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Supplementary Methods 

Tissue dissociation and single-cell isolation 

scRNA-seq libraries were generated using the 10X Genomics Chromium Controller 

Instrument and Chromium Single Cell 3’ V3 Reagent Kits (10X Genomics, 

Pleasanton, CA). Briefly, each tissue was cut into cut into 2-3–mm3 pieces and 

transported in tubes containing 5 ml RPMI 1640 (Gibco) with 1 mM protease 

inhibitor (Solarbio) placed on ice. Tissue pieces were incubated for 15 min in a 37 °C 

water bath. Cells were collected through a 40-μm filter into FBS and stored on ice, 

and red blood cells were removed by RBC lysis buffer (Invitrogen) with 1 unit/ml 

DNase I. Cells were collected by centrifugation in a 50-ml conical tube at 200 g for 5 

min, and were then resuspended in 100 μl of Tyrode’s solution. Cell numbers and 

viability were determined using a Bio-Rad TC20 automated cell counter and 0.4% 

trypan blue staining. 

 

Single-cell sequencing 

Cell concentration was adjusted to 1,000 cells/μl and approximately 10,000 cells per 

sample were loaded into each channel to generate single-cell Gel Bead-In-Emulsions 

(GEMs) to barcode the mRNA of 6,000 single cells per sample. After the RT step, 

GEMs were broken and barcoded cDNA was purified and amplified. The amplified, 

barcoded cDNA was fragmented, A-tailed, ligated with adaptors, and index PCR-

amplified. The final libraries were quantified using the Qubit High Sensitivity DNA 

assay (Thermo Fisher Scientific) and the size distribution of the libraries was 

determined using a High Sensitivity DNA chip on a Bioanalyzer 2200 (Agilent). All 

libraries were sequenced by HiSeq Xten (Illumina, San Diego, CA) on a 150 bp 

paired-end run. All sequencing data have been uploaded to Gene Expression 

Omnibus website (GSE162708). 

 

Single-cell RNA statistical analysis 

scRNA-seq data analysis was performed by NovelBio Bio-Pharm Technology Co., 

Ltd. with NovelBrain Cloud Analysis Platform. We applied fastp with default 

parameter filtering of the adaptor sequence and removed low-quality reads to obtain 

clean data. Then, the feature barcode matrices were obtained by aligning reads to 

the human reference genome (GRCh38 ensembl, version 19) using CellRanger v3.1.0. 

We applied the down sample analysis among samples sequenced according to the 

mapped barcoded reads per cell of each sample to finally achieve the aggregated 

matrix. Cells containing fewer than 200 expressed genes or a mitochondria UMI rate 

above 20% were excluded. Mitochondrial genes were removed from the expression 

table. The Seurat package (version 2.3.4, https://satijalab.org/seurat/) was used for cell 

normalization and regression based on the expression table according to the UMI 

counts of each sample and percent of mitochondrial rate to obtain the scaled data. 

 

Principal component analysis (PCA) and nonlinear dimensional reduction analysis 

All the scRNA-seq data from tissues and PMBC were analyzed collectively. PCA and 

graph-based clustering analysis were performed and visualized by nonlinear 
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dimensional reduction (t-stochastic neighbor embedding [tSNE], uniform manifold 

approximation and projection [UMAP]) using the Seurat package (v.2.3.4) for R. 

Highly variable genes were identified using the ‘FindVariableGenes’ function with 

parameters for x.low.cutoff=0.0125, x.high.cutoff=6, and y.cutoff=0.5. PCA was 

constructed based on the scaled data with the top 2,000 highly variable genes and top 

10 principals were used for tSNE construction and UMAP construction. 

 

For subclustering, clusters were selected and PCA was constructed based on the 

scaled data with the top 2,000 highly variable genes and top 10 principals were used 

for tSNE and UMAP construction. Utilizing the graph-based cluster method, we 

acquired unsupervised cell cluster results based on the PCA’s top 10 principal 

components and we calculated the marker genes by the FindAllMarkers function with 

the Wilcoxon rank-sum test algorithm under the following criteria:1. lnFC > 0.25; 2. 

pvalue<0.05; 3. min.pct>0.1. In order to identify the cell type, clusters of same cell 

type were selected for re-tSNE analysis, graph-based clustering, and marker analysis. 

 

CNV estimation and selection of malignant cells 

Initial CNVs (CNV0) were estimated using the inferCNV R package as described in 

previous studies.1,2 Then, the extent of the CNV signal, which was defined as the 

mean of squares of CNV0 values across the genome, was calculated. Each cell was 

scored for the extent of the CNV signal and for the correlation between the CNV0 

profile of each cell with the average CNV0 profile of all cells from the corresponding 

tumor. Subsequently, putative malignant cells were defined as those with a CNV 

signal above 0.05 and CNV correlation above 0.5, as previously described.3 

 

Pseudo-time analysis 

We applied the Single-Cell Trajectories analysis utilizing Monocle2 (http://cole-

trapnell-lab.github.io/monocle-release) with DDR-Tree and default parameters. 

Before Monocle analysis, we selected marker genes from the Seurat clustering results 

and raw expression counts of the cell-passed filtering. Based on the pseudo-time 

analysis, branch expression analysis modeling (BEAM Analysis) was applied for 

branch fate determined gene analysis.  

 

Cell communication analysis 

To enable a systematic analysis of cell–cell communication molecules, we applied 

cell communication analysis based on the CellPhoneDB, a public repository of 

ligands, receptors, and their interactions (https://github.com/Teichlab/cellphonedb). 

Membrane, secreted, and peripheral proteins of the clusters of different time points 

were annotated. The homology relationships between mouse and human genes were 

downloaded from the Ensembl Biomart database. Significant mean and cell 

communication significance (P-value <0.05) was calculated based on the interaction 

and the normalized cell matrix achieved by Seurat normalization. 

 

SCENIC analysis 

https://github.com/Teichlab/cellphonedb
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To assess transcription factor regulation strength, we applied the single-cell regulatory 

network inference and clustering (pySCENIC, v0.9.5) workflow,4 using the 20-

thousand motifs database for RcisTarget and GRNboost. 

 

Cluster gene enrichment analysis 

To characterize the relative activation of a given gene set, such as pathway activation, 

“Angiogenesis,” and “Fatty Acid Metabolism” as described before, we performed 

QuSAGE5 (Quantitative set analysis for gene expression; V. 2.16.1) analysis to 

calculate the gene enrichment score of each cluster.  

 

Differential gene expression analysis 

To identify differentially expressed genes among samples, the function FindMarkers 

with the Wilcoxon rank-sum test algorithm was used under following criteria: 1. 

lnFC > 0.25; 2. pvalue<0.05; 3. min.pct>0.1. 

 

Coregulated gene analysis 

To discover the gene coregulation network, the find_gene_modules function of 

monocle3 was used with the default parameters. 

 

GO analysis 

Gene ontology (GO) analysis was performed to identify the biological implications of 

marker genes and differentially expressed genes. We downloaded the GO annotations 

from NCBI (http://www.ncbi.nlm.nih.gov/), UniProt (http://www.uniprot.org/), and 

the Gene Ontology (http://www.geneontology.org/). Fisher’s exact test was applied to 

identify the significant GO categories and FDR was used to correct the P-values.  

 

Pathway analysis 

Pathway analysis was used to find the significant pathways of the marker genes and 

differentially expressed genes according to the KEGG database. We selected the 

significant pathways using Fisher’s exact test, and the threshold of significance was 

defined by the P-value and FDR. 

 

Lineage tracing based on mitochondrial mutation 

For 10x data, lineage tracing based on mitochondrial mutation was performed 

following Zhang et al.6 Briefly, we calculated the alternative allele frequency and the 

coverage of each position in the mitochondrial chromosome with the help of VarTrix 

(https://github.com/10XGenomics/vartrix). To build phylogenetic trees based on the 

mitochondrial mutations, we retained mitochondrial genome position with coverage > 

10 and at least 70% cells within the interest cell populations expressed. A cutoff of 

alternative allele frequency > 0.08 was set to identify subclone mutations in the 

mitochondrial genome. We calculated phylogenetic trees using RAxML and estimated 

stable cell lineages. 

 

Patients for survival analysis 
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In order to validate the prognostic value of gene markers, patient information was 

retrieved from electronic medical records in two hospitals (Guangdong Provincial 

People’s Hospital, and Sun Yat-sen Memorial Hospital) with the following eligibility 

criteria: 1) The pathological diagnosis was G1-G2 nonfunctional pNETs; 2) the 

patients should have received curative surgical treatment; 3) the follow-up time after 

surgical treatment should be greater than 5 years. Overall, a total of 30 patients 

underwent curative surgical treatment between January 2006 and January 2016 at 

Guangdong General Hospital, and a total of 16 patients underwent curative surgical 

treatment between November 2010 and October 2015 at Sun Yat-sen Memorial 

Hospital were included in this study. The basic clinical information of the 46 patients 

were described in the supplementary Table 7. Both the Ethics Committee of 

Guangdong Provincial People’s Hospital and that of Sun Yat-sen Memorial Hospital 

approved the use of the data for this research with written informed consent being 

waived as the retrospective nature of this analysis and it involves no risk to subjects. 

 

RNA extraction and quantitative real-time reverse transcription PCR (qRT-PCR) 

Total RNA from the fresh frozen tissues was isolated using the Trizol reagent (Takara 

Bio, Inc., Shiga, Japan) according to the manufacturer's instructions. Total RNA (1 

μg) was reverse transcribed using PrimeScript™ RT Master Mix (Takara Bio). 

Quantitative real-time polymerase chain reaction (qPCR) was performed using the TB 

Green™ Premix Ex Taq™ II (Tli RNaseH Plus, Takara Bio) and a Roche LightCycler 

480 system (Roche, Basel, Switzerland). All primers used for qRT-PCR are listed as 

followed, and the relative changes were calculated using the 2-△△CT method. 

 

Gene Symbol Forward primer (5’ to 3’) Reverse primer (5’ to 3’) 

IGFBP3 TTGCACAAAAGACTGCCAAG CAACATGTGGTGAGCATTCC 

PCSK1 GGACCTCTGAGTATGACCCG AGCTTTGGCATTTAGCAAGC 

CXCL16 GACTCCCCGCCATCGGTTCA CCCCGAGTAAGCATGTCCAC 

SMOC1 AGGTCCTACGAGTCCATGTGT CACTGCACCTGGGTAAAGG 

FGF14 GGAAGGGCAAGCTATGAAAGG TGGTTCTCGGTACATGGCAAC 

GAPDH GCTAAGCAGTTGGTGGTGCA TCACCACCATGGAGAAGGC 

 

Immunohistochemistry (IHC) 

Immunohistochemistry (IHC) was used to examine the protein level of PCSK1 and 

SMOC1 in paraffin-embedded primary specimens. Briefly, slides in 4-μm thick were 

dewaxed and rehydrated with xylene and graded alcohol, respectively. The antigen 

retrieval procedure was performed using a pressure cooker for 15 min in 10 mM 

sodium citrate buffer (pH 6.0). Nonspecific binding was blocked by incubation in 3% 

bovine serum albumin in phosphate-buffered saline. Slides were then incubated with 

PCSK1 antibody (1:100 dilution, Abcam, CA, USA, number ab191452) or SMOC1 

antibody (1:100 dilution, Abcam, CA, USA, number ab200219). Following additional 

washing with PBS the second antibody was added. 

To qualitative the IHC results, the evaluation of IHC staining was reference to the 

contents of our previous publication.7 Briefly, IHC score was estimated by using the 
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following formula: IHC score = staining intensity (0, no staining; 1, light brown; 2, 

brown; 3, dark brown) × proportion of positively stained cells (0, none; 1, < 25%; 2, 

25–50%; 3, 50–75%; and 4, > 75%). All samples were scored by two independent 

observers in a blinded manner, and a final score ≥6 was considered as a positive 

expression of the corresponding protein. 

 

Search strategy for retrieving cancer stem cell markers of pNETs 

A literature search was performed on July 1st, 2021 in four electronic databases 

including PubMed, EMBASE, Web of Science, and MEDLINE. The following MeSH 

terms and their combinations were searched in [Title/Abstract]: [stem and 

neuroendocrine and (cancer or tumor or tumour or neoplasm or carcinoma or 

adenocarcinoma)]. In addition, the reference lists of relevant articles were manually 

searched. The search was limited to English language publications, and there was no 

restriction on publication year. 

 

Statistical Analysis 

Survival curves were compared using the log-rank test, and Kaplan-Meier survival 

curves were plotted. Survival was calculated from surgical resection to death or last 

follow-up. Correlation analyses were performed using the spearman correlation. One-

way analysis of variance (ANOVA) was used to compare continuous variables of 

multiple groups, while means between two groups were compared by using t-test or 

Wilcoxon rank sum test depending on the normality test result. All P values were two 

sided and P < 0.05 was considered to indicate a statistically significant difference. 
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Figure legends of supplementary figures 

Figure S1. A. QuSAGE Gene Enrichment Analysis revealed enriched biological 

processes for specific genes of each malignant subcluster. B. Malignant developmental 

trajectories of single malignant cells for each subcluster. C. GSEA showing the 

enrichment of gene signatures in subtype 3 (cluster 3) in comparing with other subtypes. 

D. Heatmap of SCENIC analysis, showing the relative activity of transcription factors in 

each malignant subcluster at single-cell level. The blue box highlights the transcription 

factor TCF4 with high activity specific to subcluster 3. E. Expression levels of NESTIN, 

ALDH1, CD133, CD44, and SOX9 in each subtype were displayed in violin plots. F. 

GSEA showing the enrichment of gene signatures associated with angiogenesis in 

subtype 3 (cluster 3) in comparing with other subtypes. G. Dot plot demonstrates the 

normalized mean expression of transforming growth factors and vascular endothelial 

growth factors in each subtype. pct.exp, percentage of cells with expression; avg.exp, 

average expression level. 

 

Figure S2. A. UMAP plot showing 11 clusters of myeloid cells, colored by cell cluster or 

sample origin (lower left black box). B. Cell number and percentage of assigned cell 

types are summarized. C. Dot plot depicting the expression levels of specific markers for 

monocytes, macrophages, and dendritic cells across clusters. D. Dot plot depicting the 

expression levels of markers for macrophage subtypes across clusters. E-F. Heatmaps 

showing the results of QuSAGE analysis. G. Dot plot showing the relative expression of 

chemokines in macrophage-1, macrophage-2, and macrophage-5. H. Violin plots 

showing the expression levels of CCL8, CCL13, SPP1, and TNF across clusters. pct.exp, 

percentage of cells with expression; avg.exp, average expression level. 

 

Figure S3. A. UMAP plot showing 7 clusters of CD8+ T cells, colored by cell cluster, 

sample origin (lower left black box) or cell type (lower right black box). B. Cell number 

and percentage of assigned cell types are summarized. C. Dot plot depicting the 

expression levels of Immune-Checkpoint-Inhibition-Receptor-Genes across clusters. D. 

Heatmap depicting the enrichment of immune-response related pathways in each cluster 

based on the result of QuSAGE analysis. E. UMAP plots demonstrating differential 

expression of selected marker genes of MAIT, effector memory T cell, cytotoxic T cell, 

and exhausted T cell. F. RNA velocities are visualized on the UMAP projection of in 

CD8+ T cells using Gaussian smoothing on a regular grid. G. Violin plots showing the 

expression of PRF1, GZMA, GZMB, GZMH, GNLY, and IFN-γ across clusters. pct.exp, 

percentage of cells with expression; avg.exp, average expression level. 



Figure S4. A. UMAP plot showing 14 clusters of fibroblasts, colored by cell cluster or 

sample origin (lower left black box). B. Cell number and percentage of assigned cell 

types are summarized. C. UMAP plots demonstrating differential expression of selected 

marker genes of iCAF, myCAF, and apCAF. D. UMAP plot showing the functional 

description of each cluster. E. Enriched biological processes in GO analysis based on 

marker genes of cluster 5 (upper panel) and cluster 8 (lower panel). F. Violin plots 

showing the expression of CD74 and CD200 across clusters. G. Heatmap depicting the 

result of QuSAGE analysis. H. Dot plots depicting the expression levels of SASP-related 

genes across clusters. pct.exp, percentage of cells with expression; avg.exp, average 

expression level. 

 

Figure S5. Kaplan-Meier curves of disease-free survival stratified by the median mRNA 

expression level of IGFBP3 (A), PCSK1 (B), CXCL16 (C), FGF14 (D), and SMOC1 (E). 

 


