded as a unique property to diagnose some 
circRNA-related diseases. Although traditional 
RNA-Seq techniques are used widely to detect 
diseases related circRNAs and high-throughput 
techniques are adopted to validate, which can help us 
obtain some accurate experimental results, these 
techniques are still expensive and time-consuming. 
There are few computational models to detect 
potential or promising circRNA-disease associations 
simultaneously, which is also our motivation to 
develop this study. 

 In this study, we adopt the gradient boosting 
decision tree [22] to predict potential circRNA-disease 
associations, which is named Gradient Boosting 
Decision Tree with multiple biological data to predict 
circRNA-disease associations (GBDTCDA). Multiple 
biological data such as circRNAs related expression 
profile data, gene ontology (GO) terms data and base 
sequence are adopted to construct circRNA similarity 
network (CSN). Diseases related ontology terms and 
genes are involved in building disease similarity 
network (DSN). Then the statistics information of 
CSN, DSN and circRNA-disease associations network, 
the graph theory information of CSN and DSN, 

representational biological indicators of circRNA, 
such as GC content and K-mer, other information like 
latent vectors extracted from cicrRNA-disease 
association network are regarded as feature vector to 
indicate each circRNA-disease pair. Some of those 
feature vectors are input to train the model and the 
rest of data are treated as test data. Here, leave one out 
cross validation (LOOCV) is adopted to evaluate the 
performance of GBDTCDA. The area under ROC 
curve (AUC) value of LOOCV is 0.834, which is a 
better result than other machine learning methods or 
network-based methods. In order to further illustrate 
the performance of GBDTCDA, we also make some 
case studies. Therefore, GBDTCDA is a powerful 
method to predict the potential circRNA-disease 
associations. 

Materials & Methods 
Human circRNA-disease associations 

In this study, human disease-related circRNAs 
are extracted from the initial dataset which is 
downloaded from CircR2Disease database [23] 
(http://bioinfo.snnu.edu.cn/CircR2Disease/). All the 
collected circRNA-disease associations are validated 
by biological experiments in CircR2Disease database. 
There are 739 circRNA-disease associations are 
collected in the database where includes 661 circRNA 
entries and 100 disease entries, which are composed 
of the initial dataset. Then, we pick up the distinct 140 
cicrRNA-disease associations involving 132 circRNAs 
and 40 diseases, which could be regarded as a suitable 
known numbers of circRNA-disease associations in 
the circRNA-disease associations’ matrix. Thus, 
matrix A is utilized to describe the circRNA-disease 
associations. If there is an existing association 
between the circRNA c(i) and disease d(j), A(c(i), d(j)) 
is equal to 1, otherwise it is equal to 0. The related data 
used is shown in table 1. 

 

Table 1. The number of experimental data in this experiment. 

Experimental data Number 
The number of circRNA-disease associations 140 
The number of circRNAs 132 
The number of diseases 40 

 

CircRNA similarity 

CircRNA sequence similarity 
To calculate circRNA sequence similarity, the 

circRNA related sequence data is downloaded from 
circBase database [18]. There are 132 circRNA 
sequence data picked up from circBase database 
based on the circRNA ID of the circR2Disease 
database. After we get the circRNA sequence data, a 
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sequence alignment algorithm called the 
Needleman-Wunsch pairwise alignment algorithm is 
used to calculate the circRNA sequence similarity. 
Needleman-Wunsch pairwise algorithm is integrated 
into a python package called Biopython [24]. The 
parameter gap-open penalty and gap-open extending 
penalty are set as 2, -0.5 to -0.1 respectively. Then we 
describe the matrix Seq_CS as the circRNA sequence 
similarity matrix. 

CircRNA functional annotation semantic similarity 
Gene ontology (GO) annotation data is 

downloaded from the human protein reference 
database (HPRD, http://www.hprd.org/) [25] to 
calculate the circRNA functional annotation semantic 
similarity. There are 19701 gene ontology data in the 
initial dataset. Based on circRNA-disease associations’ 
network, 132 circRNAs related GO terms are 
extracted, which can be utilized to match 
circRNA-related gene ontology data. In this study, an 
information content [26] method is adopted to 
calculate the annotation semantic similarity of 
circRNA. Thus, we denote the functional annotation 
semantic similarity of circRNA network as Fun_CS 
and it can be calculated as follows: 

× ( )
( ) =

( ) ( )
∪i j

i j
i j

2 logP C
Fun_CS C , C

logP C + logP C
               (1) 

where Ci and Cj represent the GO terms which are 
related to the target genes of circRNA Ci and Cj, P(Ci) 

and P(Cj) denote the ratio between Ci and Cj target 
genes related GO terms and the whole GO terms, 
respectively. 𝑃𝑃(𝐶𝐶𝑖𝑖∪𝑗𝑗)  describes the proportion 
between the annotated GO terms on circRNA Ci and 
Cj and the whole GO terms. 

CircRNA expression profile similarity 
Expression profile data is extracted from the 

online database exoRBase (http://www.exorbase. 
org/)[27], where has collected human circRNA and 
lncRNA related expression profile data. In this study, 
we replace the circRNA ID in circBase with the ID in 
exoRbase manually. Then, “Normal_circRNA_RPM” 
data, including the names and locations of specific 
chromosomes and the expression profile of circRNAs 
at 32 sites in normal human body, is downloaded to 
calculate the circRNA expression profile similarity 
which is denoted as ES. Furthermore, the Pearson 
correlation coefficient is adopted to measure the 
relevance between two circRNAs. The greater 
correlation score they obtain, the more similar two 
circRNAs are. Considering that the expression profile 
of two circRNA Ci and Cj can be expressed as 𝐶𝐶𝑒𝑒𝑖𝑖 and 
𝐶𝐶𝑒𝑒𝑗𝑗 . Thus, the coefficient score can be calculated as 

follows: 

                (2) 

where N is the number of the circRNA expression 
profile value. 

Fusing multiple circRNA similarity 
Based on the previous calculations, three 

circRNA similarity networks have been constructed, 
including the circRNA sequence similarity network, 
the circRNA functional annotation semantic similarity 
network and the circRNA expression profile 
similarity network. There will be noise information in 
the integrated network, if only the linear method is 
used to integrate multiple data. Thus, a similarity 
network fusion [28] (SNF) algorithm is adopted to 
combine multiple biological data resources, which can 
make each network merge better and keep the most 
informative information. 

 In this study, 𝑊𝑊𝑀𝑀 is described as the weighted 
matrix of each related circRNA similarity matrix and 
M is set to 3 based on three circRNA similarity 
networks, where 𝑊𝑊𝑀𝑀(𝑖𝑖, 𝑗𝑗)  is equal to the 
corresponding circRNA i and j similarity score. Given 
that ∑ 𝑃𝑃(𝑖𝑖, 𝑗𝑗) = 1𝑗𝑗  and we need to avert the scale of 
self-similarity in the diagonal entries. Thus, a better 
normalization is defined as follows: 

( ) if
2 ( )( )

1 if =
2

≠


≠






∑
M

M
k i

W i, j i j
W i, kP i, j =

i j
                        (3) 

 What’s more, a local kernel similarity matrix of 
each corresponding normalized matrix can be 
calculated as follows: 

( ) if ( )
( )( )

otherwise
∈


∈





∑
M

M
k V(i)

W i, j j V i
W i, kS i, j =

0               (4) 

where V(i) is used to describe the K nearest neighbors 
of circRNA i in the integrated circRNA similarity 
matrix WM. Based on the above operation, the lower 
value neighbors of circRNA i are picked out and the 
neighbors that owe high values can be preserved, 
which can be illustrated as an assumption that the 
local similarities are more reliable than remote ones. 
Considering that matrix P takes the whole 
information of the various circRNA similarity 
information into account, while matrix S only carries 
K nearest neighbors’ information of the network. To 
obtain the final circRNA similarity network, we apply 
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the following equation to fuse multiple similarities: 
( )

( ) ( ) ( )( ) ( ) where≠× ×∑ l
t -1i i i Tl i

t

P
P = S S i = 1, 2, 3

M - 1  (5) 

where ( )i
tP  denotes the results of t iterations of 

the ith circRNA similarity network and the ( )S i  is the 
KNN (local) similarity matrix of the ith similarity 
matrix P. M is the number of the multiple different 
circRNA similarity matrices that need to be fused. In 
this study, M is equal to 3. When each matrix P is 
stable after t iterations, we fuse different circRNA 
matrixes as the following equation: 

( )1 ∑
M

i
t

i=1
P = P

M                     (6) 

Disease similarity 

Disease functional similarity 
To calculate disease functional similarity, 

disease-related genes are extracted from DisGeNet 
(http://www.disgenet.org/) [29] database where has 
collected 381,056 gene-disease associations (GDAs) 
between 16,666 genes and 13,172 diseases database 
and Online Mendelian Inheritance in Man[30] 
(OMIM, https://www.ncbi.nlm.nih.gov/omim/) 
database. Based on the processed circRNA-disease 
associations dataset, 40 diseases are picked out. Thus, 
we use those 40 diseases to match their related genes 
from the above two databases. Here, a statistic 
method JACCARD is adopted to calculate disease 
functional similarity as follows: 

( )
∩

∪

i j
g g

i j
g g

D D
DFS i, j =

D D
                                                  (7) 

where 𝐷𝐷𝑔𝑔𝑖𝑖  and 𝐷𝐷𝑔𝑔
𝑗𝑗  represent collections of genes 

associated with disease i and disease j, respectively. 

Disease semantic similarity 
There are 40 individual disease entries according 

to the pre-processed circRNA-disease associations. 
The 40 names of diseases are adopted to search their 
corresponding DOID manually on Disease Ontology 
website [31] (http://www.disease-ontology.org/). 
Then we use a R package called DOSE [32] to calculate 
the disease semantic similarity based on their relevant 
DOID. Thus, DSS is used to describe the disease 
semantic similarity matrix. Finally, we adopt the 
following equation to integrate disease functional and 
semantic similarities: 

              (8) 

where α is a weighted coefficient which is used to 

adjust the proportion of disease functional similarity 
and disease semantic similarity in the final disease 
similarity network and the range of α is between 0 and 
1. In this study, α is set to 0.5, which means that those 
two disease similarities are treated equally. 

GBDTCDA 
In this study, multiple biological data are 

adopted to engineer the feature vector of each 
circRNA-disease pair. CircRNA sequence data, 
circRNA expression profile and circRNA related GO 
terms are adopted to build the fusion circRNA 
similarity matrix. Disease related genes and disease 
phenotypes data are used to build the combined 
disease similarity matrix. Furthermore, circRNA 
nucleic acid sequence data is considered to obtain 
more biological information. The above data is 
adopted to calculate the statistic feature, graph theory 
feature and complex biological feature. Then, the 
principle component analysis (PCA) algorithm is used 
to extract the more essential features to reduce the 
noise of feature vectors. Finally, all the processed 
features are input into the Gradient Boosting Decision 
Tree machine to predict the potential circRNA-disease 
associations. The flowchart of our method is shown in 
Fig 1. 

Engineering the feature vector 
There are four different kinds of features 

extracted from circRNA related data which includes 
the integrated circRNA similarity network and 
circRNA nucleic acid sequence data, disease related 
data which contains the integrated disease similarity 
network and disease-circRNA associations, 
respectively. Some of these features are constructed in 
a way that we refer to previous work [33]. 

To extract the first type of feature for circRNA 
c(i) or disease d(j), some statistics information of the 
circRNA similarity matrix P, the disease similarity DS 
and the circRNA-disease associations matrix A are 
taken into our consideration. Based on the matrix A, 
F1.num.nei can be described that the number of c(i)/d(j)’s 
neighbors can be obtained by calculating the sum of 
the ith/jth column/row in the matrix A. Then, F1.sim.ave 
can be presented that the average similarity score of 
circRNA c(i) and disease d(j) can be calculated based 
on the matrix P and the matrix DS. What’s more, we 
also take the distribution features of c(i) and d(j) 
similarity scores into account, which is denoted as 
F1.dis.num. The similarity scores [0, 1] can be divided into 
different distribution intervals, and then we can 
calculate the distribution number of similarity scores 
of c(i) and d(j) in each distribution interval. 
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Figure 1. The flowchart of computational model GBDTCDA. 

 
 To extract the second type of feature for 

circRNA c(i) or disease d(j), the information of graph 
theory of the circRNA similarity matrix P, the disease 
similarity DS are considered. Each similarity score of 
matrix P and matrix DS is used to calculate the mean 
similarity score. Thus, the circRNA similarity matrix P 
and disease similarity matrix DS can be converted into 
unweighted graph, when the weight of edge exceeds 
the average value. Then, we can use the 
reconstructing unweighted graph to obtain the 
neighbor’s number of c(i) and d(j) which can be 
denoted as F2.num.nei. Based on the similarity matrix P 
and DS, we extract the top 10 similarity scores of c(i) 
and d(j), which can be denoted as F2.K.sim. Given the 
first type of circRNA and disease feature, we can 
calculate the average of first type feature by using the 
top 10 neighbors, which is described as F2.ave.feat1. 
Furthermore, we can also obtain the average of the 
first type features among the top 10 neighbors 
weighted by their corresponding similarity values, 
which are illustrated as F2.W.ave.feat1. In order to get more 
information of the unweighted graph, the 
betweenness centrality, closeness centrality and 
eigenvector centrality of each node in the matrix P 
and DS are calculated, which can be denoted as F2.bc, 
F2.cc and F2.ec, respectively. 

 In order to construct the third feature of 
circRNA c(i), the nucleotide sequence of c(i) is 
adopted to calculate the biological feature. The 
content of GC base in nucleic acid sequence can be 
regarded as an important indicator of biological 
characteristics, which is described as F3.GC.Cont. Then, 
the sequence assembly K-mer algorithm is used to 
count the number of matching base combination 
patterns, which can be denoted as F3.Base.K-mer. In this 
study, K is set as 2, 3 and 4, respectively. 

 For constructing the fourth feature of each 
circRNA-disease(c(i), d(j)) pair from the 
circRNA-disease associations matrix A. The singular 
value decomposition (SVD) algorithm is adopted to 
obtain the latent vector of c(i) and d(j), which is 
denoted as F4.svd. What’s more, we also calculate the 
number of c(i)’s neighbors and the number of d(j)’s 
neighbors, which are described as F4.c.d.num. and 
F4.d.c.num. In addition, the betweenness centrality, 
closeness centrality and eigenvector centrality of each 
c(i) and d(j) pair, which can be depicted as F4.c.d.bc, 
F4.c.d.cc and F4.c.d.ec, respectively. 

 After all the information of circRNA similarity 
network, disease similarity network and 
circRNA-disease association network are extracted to 
construct the feature vector of each circRNA-disease 
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pair, which are shown in supplementary Table S1. 
Four types of characteristics are merged into a feature 
vector of each circRNA-disease association as follows: 

( ( ), ( )) =   1 2 3 4F c i d j F , F , F , F                                    (9) 

where F1 is the category 1 characteristic which is the 
statistics information, F2 is the category 2 
characteristic which is the theory information, F3 is the 
category 3 characteristic extracted from the circRNA 
related representational biological indicators, F4 is the 
category 4 characteristic extracted from the 
cicrcRNA-disease associations network. 

Gradient Boosting Decision Tree (GBDT) Regression 
Gradient boosting[22] is an ensemble machine 

learning model which combines weak ‘learners’ into a 
strong single learner in an iteration fashion. In this 
study, we adopt a regression tree model to train a 

training set{( , ), ..., ( , )}1 1 n nx y x y  of known values of x 
and corresponding values of y. The objective is to find 

an approximation ( )
∧

F x of function F(x), which 
minimizes the expected value of a given loss function 
FL(y, F(x)). The definition of the approximation 

functions ( )
∧

F x as follows: 

                 (10) 

where y is a real value. While the gradient 
boosting decision tree model makes an assumption 

that a real-valued y and seeks an approximation ( )
∧

F x

in the form of a weighted sum of functions hi(x) some 
class H, which can be called weak learners as follows: 

( ) = ( ) +∑
M

i i
i=1

F x γ h x const
                (11) 

 In accordance with the empirical risk 
minimization principle, the method tries to find an 

approximation ( )
∧

F x  that minimizes the average 
value of the loss function on the training test, i.e., 
minimizes the empirical risk. It does so by starting 
with a model, consisting of a constant function F0(x), 
and incrementally expanding it using a greedy 
fashion: 

( ) ( )L

γ

∑
n

0 i
i=1

F x = arγmin F y , γ ,

              (12) 

( ) ( ) ( ( ) + ( ))
∈

 
 
 
∑

m

n

m m -1 L i m -1 i m i
h H i=1

F x = F x + argmin F y , F x h x
   (13) 

where ∈mh H  is a weak learner function. 
 Unfortunately, choosing the best function h at 

each step for arbitrary loss function FL is a 
computationally infeasible optimization problem 
generally. Thus, a simplified version is adopted to 
solve this problem. 

 This main thought is to apply a steepest descent 
step to solve this minimization problem. If we 
considered the continuous case, i.e. where H is the set 
of arbitrary differentiable function on R, we would 
update the model based on the following formulas: 

( ) ( ) ( ( ))∇∑ m-1

n

m m -1 m F L i m -1 i
i=1

F x = F x - γ F y , F x
              (14) 

( ( ) ( ( )))∇∑ m-1

n

m L i m -1 i F L i m -1 i
γ i=1

γ = argmin F y , F x - γ F y , F x
    (15) 

where the derivatives are taken with respect to the 
functions Fi for i∈{1,..,m}[34]. In the discrete case 
however, i.e. when the set H is finite, we choose the 
candidate function h which is closest to the gradient of 
FL for which the coefficient γ may then be calculated 
with the aid of line search on the above equations. 
Note that this approach is heuristic and therefore 
doesn't yield an exact solution to the given problem, 
but rather an approximation. 

Performance Metrics 
In this study, two main evaluation metrics are 

adopted to estimate the performance of our 
computational method, such as AUC value and 
F-measure. The AUC value is the area of (receiver 
operating characteristic) ROC curve, which is 
comprised of true positive rate (TPR) and false 
positive rate (FPR). The following equations are 
adopted to calculate the TPR and FPR: 

=
+
TPTPR

TP FN                          (16) 

=
+

FPFPR
TN FP                           (17) 

where TP are the known circRNA-disease 
associations, which are distinguished correctly, and 
FN are the unknown circRNA-disease associations, 
which are identified incorrectly. What’s more TN are 
the unknown circRNA-disease associations, which are 
identified correctly. Finally, FP are the known 
circRNA-disease associations, which identified 
incorrectly. In addition, in order to further describe 
the performance of GBDTCDA, F-measure is also 
adopted to integrate precision and recall, which is a 
comprehensive evaluation method. Precision can be 
described as the number of true positive samples 

( ( ( )))
∧

L LF = argminEX F y, F x
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(known circRNA-disease associations) in a predicted 
positive sample and recall can be depicted as the 
number of positive examples in the sample predicted 
correctly. F-measure can better evaluate the 
performance of the model, which is calculated as 
follows: 

=
+

TPprecision
TP FP                                 (18) 

=
+
TPrecall

TP FN                 (19) 

2=
+

× ×precision recallF - measure
precision recall（ ）                      (20) 

Results 
Leave one out cross validation (LOOCV) 

For each given definite disease i, there are some 
circRNAs having associations with the disease i. In 
this study, we pick up all the known circRNA-disease 
associations as the positive samples and select the 
same number of positive samples as the negative 
samples in unknown relationships randomly, which 
adopt LOOCV to measure the performance of 
GBDTCDA. During each training session, one 

circRNA-disease association is left out as the test data. 
After the score of each circRNA -disease association is 
obtained and those scores are sorted in descending 
order. Each score in descending order is regarded as 
threshold. Along with the changing threshold, we can 
calculate its corresponding TPR and FPR, which can 
be used to draw ROC curve. For the sake of 
representing our proposed model can compute more 
accurate results than other existing methods [35-38], 
which is represented in Fig. 2. In this study, some 
state-of-the-art methods have been adopted to 
compare with our computational methods, which 
include the label propagation algorithm (random 
walk restart in the heterogeneous network, RWRH 
and bi-random walk), information flow algorithm 
(KATZ) and network topology algorithm 
(Heterogeneous graph inference, HGI). In addition, 
for obtaining more comprehensive evaluation of our 
methods, we also use some machine learning 
algorithm to evaluate the performance of GBDTCDA, 
which are consisted of ensemble learning algorithm 
(adapt boost, Adaboost and random forest, RF), 
regression algorithm (logistic regression), generalized 
portrait algorithm (liner and poly kernel) and 
neighbor learning algorithm (k-nearest neighbors, 
KNN).  

 

 
Figure 2. Comparison of the AUC value different methods. 
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Figure 3. AUC value of Acne, Atherosclerosis and Basal cell carcinoma compared with other methods. 

 
Figure 4. AUC value of Breast cancer, Colorectal cancer and Non-small lung cancer compared with other methods. 

 

 
Figure 5. AUC value of Cervical cancer, Endometrial cancer and Glioblastoma compared with other methods. 

 
For some common disease, such as breast cancer, 

Colorectal cancer, Non-small cell lung cancer, 
Glioblastoma and other five diseases are implemented 
separate LOOCV experiments, respectively, which are 

shown in Fig. 3 to Fig. 5. In almost occasion our 
proposed method can obtain much better 
performance than other network-based algorithms 
and machine learning methods. For obtaining a 
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comprehensive explanation, F-measure is also adopted 
to evaluate the performance of methods which is 
represented in Fig. 6. F-measure value of our proposed 
method is 0.691, which much better than other 
methods. What’s more, for the predicting scores in top 

k (k ∈ [80, 200]) circRNA-disease associations, the 
number of correct circRNA-disease associations 
predicted by our proposed method is greater than 
other methods. The result is shown in Fig. 7. 

 

 
Figure 6. comparison of the precision, recall and f1_measure with different methods. 

 
Figure 7. comparison of the top k ranks with different methods. 
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Figure 8. AUC value based on the different parameter n_estimators. 

 
Figure 9. AUC value based on different max_depth and min_samples_split. 

 

Parameter analysis 
Based on our experiments, some better 

parameters are chosen to be set up in our 
computational model. There are some parameters that 
need to be adjusted necessarily for GBDT. Firstly, the 
parameter n_estimators which controls the number of 
trees of fit sequentially and is set up from 20 to 100 
and fix parameter learning_rate as 0.1. The AUC 
values of different n_estimators based on the fixed 
learning_rate is represented in Fig. 8. When the 
parameter n_estimators is set as 60, the AUC value 
can obtain a better result. Secondly, n_estimators is 
fixed as 60. The parameters max_depth and 
min_samples_split which control the maximum depth 
of each decision tree and the minimum sample 
number for internal node repartition, respectively and 

they are set values from 2 to 20 and from 10 to 300, 
respectively. The results of the parameterization are 
shown in Fig. 9. Based on the results, max_depth is set 
as 9 and min_samples_split is set as 24. Thirdly, the 
parameter min_samples_leaf which control the leaf 
node minimum sample number is set different step 
sizes for adjustment, which is described in Fig 10. In 
according with the results, we can find that 
min_samples_leaf is set as 8 and 11, the maximum 
AUC values are obtained. Next, parameter 
min_samlples_leaf and max_features are adjusted 
together, which are presented in Fig. 11. In the light of 
the results, the values of min_samples_leaf and 
max_features are determined to be 11 and 9, 
respectively. Finally, the parameter subsample is set 
up from 0.6 to 0.9, whose results are shown in Fig. 12. 
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Case study 
In order to further validate the capability of 

predicting potential circRNA-disease associations, 
some case studies are made to illustrate the 
performance of our proposed method. The predicting 
results are proofed by other two circRNA-disease 
associations databases which are circ2Disease [39] and 
circRNADisease [40], respectively. In this study, one 
common disease is adopted to make case studies. 
Breast cancer [41] is one of the deadly cancers 
worldwide now, which also becomes a public health 

issue for people all over the world. Based on previous 
studies, some factors can increase the risk of breast 
cancer, such as the age of first birth [42], frequency of 
regular exercise and some body indices [43], diet 
styles [44] and environmental factors[45]. While more 
and more evidences illustrate that circRNAs also can 
be a biomarker of breast cancer, which is represented 
in Table 2. Based on our proposed method, the results 
of those predicting circRNA-disease associations are 
validated by database circ2Disease (C1) and 
circRNADisease (C2). 

 

 
Figure 10. AUC value based on different parameter min_samples_leaf. 

 
Figure 11. AUC value based on different min_samples_leaf and max_features. 



Int. J. Biol. Sci. 2019, Vol. 15 
 

 
http://www.ijbs.com 

2922 

 
Figure 12. AUC value based on the different parameter subsample. 

 

Table 2. The top 10 breast cancer related candidates circRNAs. 

Rank circRNA name/id Evidences Rank circRNA name/id Evidences 
1 hsa_circRNA_103454/hsa_circ_0067103 unconfirmed 6 hsa_circ_0007534 PMID:29593432 
2 hsa_circ_0006411 unconfirmed 7 hsa_circ_0001785 C2 

3 hsa_circ_103110/hsa_circ_0004771 C1, C2 8 hsa_circ_0001721 C1 

4 circMYO9B/hsa_circ_0000907 PMID 29702064 9 circAmotl1/hsa_circ_0004214 C1, C2 

5 circRNA_100984/hsa_circ_0002019 unconfirmed 10 hsa_circ_100219/hsa_circ_0004619 C1, C2 

 
 

Conclusion 
With the rapid development of RNA 

high-throughput technologies, increasing number of 
diseases related circRNAs are discovered. Therefore, 
people pay more attention to revealing the intricate 
relationships between them. While using the 
traditional biological technologies are expensive and 
time-consuming. In this study, we propose a new 
computational method to predict the potential 
circRNA-disease associations, which is called the 
GBDTCDA, a machine learning driven method. 
what’s more, gradient boosting model is first used to 
predict circRNA-disease associations and the LOOCV 
and F-measure evaluation measurements are adopted 
to illustrate the performance of our proposed method. 
Compared with other state-of-the-art computational 
methods, such as network-based methods, 
propagation methods and machine learning methods, 
GBDTCDA can get better results than those methods. 
In order to further describe the performance of 
GBDTCDA, the case studies of breast cancer are 
made. Thus, we believe that our proposed method 
GBDTCDA is a powerful tool to predict potential 
circRNA-disease associations. 

 For obtaining the better performance of our 
proposed computational mothed, some following 

significant factors cannot be ignored. Firstly, the 
characteristics, such as statistics information, graph 
theory information, circRNA sequence information 
and circRNA-disease latent features are taken into our 
consideration as comprehensive as possible, which 
can make the feature of each circRNA-disease pair 
more allover and promote the gradient boosting 
machine to be trained well based on those features. 
Secondly, in order to make our features get more 
reliable biological significance, multiple biological 
data, such as circRNA related GO terms, expression 
profile data and sequence data are adopted to 
construct the circRNA similarity network. In addition, 
a multiple data integration algorithm SNF is used to 
integrate different networks, which makes the 
integrated network more robust and reliable. 
Furthermore, an ensemble machine learning method 
called gradient boosting decision tree is adopted to 
train our inputting data. 

 Although our proposed method can obtain the 
better results compared with other methods, there still 
are some limits existing in our computational method. 
On the one hand, many parameters of gradient 
boosting machine need to be adjusted. In this study, 
the parameter adjustment is only carried out by some 
experiments. For our future works, some algorithms 
might be used to adjust those parameters. On the 
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other hand, more categories of biological data could 
be taken into account, which can make our 
computational methods own more biological sense. 

Supplementary Material  
Supplementary table S1.   
http://www.ijbs.com/v15p2911s1.pdf  
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