No	siRNA		Duplex sequence	MW
1	SRA1	Sense	5' CUCAUAACAUGCAUUUCAAUU 3'	6227
		Antisense	5' UUGAAAUGCAUGUUAUGAGUU 3'	6364.1
2	SRA2	Sense	5' GCUCAAGUGAGACACUUAAUU 3'	6345.1
		Antisense	5' UUAAGUGUCUCACUUGAGCUU 3'	6276
3	SRA3	Sense	5' ACGUGAAUGUGGAGAUUGUUU 3'	6419.2.1
		Antisense	5' ACAAUCUCCACAUUCACGUUU 3'	6202
4	SRA4	Sense	5' CAAGGAAGCAGGUAUGUGAUU 3'	6464.2
		Antisense	5' UCACAUACCUGCUUCCUUGUU 3'	6171.9
5	SRA5	Sense	5' GUCCUAUUUGCACUGUAUCUU 3'	6212.9
		Antisense	5' GAUACAGUGCAAAUAGGACUU 3'	6408.2
б	SRA6	Sense	5' CUGUAUCACCCUUGAGAUAUU 3'	6259
		Antisense	5' UAUCUCAAGGGUGAUACAGUU 3'	6362.1

Supplementary Table 1. siSRA sequences used in the present study.

Supplementary Table 2. siEIF4E-BP1 sequences used in the present study.

No	siRNA		Duplex sequence	MW
1	EIF4E-BP1_1	Sense	5' GCAAUAGCCCAGAAGAUAAUU 3'	6391.2
		Antisense	5' UUAUCUUCUGGGCUAUUGCUU 3'	6229.9
2	EIF4E-BP1_2	Sense	5' GUUUGAGAUGGACAUUUAAUU 3'	6364.1
		Antisense	5' UUAAAUGUCCAUCUCAAACUU 3'	6227

Supplementary Table 3. Primer sequences used in the present study.

	F	Product size	
Gene	Forward (5'-3')	Reverse (5'-3')	(bp)
SRA	CTCCCTTCTTACCACCACCA	TGCAGATACACAGGGAGCAG	217
β-catenin,	TGCAGTTCGCCTTCACTATG	ACTAGTCGTGGAATGGCACC	162
Gsk-3β	AACTGCCCGACTAACACCAC	ATTGGTCTGTCCACGGTCTC	154
c-Myc	GGACGACGAGACCTTCATCAA	CCAGCTTCTCTCAGACGAGCTT	92

[i] SRA, steroid receptor RNA activator.

С

A

B

Supplementary Figure. 1. Knockdown of *SRA* inhibits endometrial cancer *SRA* expression, migration, and invasion to minimize the possibility of off-target effects. (A) Knockdown efficiency was determined by qRT-PCR analysis in ECC-1 cells. Cells were transfected with *SRA* siRNA (si*SRA*) or negative control siRNA (siNC and Control). (B) Wound healing assay was used to determine migration in *SRA*-specific siRNA (si*SRA*)-transfected ECC-1 cells (×200). (C) Matrigel invasion assay was used to determine invasion after 48 h in si*SRA* transfected ECC-1 cells. Bars indicate mean \pm standard deviation of three independent experiments performed in triplicate. *p < 0.05, **p < 0.01, and ***p < 0.001 vs. siNC.

Supplementary Figure. 2. Knockdown of EIF4E-BP1 inhibits endometrial cancer EIF4E-BP1 expression, migration, and invasion to minimize the possibility of off-target effects.

(A) Knockdown efficiency was determined by qRT-PCR analysis in ECC-1 and Ishikawa cells. Cells were transfected with EIF4E-BP1 siRNA (siEIF4E-BP1) or negative control siRNA (siNC and Control). (B) Wound healing assay was used to determine migration in EIF4E-BP1-specific siRNA (siEIF4E-BP1)-transfected ECC-1 and Ishikawa cells (×200). (C) Matrigel invasion assay was used to determine invasion after 48 h in siEIF4E-BP1 transfected ECC-1 and Ishikawa cells. Bars indicate mean ± standard deviation of three independent experiments performed in triplicate. *p < 0.05, **p < 0.01, and ***p < 0.001 vs. siNC and Control.