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Abstract 

Non-alcoholic steatohepatitis (NASH) is a type of nonalcoholic fatty liver disease and has become a major risk 
factor for hepatocellular carcinoma (HCC). However, the underlying pathophysiological mechanisms are still 
elusive. Here, we identify hyaluronan-mediated motility receptor (HMMR) as a critical gene associated with 
NASH/HCC by combination of bioinformatic analysis and functional experiments. Analysis of differentially 
expressed genes (DEGs) between normal controls and NASH/HCC identified 5 hub genes (HMMR, UBE2T, 
TYMS, PTTG1 and GINS2). Based on the common DEGs, analyses of univariate and multivariate Cox 
regression and the area under the curve (AUC) value of the receiver operating characteristic (ROC) indicate 
that HMMR is the most significant gene associated with NASH/HCC among five hub genes. Oleate acid (OA), 
one of fatty acids that induce cellular adipogenesis, stimulates HMMR expression via CCAAT/enhancer-binding 
protein α (CEBPα). CEBPα increases the expression of HMMR through binding to its promoter. HMMR 
promotes HCC cell proliferation in vitro via activation of G1/S and G2/M checkpoint transitions, concomitant 
with a marked increase of the positive cell cycle regulators, including cyclin D1, cyclin E, and cyclin B1. 
Knockdown of HMMR suppresses HCC tumor growth in nude mice. Our study identifies an important role of 
HMMR in NASH/HCC, and suggests that HMMR may be a useful target for therapy and prognostic prediction 
of NASH/HCC patients. 
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Introduction 
Non-alcoholic steatohepatitis (NASH) is a type 

of nonalcoholic fatty liver disease (NAFLD) 
characterized by hepatic triglyceride accumulation 
plus inflammation and hepatocyte injury [1]. 
According to reported data, NAFLD and NASH affect 
approximately 30% and 5% of the US population [2]. 
NASH is also the main chronic liver disease in the US 
and Europe, and is increasing worldwide [3]. There is 
mounting epidemiological evidence that it has 
become an emerging risk factor for hepatocellular 
carcinoma (HCC) [4]. Despite advances in HCC 
management, it is the second leading cause of cancer 
death in men and sixth in women worldwide [5]. The 

pathophysiological mechanisms linking NASH to 
HCC remain poorly understood, and are likely to be 
multifactorial. These may include dysregulated 
integrin and Hedgehog signaling, mitochondrial 
dysfunction, hepatic stellate cell (HSC) activation, and 
alteration of immune system [6]. 

Hyaluronan-mediated motility receptor 
(HMMR), also known as receptor for hyaluronate- 
mediated motility (RHAMM), is a largely coiled-coil 
protein that can bind to microtubules and localize to 
the centrosome [7]. HMMR plays an important role in 
the regulation of spindle assembly in mitotic cells. 
HMMR expression is cell cycle-regulated with peak 
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expression between late G2 phase and early mitosis. 
Expression of HMMR is upregulated in a variety of 
cancers, such as colorectal cancer [8], stomach cancer 
[9], endometrial cancer [10], prostate cancer [11], and 
multiple myeloma [12], and its high expression 
correlates with poor prognosis. In contrast, for some 
cancers, such as malignant peripheral nerve sheath 
tumors [13, 14] and seminomas [15], HMMR 
expression is downregulated and its low expression 
associates with poor patient survival. Very recently, 
HMMR was found to be one of the hub genes 
responsible for prognosis prediction of hepatocellular 
carcinoma (HCC) by bioinformatic analysis [16-19]. 
However, the clinical significance of HMMR linking 
normal liver to NASH to HCC and the biological 
function of HMMR in HCC remains unclear. 

In this study, we aim to identify genes linking 
NASH and HCC through bioinformatics. We show 
that HMMR may be critical for the development of 
NASH and further progression to HCC. The 
accumulation of oleate acid, the most distinctive 
characteristic of liver tissues with NASH [20], 
increases HMMR expression through the 
transcription factor CCAAT enhancer binding protein 
α (CEBPα). Silencing of HMMR reduces HCC cell 
proliferation in vitro and tumor growth in vivo. 
Mechanistically, HMMR can regulate cell cycle 
progression in HCC cells. 

Materials and Methods 
Plasmids, cell lines and reagents 

FLAG-tagged HMMR expression vector was 
constructed by inserting PCR amplified HMMR 
fragment into the pcDNA3 vector (Invitrogen) linked 
with FLAG tag at the amino terminus. The HMMR 
promoter luciferase reporters were made by inserting 
PCR-amplified HMMR promoter fragments into the 
pGL4-Basic vector (Promega). HepG2 and MHCC- 
97H liver cancer cell lines were purchased from the 
American Type Culture Collection (Manassas, VA, 
USA). Small interfering RNAs (siRNAs) were 
synthesized by JTS scientific or GemmaPharma. The 
cDNA target sequences of siRNAs and/or short 
hairpin RNAs (shRNAs) for HMMR and CEBPα were 
listed in Table S1. Stable cell lines overexpressing 
HMMR shRNA were established by lentiviral 
transduction using pSIH-H1-Puro carrying HMMR 
shRNA. Anti-cyclin D1, anti-cyclin E, anti-cyclin B1 
and anti-CEBPα were purchased from Santa Cruz 
Biotechnology; Anti-HMMR was from Proteintech. 

Data collection 
The GSE89632 and GSE126848 datasets were 

downloaded from the Gene Expression Omnibus 
(GEO, https://www.ncbi.nlm.nih.gov/geo/) 

database. The GSE89632 dataset contains gene 
expression profiles of 19 patients with NASH and 24 
healthy controls [21]. The GSE126848 dataset contains 
gene expression profiles of 16 patients with NASH 
and 14 healthy controls [22]. In addition, mRNA 
expression profiles and clinical data from 366 HCC 
and 50 normal control samples were obtained from 
The Cancer Genome Atlas (TCGA, http:// 
cancergenome.nih.gov) database (TCGA-LIHC) [23]. 
The 50 normal control samples had matched tumor 
tissues. 

Identification of differentially expressed genes 
(DEGs) in NASH and HCC 

To investigate differentially expressed genes 
(DEGs) in each GEO dataset and TCGA-LIHC dataset, 
we used the limma R package [24]. By controlling the 
false discovery rate (FDR), we define DEGs as genes 
with adj. P-value <0.05 and |log2 fold change 
(FC)|>1. The intersecting DEGs of NASH and HCC 
were used for further analysis. 

Functional and pathway enrichment analysis 
Functional and pathway enrichment analyses 

were performed for DEGs using the clusterProfiler R 
package [25], including Gene Ontology (GO) terms 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses [26]. GO terms 
and KEGG pathways with an adj. P-value <0.05 were 
considered significant. 

Protein-protein interaction (PPI) network 
construction, module analysis and hub gene 
identification 

The PPI network was retrieved from the Search 
Tool for the Retrieval of Interacting Genes (STRING, 
http://www.string-db.org/). MCODE plugin in 
Cytoscape was used to identify the most significant 
module in the network based on the graph-theoretic 
clustering algorithm [27]. To identify hub genes in the 
PPI network, we use the cytoHubba plugin for 
Cytoscape [28]. Five analysis methods, namely 
Degree, Edge Percolated Component (EPC), 
Maximum Neighborhood Component (MNC), 
Density of Maximum Neighborhood Component 
(DMNC), and Maximal Clique Centrality (MCC), 
were used. 

Survival analysis of hub genes based on the 
TCGA-LIHC dataset 

After excluding HCC patients without survival 
data, the survival R package was used to conduct 
survival analyses based on hub gene expression and 
overall survival (OS) in 365 HCC patients from 
TCGA-LIHC. Additionally, the online database Gene 
Expression Profiling Interactive Analysis (GEPIA) 
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(http://gepia.cancer-pku.cn/) was used for disease- 
free survival (DFS) analysis of hub genes in HCC 
patients from TCGA-LIHC. Log-rank P value <0.05 is 
the threshold of statistical significance. 

HCC-specific prognostic model construction 
and assessment 

Univariate Cox proportional hazards regression 
analyses were used to identify individual common 
DEGs between NASH/HCC and adjacent normal 
tissues that affect the OS of 365 HCC patients from the 
TCGA-LIHC dataset. Multivariate Cox regression 
analysis was used to establish a linear joint risk score 
of gene expression level (exp) using regression 
coefficient β. The risk score for each sample was 
calculated as follows: Risk score = ∑βi×expRNAi [29]. 
For survival analysis, the samples were divided into 
high- and low-risk groups based on the median or the 
best cutoff of risk scores. Subsequently, univariate 
and multivariate Cox regression analysis were 
performed to identify that the predictive effect of the 
prognostic model is independent of clinical factors. 
The prognostic model was assessed by the area under 
the curve (AUC) value of the receiver operating 
characteristic (ROC) curve, which was calculated 
using the survival ROC package of R. Finally, 
nomogram that integrates risk scores and other 
clinical factors was constructed to forecast the 
likelihood of 1-, 3-, 5-OS using the rms R package, and 
P value <0.05 is the threshold of statistical 
significance. 

Cell culture and Oil Red O staining 
Cells were maintained in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% 
fetal bovine serum at 37 °C under a humidified 
atmosphere of 5% carbon dioxide. Cells were plated 
in 6-well plates at a density of 60% confluency. The 
next day, cells were treated with 25 μM/50 μM oleate 
acid or DMSO (as a control), respectively. After 
treatment for 24 h, cells were stained with Oil Red O 
and counterstained with hematoxylin [30]. 

Transient Transfections 
For plasmid transfection, cells were seeded to 

70–90% confluency at the time of transfection. The 
cells were transfected with the indicated plasmids 
using Vigofect according to the manufacturer’s 
protocol (Vigorous Biotechnology). The transfected 
cells were collected after 24-48 h. For siRNA 
transfection, Lipofectamine RNAiMAX reagent was 
used according to the manufacturer’s instructions 
(Invitrogen). 

Reverse-transcription quantitative real-time 
polymerase chain reaction (RT-qPCR) 

Total RNA was extracted from cultured cells and 
reverse-transcribed to cDNA using the RNeasy Mini 
kit (Qiagen) according to the manufacturer’s protocol. 
Expression of mRNAs was determined by 
quantitative real-time polymerase chain reaction 
(qPCR) using SYBR Premix Ex Taq Master Mix 
(Takara). The relative expression was calculated by 
the comparative Ct method. The sequences of the 
primers used for RT-qPCR analysis are presented 
(Table S2). 

Cell proliferation and colony formation assays 
Cell proliferation was assessed by a CCK-8 Kit 

according to the manufacturer's instructions 
(Dojindo). For colony formation assay, transfected 
cells were seeded in 6-well plates at 3000 cells per 
well. Two weeks later, colonies were fixed with 4% 
paraformaldehyde and stained with 0.5% crystal 
violet for 30 min. The number of colonies with 
diameters of more than 1.5 mm was counted. 

Luciferase reporter assay 
Cells seeded into 24-well plates were co- 

transfected with myc-CEBPα, the luciferase reporter 
with either wild-type or mutant HMMR promoter, 
and β-galactosidase reporter (internal control). Forty 
eight hours later, cells were harvested and analyzed 
for luciferase and β-galactosidase activities according 
to the manufacture's instruction (Promega). All 
transfection experiments were performed in 
triplicates and repeated 3 times. 

Chromatin immunoprecipitation 
ChIP assay was performed using the Magna 

ChIP Assay Kit (Millipore) according to the 
manufacturer’s instructions. The collected DNA 
fragments were quantified by qPCR with listed 
primers (Table S2). 

Cell cycle analysis 
Cell cycle analysis was carried out using flow 

cytometry. Briefly, cells were fixed in 70% ethanol for 
more than 12 h. After washing with PBS, fixed cells 
were incubated with RNase A (0.2 mg/mL) in PBS. 
Propidium iodide was then added to the cell 
suspension. Samples were analyzed by a 
FACSCalibur Flow Cytometer (Becton Dickinson). 

Statistical analysis 
All the experiments were performed in triplicate 

and repeated 3 times. Data are expressed as mean ± 
standard deviation (SD), and were analyzed using 
SPSS 17.0 or R software. Statistical significance in cell 
line experiments was assessed by a two-tailed 
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Student's t test. P < 0.05 was considered to be 
statistically significant. 

Results 
Identification of commonly regulated 
differentially expressed genes between 
NASH/HCC and normal liver tissues 

A total of 50 paired HCC and adjacent normal 
tissues from the TCGA-LIHC dataset were analysed. 
The clinicopathological features were shown in Table 
S3. In this dataset, 1530 upregulated and 1863 
downregulated differentially expressed genes (DEGs) 
were identified in HCC tissues compared with 
non-tumor tissues. In the GSE89632 dataset, 135 
upregulated and 161 downregulated DEGs were 
identified in NASH patients compared with healthy 
controls. In the dataset GSE126848, 715 upregulated 
and 527 downregulated DEGs were identified in 
NASH patients compared with healthy controls. The 
volcano plot illustrating the gene expression profile of 
this dataset was shown in Figure 1A. There were 12 
common upregulated DEGs and 10 common 
downregulated DEGs between NASH/HCC and 
adjacent normal tissues (Figure 1B). Seven genes out 
of the 22 common DEGs, such as FABP4, AKR1B10, 
and UBD, have been demonstrated to be the critical 
genes related to both NASH and HCC [31-36]. Some 
of the other 15 genes have been reported to be 
associated with only NASH or HCC. In addition, the 
heatmap illustrated the expression of common DEGs 
in HCC tissues or non-tumor tissues from the 
TCGA-LIHC (Figure 1C). Another heatmap 
illustrated the expression of common DEGs in NASH 
tissues or normal liver tissues (Figure 1D). 

PPI network construction and hub gene 
identification 

A PPI network for 22 common DEGs was built 
by the STRING online database, and 20 most credible 
direct interactors were joined in analysis (Figure 2A). 
The network shows the interconnectedness of 22 
common DEGs between NASH/HCC, with 
upregulated ones being red and downregulated ones 
being green. There were several PPI prediction 
clusters analyzed by MCODE plugin in Cytoscape. 
Finally, we extracted the most significant module, 
which included five upregulated DEGs and 15 
interactors (Figure 2B). These five upregulated DEGs 
also were identified as top five hub genes among 
DEGs by algorithms, MCC and DMMC (Table S4). 
Thus, the five genes, namely HMMR, ubiquitin 
conjugating enzyme E2 T (UBE2T), thymidylate 
synthetase (TYMS), pituitary tumor transforming 

gene 1 (PTTG1), and GINS complex subunit 2 
(GINS2), were chosen for further analysis.  

Functional and pathway enrichment analysis 
For 22 common DEGs and the top 20 direct 

interactors, GO terms showed that changes in 
biological process included significant enrichment of 
DNA replication, mitosis associated catabolic process, 
etc. (Figure 2C). Changes in molecular function (MF) 
included significant enrichment of DNA helicase 
activity, DNA replication origin binding, ribo-
nucleotide binding, single-stranded DNA-dependent 
ATPase activity, etc. Changes in cellular component 
(CC) included significant enrichment of genes related 
to the cell nucleus. KEGG pathway enrichment 
analysis demonstrated that cell cycle, meiosis, DNA 
replication and folate biosynthesis were significantly 
enriched (Figure 2D). The enrichment of cell cycle was 
consistent with previously reported researches on the 
five hub genes. HMMR was shown to bind to 
microtubule during mitotic spindle formation, 
suggesting its function in cell division [37]. UBE2T 
knockdown induces G1/S cell cycle arrest in HCC 
cells [38]. Silencing of PTTG1 inhibits cell proliferation 
and inhibits cyclin D1 expression in cholangio-
carcinoma cells [39]. TYMS is an essential rate-limiting 
enzyme in the nucleotide metabolism, and is involved 
in DNA synthesis [40]. GINS2 knockdown also 
inhibits cell viability and induces cell cycle arrest in 
pancreatic cancer cells [41]. Thus, abnormal cell cycle 
may be the intrinsic related mechanism of NASH and 
HCC. Taken together, both GO terms and KEGG 
analysis indicated that some common DEGs might 
play an important role in cell cycle regulation in HCC 
cells and might have a role for NASH to HCC. 

The validation of five hub genes in 
TCGA-LIHC dataset 

We further explored associations between the 
hub gene expression and clinical stage in 343 HCC 
patients with clinical information from TCGA-LIHC 
dataset. The mRNA expression levels of HMMR, 
UBE2T, TYMS, PTTG1 and GINS2 significantly 
increased in those with advanced clinical stage 
(Figure 3A). Notably, the expression levels decreased 
in stage IV, which might be due to the small sample 
size. Moreover, high mRNA expression of the five 
hub genes, especially HMMR, was significantly 
associated with shorter overall survival (OS) in 365 
HCC patients with survival information from 
TCGA-LIHC dataset (Figure 3B). High mRNA 
expression of the five hub genes was also correlated 
with shorter disease free survival (DFS) (Figure S1). 
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Figure 1. The common differentially expressed genes (DEGs) between normal controls and NASH/HCC. (A) The volcano plot showing DEGs in 366 HCC 
samples from TCGA-LIHC dataset, 43 samples from GSE89632 and 30 samples from GSE126848 dataset, respectively. (B) The common differentially up/down-expressed genes 
based on GSE89632, GSE126848 and TCGA-LIHC datasets. (C and D) The heatmaps illustrating the expression of common DEGs based on TCGA-LIHC (C), GSE89632 and 
GSE126848 (D) datasets. 
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Figure 2. Functional enrichment analysis based on the DEGs. (A) Entire PPI network analysis of the DEGs and their direct interactors. (B) Identification of the most 
significant module and hub genes of the DEGs. (C) The top 10 changes in BP/MF/CC of GO analysis based on the DEGs and their direct interactors. (D) Top 10 enriched KEGG 
pathways based on the DEGs and their direct interactors. 
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Figure 3. The validation of clinical significance of five hub gene expression in HCC patients from TCGA-LIHC dataset. (A) The relationship between five hub 
gene mRNA expression and clinical stages in 343 HCC patients from TCGA-LIHC dataset (*P < 0.05 versus stage I, **P < 0.01 versus stage I). (B) The association between five 
hub gene expression and overall survival in 365 HCC patients from TCGA-LIHC dataset. 

 

Identification of prognostic signature 
To determine the association between common 

DEGs and patients' outcomes, 22 common DEGs were 
firstly submitted to univariate Cox proportional 
hazards regression. Eight genes, involving all five hub 



Int. J. Biol. Sci. 2020, Vol. 16 
 

 
http://www.ijbs.com 

2819 

genes, were identified to have a significant prognostic 
value (Figure 4A). Then, multivariate Cox 
proportional hazards regression analysis screened out 
four genes: HMMR, aldo-keto reductase family 1 
member B10 (AKR1B10), 6-phosphofructo-2- 
kinase/fructose-2,6-bisphosphatases (PFKFB3), and 
suppressor of cytokine signaling 2 (SOCS2) (Figure 
4B). Four-mRNA based prognostic signature was 
constructed and the risk-score formula used to 
calculate the risk score was as follows: (0.276*HMMR 
+ 0.179*AKR1B10 + 0.126*PFKFB3 - 0.495*SOCS2). 
The concordance index of this prognostic model was 
0.692, indicating a certain predictive effect. According 
to the median value of the prognostic risk score, 365 
HCC patients from the TCGA-LIHC dataset were 
divided into low- and high-risk groups. The 
distribution of the risk score along with the 
corresponding OS data and the expression level of 
three genes in the prognostic model were plotted 
(Figure 4C). As depicted in the picture, patients with 
higher risk scores tended to experience a shorter OS 
time and higher death rate. 

Prognostic signature validation and 
nomogram construction 

We conducted the univariate Cox proportional 
hazards regression analysis to screen significant 
clinical features for prognosis, including age, gender, 
body mass index (BMI, weight in kilograms divided 
by the square of height in metres), grade, pathologic 
stage and the risk score of prognostic model were 
included. Only pathologic stage and the risk score of 
prognostic model had an effect on prognosis of HCC 
patients (Figure 4D). To determine whether the 
4-mRNA-based prognostic signature is independent 
prognostic factor for HCC patients, the multivariate 
Cox proportional hazards regression analysis was 
performed using risk score and other clinical features. 
Pathologic stage and risk score maintained a 
significant and independent factor for prognosis 
prediction (P < 0.001) (Figure 4E). Additionally, the 
area under the curve (AUC) value of prognostic 
model was 0.761, 0.697 and 0.708 in 1-, 3-, 5-year 
survival prediction, respectively (Figure 4F). 
According to 1-year survival prediction, the AUC 
value of prognostic model was superior to other 
clinical factors. The AUC value of HMMR alone was 
0.725, and was an alternative to the prediction model 
with the four genes, HMMR, AKR1B10, PFKFB3, and 
SOCS2 (0.761). The comprehensive nomogram was 
constructed for individualized prediction of 1-, 3-, and 
5-year OS that intergrated prognostic features (age, 
gender, BMI, grade, pathologic stage and risk score) 
(Figure 4G). 

Oleate acid elevates the expression of HMMR 
via CEBPα 

As the AUC value of ROC analysis for the hub 
gene HMMR alone is similar to that of 4-mRNA-based 
prognostic signature, we explored the mechanism of 
elevated HMMR expression in NASH and HCC. 
NASH is characterized by accumulation of fat in liver 
cells. Oleate acid (OA), one of fatty acids that induce 
cellular adipogenesis, can promote the proliferation of 
HCC cells [42, 43]. OA-induced lipid accumulation in 
HepG2 liver cancer cells is a well-established model 
for the investigation of hepatic steatosis [20]. As 
expected, Oil Red O staining showed that HepG2 cells 
treated with OA exhibited elevated intracellular lipid 
storage compared to the control cells (Figure 5A). 
Consistent with previous report (25), OA reduced the 
expression of phosphatase and tensin homolog 
(PTEN) (Figure 5B), a vital tumor suppressor gene in 
hepatocellular carcinoma. Importantly, OA markedly 
stimulated HMMR expression at the transcriptional 
and translational levels. 

To investigate the mechanism underlying 
OA-induced HMMR expression, we predicted 
transcription factors based on the HMMR promoter 
by TFBIND. Among them, CEBPα is a key 
transcription factor associated with lipid metabolism, 
and was reported to be induced by OA [44]. Indeed, 
CEBPα overexpression increased HMMR mRNA and 
protein expression in HepG2 and MHCC-97H liver 
cancer cells, and OA further promoted CEBPα- 
stimulated HMMR expression (Figure 5C). As a 
control, CEBPβ did not alter the expression of HMMR. 
In contrast, in HepG2 and MHCC-97H cells, 
knockdown of CEBPα reduced HMMR mRNA and 
protein expression, and almost abrogated OA- 
induced HMMR expression (Figure 5D), indicating 
CEBPα-dependent HMMR induction by OA. ChIP 
assay showed that CEBPα was recruited to a region 
approximately 700-bp upstream of HMMR 
transcriptional start site, but not the other regions 
(Figure 5E). Luciferase reporter assays demonstrated 
that CEBPα increased the activity of wild-type 
HMMR promoter reporter containing putative CEBPα 
binding site, but not the reporter in which the putative 
binding site for CEBPα was mutated, in HepG2 and 
MHCC-97H cells (Figure 5F). These data suggest that 
CEBPα promotes HMMR gene transcription through 
binding to its promoter. 

HMMR promotes HCC cell proliferation 
Next, we explored whether HMMR plays a role 

in HCC cell proliferation. We first investigated the 
effect of HMMR overexpression on anchorage- 
dependent growth of HCC cells. HepG2 cells 
transfected with FLAG-tagged HMMR grew much 
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faster than those transfected with empty vector 
(Figure 6A). Moreover, colony formation assays 
revealed that colony number and colony size were 
larger in HMMR-overexpressing HepG2 cells than 
those in empty vector-containing cells. In contrast, 
HepG2 cells transfected with HMMR shRNA grew 
more slowly than those transfected with control 
shRNA (Figure 6B). Reexpression of HMMR in the 
HMMR knockdown cells rescued this effect. 
Knockdown of HMMR with HMMR shRNA in 
HepG2 cells decreased the colony number and size. 
Again, reexpression of HMMR in the HMMR 
knockdown cells rescued this effect. Similar results 
were obtained in MHCC-97H cells infected with 
HMMR-expressing or HMMR shRNA plasmids 
(Figure S2A and S2B). These results reveal that 
HMMR increases the proliferation and colony 
formation of HCC cells. 

HMMR activates the G1/S and G2/M 
transitions in HCC cells 

To elucidate the mechanism by which HMMR 
promotes HCC cell proliferation, we analyzed 
enriched pathways by GSEA with 366 HCC samples 
from the TCGA-LIHC dataset. Interesting, the cell 
cycle pathway was significantly enriched (Figure 6C). 
Hence, we investigated the effect of HMMR on cell 
cycle distribution by flow cytometry analysis. 
Compared with the control cells, overexpression of 
HMMR in HepG2 cells resulted in a reduction in the 
proportion of cells in G0/G1 phase (from 48.54% to 
43.76%) and G2/M phase (from 21.35% to 16.97%) but 
an increase in the proportion of cells in S phase (from 
30.11% to 39.27%) (Figure 6D). In contrast, 
knockdown of HMMR in HepG2 cells significantly 
increased the proportion of cells in both G0/G1 
(48.76% to 54.03%) and G2/M phase (from 21.47% to 
24.89%), accompanied by decreased proportion of 
cells in S phase (29.77% to 21.08%) (Figure 6E). Re-
expression of HMMR in the knockdown cells recued 
these effects. Similar results were obtained in 
MHCC-97H cells (Figure S2C and S2D). These data 
suggest that HMMR activates both the G1/S and the 
G2/M transitions in HCC cells. 

HMMR regulates the expression of G1 and G2 
phase-related proteins in HCC cells 

Since HMMR regulates cell cycle distribution, 
we examined the expression of several important cell 
cycle-related proteins in HMMR knockdown or 
overexpressing HCC cells. Overexpression of HMMR 
in HepG2 cells and MHCC-97H cells increased the 
expression of the G1/S-phase markers cyclin D1 and 
cyclin E, as well as the G2/M-phase marker cyclin B1 
(Figure 6F and Figure S2E). However, the expression 

of cyclin A and the cell cycle inhibitor p21 was not 
changed in HMMR- overexpressing cells. On the 
contrary, knockdown of HMMR in HepG2 cells and 
MHCC-97H decreased the expression of cyclin D1, 
cyclin E and cyclin B1 (Figure 6G and Figure S2F). 
Reexpression of HMMR in the HMMR knockdown 
cells rescued this effect. Consistent with the HMMR 
overexpression results, HMMR knockdown did not 
alter the expression of cyclin A and p21. 

Knockdown of HMMR suppresses HCC tumor 
growth in nude mice 

Next, the effect of HMMR knockdown on HCC 
tumor growth in nude mice was investigated. HepG2 
cells stably infected with HMMR shRNA lentivirus or 
empty vector were injected subcutaneously in the 
dorsal of each nude mouse. Compared with the 
control groups, knockdown of HMMR significantly 
suppressed HCC tumor growth in nude mouse 
(Figure 7A). As expected, the HepG2 tumors in mice 
inoculated with HMMR shRNA showed decreased 
expression of HMMR, cyclin D1, cyclin E, and cyclin 
B1 (Figure 7B). 

Discussion 
In this study, 12 common upregulated and 10 

common downregulated DEGs are identified in 
NASH and HCC when compared with normal 
controls. Five genes, including HMMR, UBE2T, 
TYMS, PTTG1 and GINS2 are identified as hub genes. 
All five hub genes are found to be independent 
adverse prognostic biomarkers for OS and DFS. 
Univariate and multivariate Cox regression analysis 
and prognostic model analysis reveal that HMMR is 
the most significant gene associated with 
NASH/HCC among five hub genes. Furthermore, 
HMMR promotes HCC tumor growth by activation of 
cell cycle progression, accompanied by changes in 
expression of cell cycle regulators (Figure 7C). These 
findings indicate that HMMR may play an important 
role in the development of NASH and further 
progression to HCC. 

NASH has become a major carcinogenic factor 
for HCC, due to the increase in obesity worldwide [1, 
45]. There is growing literature suggesting that 
various aspects contribute to the development of this 
prevalent and serious chronic disease, such as 
molecular events, immune status, biochemical 
reaction, and genetic function [46-48]. However, the 
pathophysiologic development of NASH and 
subsequent progression to HCC is still largely unclear 
[49]. Our study identifies genetic and molecular 
events, which may be involved in the process from 
normal liver to NASH to HCC through bioinformatic 
analysis. We used GEO datasets for NASH and 
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TCGA-LIHA datasets for HCC to screen for hub genes 
which transform normal liver to NASH to HCC. We 
found that HMMR was overexpressed in NASH 
patients compared to health controls, and negatively 

correlated with poor prognosis in HCC patients, 
suggesting that HMMR may be a potential 
monitoring target for prediction of NASH or HCC 
patients' progression and prognosis. 

 

 
Figure 4. The 4-mRNA prognostic signature and the comprehensive nomogram constructed for HCC patients. (A and B) The forest plot exhibited genes 
significantly correlated with overall survival based on univariate (A) and multivariate (B) Cox regression analysis of 22 common DEGs. (C) The distribution of the risk score, 
survival status and gene expression of the 4-mRNA prognostic signature. (D and E) The forest plot exhibited prognostic factors significantly correlated with overall survival based 
on univariate (D) and multivariate (E) Cox regression analysis of risk score and other clinical features. (F) ROC curve was plotted for the prognostic model with 1-, 3- and 5-year 
overall survival, clinical features, and individual HMMR, AKR1B10, PFKFB3 or SOCS2 in HCC patients. (G) The comprehensive nomogram for 1-, 3- and 5-year overall survival 
prediction of HCC patients. 
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Figure 5. Oleate acid induces HMMR expression via CEBPα. (A) Elevated fat storage in HepG2 cells treated with 25 μM and 50 μM oleate acid. Cells were stained with 
Oil Red O and counterstained with hematoxylin. Scale bar, 50 μm (20X) and 25 μm (40X). (B) RT-qPCR and immunoblot analysis of HepG2 cells treated as in (A). RT-qPCR was 
used for examination of mRNA expression of HMMR and PTEN, and representative immunoblot for their protein expression. β-actin was used as a loading control. (C) RT-qPCR 
and immunoblot analysis of HepG2 and MHCC-97H cells transfected with empty vector or Myc-tagged CEBPα or CEBPβ and treated with 50 μM oleate acid. (D) RT-qPCR and 
immunoblot analysis of HepG2 and MHCC-97H cells transfected with control siRNA, CEBPα siRNAs or CEBPα siRNAs plus siRNA-resistant CEBPα plasmid (Myc-CEBPα-R) 
and treated with 50 μM oleate acid. (E) ChIP analysis of CEBPα occupancy on HMMR promoter in HepG2 cells. IgG, normal serum. The different number represents the regions 
upstream of the transcriptional start site (-1) of HMMR promoter. (F) Luciferase reporter assays of HepG2 and MHCC-97H cells transfected with wild-type or mutated HMMR 
reporters and Myc-CEBPα. A schematic diagram of the HMMR promoter reporter constructs is shown. Red fonts indicate the putative CEBPα-binding site in human wild-type 
HMMR promoter. Mutations are introduced into the HMMR promoter. Data shown are mean ± SD of triplicate measurements that have been repeated 3 times with similar 
results (B-F) (*P < 0.05, **P < 0.01). 
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Figure 6. HMMR promotes HepG2 cell proliferation through activating the G1/S and G2/M transitions. (A) HepG2 cells transfected with FLAG-tagged HMMR or 
empty vector were grown in regular medium and harvested at the indicated times. Cell number and colony formation were detected. Immunoblot showed the expression of 
FLAG-HMMR. (B) HepG2 cells infected with control shRNA, HMMR shRNA or HMMR shRNA plus siRNA-resistant HMMR (HMMR-R) were cultured and analyzed as in (A). 
Immunoblot showed HMMR expression. (C) GSEA was conducted to predict the potential mechanism of HMMR promoting HepG2 cell proliferation. (D) Flow cytometry 
analysis of cell cycle in HepG2 cells transfected with FLAG-HMMR or empty vector. (E) Flow cytometry analysis of cell cycle in HepG2 cells infected with HMMR shRNA or 
HMMR shRNA plus HMMR-R. The image displayed is one of the representative results. Data shown are mean ± SD of triplicate measurements that have been repeated 3 times 
with similar results (A, B, D and E) (*P < 0.05, **P < 0.01 versus corresponding control). (F) Representative immunoblot of HepG2 cells transfected with FLAG-tagged HMMR or 
empty vector. (G) Representative immunoblot of HepG2 cells infected with control shRNA, HMMR shRNA or HMMR shRNA plus HMMR-R. 
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Figure 7. Knockdown of HMMR suppresses HCC tumor growth in nude mice. (A) HepG2 cells stably infected with HMMR shRNA or control shRNA were injected 
subcutaneously in the dorsal of nude mice. The volume of the tumors was examined at the indicated times. Data are shown as mean ± SD (n = 6) (*P<0.05, **P<0.01 versus 
control shRNA at the corresponding times). (B) Immunoblot analysis of representative tumor tissues from (A). (C) Proposed model for the function of HMMR during the 
development of normal liver to NASH to HCC. Oleate acid induces the expression of HMMR in a CEBPα-dependent manner. HMMR increases expression of cyclin D1, cyclin 
E and cyclin B1, thus activating G1/S and G2/M checkpoint transitions. 

 
HMMR acts as an essential component during 

the polo-like kinase 1 (PLK1)-dependent mitotic 
spindle positioning pathway, which is required for 
neural development, neonatal survival, and tumor 
formation [50]. It has been reported that HMMR is 
overexpressed in numerous tumors, including lung 
carcinoma, glioblastoma, prostate adenocarcinoma, 
and leukemia [51-54]. HMMR can induce 
epithelial-mesenchymal transition (EMT) and exert 
oncogenic effects through activating the 

TGF-β/Smad2 signaling pathway in gastric cancer 
[55]. Analysis of 1420 colorectal cancer tissues 
indicates that HMMR may be a more important 
prognosticator than tumor grade and vascular 
invasion [56]. In this study, we found that HMMR acts 
as an oncogene activating HCC cell cycle progression 
and promoting HCC cell proliferation in vitro and 
tumor growth in vivo. How HMMR regulates cell 
cyle-related gene expression remains to be 
investigated. As far as the regulation of HMMR is 
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concerned, a HMMR antisense lncRNA, HMMR-AS1, 
can stabilize HMMR mRNA and promotes cancer 
progression in lung adenocarcinoma, glioblastoma, 
and epithelial ovarian cancer [57-59]. We show that 
OA stimulates the expression of HMMR through 
transcription factor CEBPα, providing another 
mechanism underlying HMMR expression. 

Hyaluronan (HA), a member of the 
glycosaminoglycan family, is an extracellular matrix 
component and interacts with various cellular 
receptors to promote cell growth and movement [60]. 
HMMR is one of defined hyaluronan cellular 
receptors. The evaluation of serum HA could predict 
liver fibrosis and liver damage in NAFLD patients 
[61]. HMMR was shown to regulate cancer 
progression in HA-dependent and -independent 
manners [52, 62]. Tissue cells and cancer cells with 
HMMR overexpression tend to be highly 
proliferative. The exact role of HA/HMMR axis- 
mediated NASH/HCC remains to be investigated. 

Besides HMMR, the other four hub genes 
(UBE2T, PTTG1, GINS2 and TYMS) have been shown 
to play a role in HCC. UBE2T, a member of the E2 
family, is demonstrated to be a vital regulator of 
tumor progression in several cancers, such as lung 
cancer [63], glioblastoma [64], and HCC [65]. PTTG1 
has been reported to be associated with poor 
prognosis in multiple myeloma [66], prostate cancer 
[67] and HCC [68]. Overexpression of UBE2T and 
PTTG1 promotes HCC cell growth, migration and 
invasion through activating Akt pathway [69, 70]. 
GINS2 is a member of the GINS complex and 
participates in DNA replication and cell cycle 
regulation in most tumors, such as pancreatic cancer 
[41], bladder cancer [71], and lung cancer [72]. 
Bioinformatic analysis showed that both individual 
GINS2 and the whole GINS complex could be 
prognostic biomarkers for HCC [73]. TYMS is a 
rate-limiting enzyme in the nucleotide biosynthetic 
pathway, and involves in DNA synthesis and repair 
[40]. Interestingly, although upregulated TYMS was 
associated with poor survival in HCC patients [74], 
enhanced TYMS activity may protect cancerization of 
liver tissue by minimizing uracil misincorporation 
into DNA [75]. However, there are no reports on the 
relationship between these four hub genes and 
NASH. More research will be needed to understand 
the association. 
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