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Abstract 

Rationale: Coronavirus disease 2019 (COVID-19) has caused a global pandemic. A classifier combining chest 
X-ray (CXR) with clinical features may serve as a rapid screening approach. 
Methods: The study included 512 patients with COVID-19 and 106 with influenza A/B pneumonia. A deep 
neural network (DNN) was applied, and deep features derived from CXR and clinical findings formed fused 
features for diagnosis prediction. 
Results: The clinical features of COVID-19 and influenza showed different patterns. Patients with COVID-19 
experienced less fever, more diarrhea, and more salient hypercoagulability. Classifiers constructed using the 
clinical features or CXR had an area under the receiver operating curve (AUC) of 0.909 and 0.919, respectively. 
The diagnostic efficacy of the classifier combining the clinical features and CXR was dramatically improved and 
the AUC was 0.952 with 91.5% sensitivity and 81.2% specificity. Moreover, combined classifier was functional 
in both severe and non-serve COVID-19, with an AUC of 0.971 with 96.9% sensitivity in non-severe cases, 
which was on par with the computed tomography (CT)-based classifier, but had relatively inferior efficacy in 
severe cases compared to CT. In extension, we performed a reader study involving three experienced 
pulmonary physicians, artificial intelligence (AI) system demonstrated superiority in turn-around time and 
diagnostic accuracy compared with experienced pulmonary physicians. 
Conclusions: The classifier constructed using clinical and CXR features is efficient, economical, and radiation 
safe for distinguishing COVID-19 from influenza A/B pneumonia, serving as an ideal rapid screening tool during 
the COVID-19 pandemic. 
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Introduction 
Coronavirus disease 2019 (COVID-19) caused by 

severe acute respiratory syndrome coronavirus 2 
(SARS Cov-2) first reported in December 2019 and has 
caused a global pandemic. Up to now, more than 61 
million infected patients were reported globally, with 
1.4 million deaths. 

The diagnosis of COVID-19 is challenging in 
many countries due to its nonspecific symptoms and 
variable incubation period. Clinically, patients with 
COVID-19 can have presentations ranging from 
asymptomatic to severely ill. The most common 
symptoms are fever, fatigue, dry cough, myalgia, and 
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dyspnea [1-5], while less common symptoms include 
diarrhea, hemoptysis, and headaches [3-5]. These 
clinical manifestations are to some degree identical to 
those of other known pneumonias, especially 
influenza. 

It is important to devise a rapid, economical, 
accurate approach to identify and diagnose the 
suspected population with COVID-19. The reference 
standard procedure for confirming the diagnosis is 
reverse transcriptase-polymerase chain reaction 
(RT-PCR) [5]. However, debates remained due to 
varied sensitivity of RT-PCR [3-6]. 

Recent studies have suggested that chest 
computed tomography (CT) can be used as a 
screening and diagnostic tool in epidemic areas with 
the sensitivity up to 97% [5-7]. However, several 
factors are concerns, delayed use because it is a 
limited medical resource during the COVID-19 
pandemic, financial burden, the labor involved, 
difficulty disinfecting the device [5]. 

Deep learning has been widely used in medical 
image analysis, and the application of artificial 
intelligence (AI) to the diagnosis of COVID-19 has 
been proposed [8]. Trained with much labeled data, 
several deep learning systems were shown to be more 
accurate than human radiologists at identifying 
COVID-19 [9, 10]. Most of these findings were based 
on CT information, and the performances were 
consistently satisfactory [11-16]. Given its restricted 
availability, higher radiation exposure, and 
complicated disinfection procedures, alternative 
approaches to chest CT are needed and chest x-ray 
(CXR) diagnosis in COVID-19 should be examined. 
Compare to chest CT, CXR is a simple procedure with 
lower cost and radiation exposure. Several studies 
proposed that CXR imaging can be used for the early 
diagnosis of COVID-19 [17, 18], but the reported 
accuracy was inferior to that of chest CT [19, 20]. 
Therefore, the current study used deep learning 
methods to construct a classifier combining clinical 
features with CXR information as a simple, efficient, 
economical, and accurate approach to differentiate 
COVID-19 from influenza A/B. 

Methods 
Patients and Materials 

The retrospective study analyzed 525 patients 
with nucleic acid-confirmed COVID-19 and 107 
patients with nucleic acid-confirmed influenza A/B 
pneumonia who were admitted to Wuhan Tongji 
Hospital and Second Affiliated Hospital Zhejiang 
University School of Medicine from January 2017 to 
June 2020. Since not all the patients underwent CXR, 
we used the chest CT localizer scan as a surrogate of a 

standard CXR. We excluded the patients with 
incomplete clinical data. The final cohort included 106 
patients with influenza A/B epidemic viral 
pneumonia and 512 COVID-19 cases. We divided the 
cohort randomly into a training set of 290 cases (44 
influenza A/B and 246 COVID-19) and a test cohort of 
328 cases (62 influenza A/B and 266 COVID-19) 
(Figure 1A). The division of subset was totally 
random with simple random sampling principles. 
Their detailed demographic characteristics are listed 
in Table 1. The baseline clinical features, multi-stage 
chest CT and localizers, course of the disease, severe 
events, and interventions (drugs and supportive 
therapies) were collected from all patients. This 
retrospective study was approved by the ethics 
committees of the participating hospitals. 

 

Table 1. Clinical characteristics and laboratory findings of 
patients with A/B influenza or COVID-19 

Characteristics A or B influenza COVID-19 P-value 
Male sex - no. (%) 39 (36.79%) 268 (52.34%) 0.0035 
Median age (IQR) - year 59.8 (48.5-72.0) 60.8 (53.0-70.0) 0.5301 
Fever on/after admission    
Fever on admission - no. (%) 81 (76.42%) 146 (28.52%) <0.0001 
Chills on admission - no. (%) 16 (15.09%) 68 (13.28%) 0.6593 
Highest temperature on 
admission - °C 

38.27 (0.94) 37.60 (1.05) <0·0001 

Fever during hospitalization 
- no. (%) 

73 (68.87%) 260 (50.78%) 0.1433 

Chills during hospitalization 
- no. (%) 

17 (16.04%) 37 (7.23%) 0.0011 

Highest temperature during 
hospitalization - °C 

38.24 (0.84) 37.61 (0.76) <0·0001 

Symptoms - no. (%)    
Conjunctival congestion 0 (0.00%) 0 (0.00%) 0.5200 
Nasal congestion 13 (12.26%) 6 (1.17%) <0·0001 
Cough 96 (90.57%) 386 (75.39%) 0.0006 
Expectoration 91 (85.85%) 222 (43.36%) <0·0001 
Sore throat 28 (26.42%) 28 (5.47%) <0·0001 
Fatigue 48 (45.28%) 197 (38.48%) 0.1747 
Dyspnea/Shortness of 
breath 

58 (54.72%) 245 (47.85%) 0.2111 

Hemoptysis 10 (9.43%) 11 (2.15%) 0.0003 
Nausea/Vomit 7 (6.60%) 70 (13.67%) 0.0397 
Headache 17 (16.04%) 57 (11.13%) 0.1754 
Diarrhea 8 (7.55%) 133 (25.98%) <0·0001 
Myalgia 26 (24.53%) 102 (19.92%) 0.3087 
Signs of infection - no. (%)    
Pharyngeal congestion 11 (10.38%) 8 (1.56%) <0·0001 
Enlarged tonsils 1 (0.94%) 0 (0.00%) 0.1544 
Enlarged lymph node 2 (1.89%) 0 (0.00%) 0.0124 
Rash 3 (2.83%) 0 (0.00%) 0.0010 
Complication - no. (%)    
Septic shock 9 (8.49%) 5 (0.98%) <0·0001 
Acute respiratory distress 
syndrome 

12 (11.32%) 28 (5.47%) 0.0356 

Acute kidney injury 10 (9.43%) 15 (2.93%) 0.0029 
Disseminated intravascular 
coagulation 

0 (0.00%) 6 (1.17%) 0.3791 

Rhabdomyolysis 0 (0.00%) 8 (1.56%) 0.1574 
Underlying disease - no. (%)    
Hypertension 36 (33.96%) 184 (35.94%) 0.6713 
Heart disease 11 (10.38%) 48 (9.38%) 0.7979 
Diabetes 12 (11.32%) 81 (15.82%) 0.2197 
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Obesity 6 (5.66%) 4 (0.78%) 0.0014 
Lung disease 22 (20.75%) 28 (5.47%) <0·0001 
Kidney disease 5 (4.72%) 8 (1.56%) 0.0395 
Liver Disease 6 (5.66%) 7 (1.37%) 0.0109 
Cancer 5 (4.72%) 18 (3.52%) 0.6224 
Impaired immune system 9 (8.49%) 6 (1.17%) <0·0001 
Outcome - no. (%)    
Critically ill 44 (41.51%) 228 (44.53%) 0.5439 
Admission to ICU 38 (35.85%) 8 (1.56%) <0·0001 
Mechanical ventilation 31 (29.25%) 24 (4.69%) <0·0001 
Death 7 (6.60%) 5 (0.98%) 0.0003 
Laboratory findings    
White blood cell count - 
×109/L 

8.31 (4.93) 6.20 (2.89) <0·0001 

Lymphocyte count - ×109/L 1.07 (0.59) 1.16 (1.01) 0.4042 
Platelet count - ×109/L 183.18 (84.43) 243.68 (99.65) <0·0001 
Hemoglobin - g/L 122.85 (21.85) 126.62 (14.98) 0.0312 
C-reactive protein - mmol/L 83.09 (66.32) 49.91 (54.24) <0·0001 
Procalcitonin - ng/mL 3.69 (11.52) 0.98 (1.19) <0·0001 
Serum sodium - mmol/L 138.18 (5.19) 138.09 (9.05) 0.9232 
Serum potassium - mmol/L 3.90 (0.63) 4.87 (9.42) 0.2887 
Serum chlorine - mmol/L 101.42 (5.44) 99.95 (5.99) 0.0200 
Serum calcium - mmol/L 2.03 (0.30) 2.98 (11.69) 0.4045 
Lactate dehydrogenase - 
U/L 

364.10 (233.64) 315.13 (135.76) 0.0036 

Alanine aminotransferase - 
U/L 

42.59 (34.17) 40.72 (121.47) 0.8755 

Aspartate aminotransferase - 
U/L 

59.02 (76.76) 42.69 (150.26) 0.2768 

Bilirubin - mmol/L 12.77 (7.36) 9.63 (4.89) <0·0001 
Creatine Kinase - U/L 426.49 (1816.07) 240.37 (125.51) 0.0224 
Creatinine - μmol/L 95.59 (108.63) 73.66 (51.45) 0.0017 
Urea Nitrogen - mmol/L 7.61 (7.30) 5.20 (9.68) 0.0158 
D-dimer - mg/L 306.18 (692.31) 131.41 (476.43) 0.0017 
Activated partial 
thromboplastin time - s 

42.63 (9.66) 40.08 (5.70) 0.0003 

Prothrombin time - s 14.80 (6.90) 14.18 (2.22) 0.0945 
Footnote: IQR: interquartile range. 

 

Data Augmentation 
Since a deep network should be trained on 

sufficient data and we enrolled fewer influenza cases 
than COVID-19 cases, data augmentation was done to 
produce more training cases. This process is widely 
used in deep learning and has proved useful for 
improving accuracy, especially when the number of 
cases is small or unbalanced. We firstly manually 
segment the lung areas because the localizer scan be 
totally unaligned. After segmentation, the image 
patches were resized to 256×256, and then random 
rotation (for -15~15 degree), scale (to 0.8~1.2 of the 
raw size), and transmit (1.0~1.1 of the raw size) were 
performed to augment our cases. Then we cropped a 
224×224 patch from the augmented patches, and 
Gaussian noise was also randomly added to the 
training samples. Using the torchvision toolbox of 
Pytorch, the augmentation was done automatically in 
the training process and a sampler is introduced to 
make sure that influenza cases and COVID-19 cases 
are in the same amount in every batch. 

Deep Neural Network 
A deep neural network (DNN) is a powerful 

machine-learning tool. Feature extraction, selection, 
and classification can be all formatted as neural layers 
using a DNN. To merge clinical patterns with CXR 
images, which combines clinical vectors with images, 
the proposed DNN input the clinical vectors and CXR 
images separately (Figure 1B). The CXR images were 
input as matrixes of gray values and convolutional 
construction extracted representative features from 
the images. The shallow layers focused on structural 
features, such as the shape, edge, and texture of 
lesions. The deep layers mined targeted semantic 
information, such as the presence or absence of a 
lesion and non-severe or severe grades of disease. We 
used Alexnet [21], a widely used deep network, for 
the CXR processing. For the clinical information, 
every element of the vector has different 
dimensionality and could be associated with every 
other element. We used a fully connected layer and a 
batch normalization layer to extract deep clinical 
features. The deep features derived from the CXR 
were then concatenated with the clinical features, 
resulting in fused features. Another fully connected 
layer and batch normalization layer were used to 
compute the final output, the combined diagnosis. 
The proposed fused network can be conveniently 
degraded into a clinical network or a CXR network by 
removing the other, as shown in Figure 1B. The DNN 
parts were all implemented based on Pytorch tools 
[22]. We also evaluated the diagnostic performance of 
chest CT, which has proven to be a valuable tool for 
diagnosing COVID-19. Here, we used 3D densenet 
[23] as the CT diagnosis network. Since our cases are 
unbalanced in categories, we use number-balanced 
weights to keep loss function sensitive to both 
categories. Cross entropy of each category was 
multiplied by weights. Mathematically,  

𝐿 = −
1
B
�  
𝐵

𝑗=1

�𝑤𝑖 × log�𝑝𝑗𝑖�I(𝐼𝑗 = 𝑖)
2

𝑖=1

 

in which B  is batch size and 𝑝𝑛𝑖  is the 
softmax-probability of case 𝑛 and category 𝑖. I�𝑙𝑗 = 𝑖� 
is indicative function which is 1 when the equitation 
𝑙𝑗 = 𝑖 is true otherwise 0. 𝑙𝑗 is the ground-truth label of 
category of case j. 𝑤𝑖  is the weight of category 𝑖  is 
computed by wi = 𝑛𝑖

∑𝑛𝑖
. 

Statistical Analysis 
In addition to the deep learning method, basic 

statistical analyses were performed. For univariate 
analyses, t-tests were used to compare 56 clinical 
features and demographic information. For 
multivariate analysis, we used the trained parameters 
identified from the clinical part of our deep learning 
network (Figure 1B) to compute the relative 
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coefficients, which indicate the importance of each 
feature (Table S1). The area under the receiver 
operating curve (AUC), sensitivity, specificity, and 

negative and positive predictive values were also 
computed. 

 

 
Figure 1. Development of the classifier for differentiating coronavirus disease 2019 (COVID-19) from influenza A/B and structure of the deep neural 
network (DNN). (A) A total of 525 patients with COVID-19 and 107 patients with influenza A/B were enrolled and separated into a training set of 290 cases and a test set of 
328 cases after exclusion. A DNN was applied for feature extraction, selection, classification. The proposed fusion network, clinical network, chest x-ray (CXR) network and 
computed tomography (CT) network were established for final diagnosis. (B)The combined network system has two input streams: image data and clinical data. The two kinds 
of data are processed by two streams of deep neural layers, which are ultimately concatenated. When processing CXR image or clinical data only, the other one data stream is 
removed. 
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Results 
Univariate and Multivariate Analysis of Clinical 
Features 

We identified different patterns of clinical 
features for COVID-19 and influenza (Table 1). Fever, 
nasal congestion, sore throat, pharyngeal congestion, 
and productive sputum were common in both, while 
septic shock was more common in influenza and 
diarrhea was a salient symptom in COVID-19. 
Underlying lung disease and an impaired immune 
system were significantly associated with influenza, 
but not COVID-19, indicating that the entire 
population is susceptible to COVID-19, while 
influenza virus pneumonia is prone to affect specific 
patients. In influenza, the white blood cell count, 
C-reactive protein (CRP), procalcitonin, and bilirubin 
were increased, while in COVID-19 the number of 
platelets was significantly increased. 

Table 2 shows the coefficients of each element 
derived from the multivariate model. Procalcitonin, 
urea nitrogen, and CRP were negatively related to 
COVID-19, as were fever and underlying lung 
disease. Conversely, conjunctival congestion, 
disseminated intravascular coagulation, obesity, and 
rhabdomyolysis were positively related to COVID-19. 

DNN Performances of Classifiers 
Given the difference in clinical manifestations 

shown above, we first constructed a classifier using 
clinical features (Figure 2A). The AUC was 0.909 (95% 
CI 0.891-0.914) with a sensitivity of 90.5% and 
specificity of 59.4% in the test cohort. Next, we 
explored the diagnostic value of CXR and the 
validated AUC was 0.919 (95% CI 0.909-0.930) with a 
sensitivity of 86.9% and specificity of 74.2%. 

Separately, the clinical features and CXR performed 
comparably, but less than satisfactorily. When we 
combined the two, the AUC was increased to 0.952 
(95% CI 0.944-0.960), with an improved sensitivity of 
91.5% and notably specificity of 81.2%. Heatmap 
visualized top ranked 500 deep features among 5120 
features and showed largely consistent differences 
between individuals with COVID-19 and influenza 
A/B (Figure 3A). Principal component analysis (PCA) 
double confirmed that COVID-19 and influenza A/B 
is a predominant source of variation in the dataset 
(Figure 3B). Since our method output possibility 
scores for cases, threshold points can be selected as 
cut-offs according to clinical needs. We also compared 
the diagnostic power of chest CT and our combined 
clinical-CXR modality. This showed that chest CT had 
a numerically higher AUC of 0.994 (95% CI 
0.993-0.997), indicating that our combined modality is 
sufficiently accurate and capable of rapid screening. 

DNN Performance in severe and non-severe 
subgroups 

Furthermore, we tested our rapid screening 
classifier (combined modality) in severe and 
non-severe subgroups (Figure 2B, 2C). In non-severe 
cases, our rapid screening classifier had an AUC of 
0.971 (95% CI 0.964-0.980) with a sensitivity of 96.9% 
and specificity of 73.2%. The CXR classifier had an 
AUC of 0.926 (95% CI 0.914-0.941) with a per-exam 
sensitivity of 92.7% and specificity of 63.2%. The 
CT-based classifier had a per-exam sensitivity of 
99.5% and specificity of 85.5%, with an AUC of 0.992 
(95% CI 0.989-0.995). Our rapid screening classifier 
was as good as the CT-based classifier in the non- 
severe subgroup. 

 
 

Table 2. Differential diagnostic efficacy of four classifiers in the whole cohort, non-severe subset, and severe subset 

Classifier AUC Sensitivity Specificity NPV PPV 
Whole cohort 
Clinic only 0.9091 (0.8918-0.9145) 0.9046 (0.8846-0.9197) 0.5941 (0.6173-0.6914) 0.5985 (0.5652-0.6344) 0.9080 (0.8947-0.9208) 
CXR only 0.9197 (0.9090-0.9302) 0.8692 (0.8539-0.8805) 0.7425 (0.7037-0.7805) 0.5932 (0.5607-0.6316) 0.9284 (0.9167-0.9420) 
Proposed fusion 0.9524 (0.9443-0.9608) 0.9154 (0.9055-0.9299) 0.8119 (0.7763-0.8434) 0.7139 (0.6778-0.7500) 0.9492 (0.9400-0.9600) 
CT 0.9946 (0.9932-0.9970) 0.9818 (0.9773-0.9872) 0.9112 (0.8902-0.9359) 0.9284 (0.9103-0.9500) 0.9771 (0.9712-0.9838) 
Non-severe subset 
Clinic only 0.9514 (0.9408-0.9629) 0.9172 (0.9013-0.9342) 0.7551 (0.7105-0.8056) 0.6985 (0.6486-0.7500) 0.937 (0.9216-0.9530) 
CXR only 0.9263 (0.9140-0.9413) 0.9275 (0.9145-0.9430) 0.6327 (0.5814-0.6923) 0.6876 (0.6364-0.7500) 0.9082 (0.8910-0.9255) 
Proposed fusion 0.9719 (0.9648-0.9808) 0.9689 (0.9605-0.9806) 0.7347 (0.6774-0.7805) 0.8588 (0.8182-0.9118) 0.9343 (0.9193-0.9494) 
CT 0.9923 (0.9892-0.9954) 0.9948 (0.9934-1.0000) 0.8571 (0.8158-0.8974) 0.9765 (0.9677-1.0000) 0.9645 (0.9554-0.9750) 
Severe subset 
Clinic only 0.8666 (0.8489-0.8925) 0.8934 (0.8782-0.9146) 0.4423 (0.3846-0.5000) 0.5230 (0.4688-0.5882) 0.8590 (0.8415-0.8802) 
CXR only 0.9494 (0.9374-0.9635) 0.9543 (0.9308-0.9627) 0.7115 (0.7027-0.7500) 0.7865 (0.7250-0.8421) 0.9357 (0.9202-0.9506) 
Proposed fusion 0.9487 (0.9378-0.9629) 0.9391 (0.9255-0.9548) 0.7500 (0.7073-0.8000) 0.7654 (0.7179-0.8158) 0.9349 (0.9226-0.9494) 
CT 0.9968 (0.9955-0.9989) 0.9746 (0.9679-0.9871) 0.9615 (0.9474-0.9778) 0.9107 (0.8810-0.9512) 0.9897 (0.9868-0.9938) 
Footnote: AUC: area under the receiver operating curve; NPV: negative predictive value; PPV: positive predictive value; CXR: chest X-ray; CT: computed tomography. 
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Figure 2. Diagnostic performance of the proposed classifiers in the whole cohort, non-severe subset, and severe subset. (A) Diagnostic performance in the 
whole cohort. According to the receiver operating characteristic (ROC) curves of our proposed method in the whole cohort (A1), combining the chest x-ray (CXR) and clinical 
data (green) improves the performance compared to both individually (blue and orange). A2-A5: Confusion metrics for clinical only (A2), CXR only (A3), combined (A4), and 
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computed tomography (CT) (A5). Both the CXR and clinical data can diagnose coronavirus disease 2019 (COVID-19) and influenza. While the accuracy for diagnosing influenza 
using clinical features is relatively low and that for COVID-19 using CXR is lower, combining the clinical features and CXR improves both. (B) Diagnostic performance in the 
non-severe subset. As shown in the ROC curves for the non-severe subset (B1), clinical data (blue) perform better than chest x-ray (CXR) (orange). B2-B5: confusion metrics 
for clinical only (B2), CXR only (B3), combined (B4), and CT (B5) in non-severe patients. Combining the CXR and clinical data improves the diagnostic accuracy of COVID-19; 
although the diagnostic accuracy for influenza is slightly lower than with the clinical features only, the overall area under the curve is improved in the combined method. (C) 
Diagnostic performance in the severe subset. As presented in the ROC curves for the severe subset (C1), the diagnostic accuracy of CT outperformed the clinical feature or 
CXR. The area under the curve of the combined method is no better than for CXR only (p = 0.46). C2-C5: The confusion metrics for clinical only (C2), CXR only (C3), combined 
(C4), and CT (C5). AUC: area under the receiver operating curve. 

 
Figure 3. Cluster heatmap and principal component analysis (PCA) of deep features in coronavirus disease 2019 (COVID-19) and influenza. (A) Cluster 
heatmap of deep features in COVID-19 and influenza. Heatmap visualized most predominant 500 deep features among 5120 features and showed clear differences between 
individuals with COVID-19 and influenza A/B. (B) PCA of deep features in COVID-19 and influenza. The deep features separate COVID-19 from influenza A/B along the principal 
component. 

 
For severe cases, the observations differed. The 

CXR classifier had an AUC of 0.949 (95% CI 
0.937-0.963), and combining the clinical features with 
the CXR characteristics failed to improve its efficacy 

(AUC 0.948 vs. 0.949, P = 0.452). In comparison, the 
AUC of the CT classifier was 0.996 (95% CI 
0.995-0.998), which was comparable to the efficacy 
observed in the non-severe subgroup. 
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Figure 4. Comparison between pulmonary physicians and artificial 
intelligence (AI) system. The blue line is the receiver operating characteristic 
(ROC) curve of proposed AI system using fused clinical and chest x-ray (CXR) data, 
while the yellow one is the performance for CXR only. The round points are readers’ 
results using only CXR and the star points are performances of pulmonary physicians 
using clinical data together with images. 

 

The superiority of AI system to pulmonary 
physicians 

We further conducted validation study which 
compared the diagnostic accuracy between AI system 
and 3 experienced pulmonary physicians (Figure 4). 
50 cases, consisting of 25 COVID-19 individuals and 
25 influenza individuals, were randomly selected. All 
readers were asked to read CXR independently 
without any clinical information in the first round, 
and to read with combined CXR and clinical 
information in the second round. The results showed 
that the average diagnostic accuracy of CXR for 
pulmonary physicians with and without clinical 
information was 0.467 and 0.473, respectively. The 
average reading time was 25 minutes. By contrast, the 
diagnostic AUC for AI system using CXR alone and 
CXR plus clinical information was 0.935 and 0.958, 
respectively, and the processing time was only 0.2 
second. 

Discussion 
We developed a rapid screening classifier to 

distinguish COVID-19 from influenza A/B 
pneumonia constructed using clinical and CXR 
features. It not only had comparable efficacy to chest 
CT but was also efficient, economical, and radiation 
safe. Of importance, for non-severe cases, the classifier 
combining clinical and CXR features had satisfactory 
efficacy, with an AUC of 0.9719. As most patients in 
the early stage of COVID-19 have mild illness, this is 
in line with our vision that the combined classifier is 
an ideal rapid screening tool. We also confirmed the 
value of chest CT in the diagnosis of COVID-19, 
especially its critical role in severe cases. However, the 

combined classifier based on clinical features and 
CXR remains a reliable alternative for screening 
severe COVID-19 when CT is not feasible for various 
reasons. 

Our study revealed different patterns of 
symptoms in influenza and COVID-19. First, patients 
with COVID-19 pneumonia experienced less fever 
and had lower body temperatures than the patients 
with influenza, which indicates that patients with 
COVID-19 pneumonia can be asymptomatic. It is 
important that any screening system identify 
asymptomatic infectors to prevent them from turning 
into super-spreaders or severe cases. Our rapid 
screening classifier fits this role perfectly during the 
COVID-19 pandemic. Second, diarrhea was again 
found to be a typical symptom of COVID-19. 
Angiotensin-converting enzyme II (ACE2), which was 
highly expressed in both lung type II alveolar cells 
and gastrointestinal enterocytes, was proven to be the 
cell receptor of the novel SARS Cov-2 [24]. Therefore, 
diarrhea should be regarded as a warning sign for 
SARS CoV-2 infection [25, 26]. Third, a higher 
percentage of influenza patients had an impaired 
immune system and underlying lung diseases than 
did COVID-19 patients. It could be explained by 
blunted T and NK cell amount and function in 
influenza patients resulted in greater susceptibility 
[27-29]. Conversely, the entire population is 
susceptible to SARS CoV-2, but older patients with 
comorbidities need greater vigilance regarding 
worsening disease. 

In addition, elevated D-dimer was significantly 
correlated with COVID-19, suggesting a sustained 
hypercoagulable state during SARS CoV-2 infection. 
In concert, a high incidence of thromboembolic events 
has been described in COVID-19, especially in 
critically ill individuals [30-33]. It is still not clear 
whether SARS-CoV-2 attacks vascular endothelial 
cells directly. However, SARS CoV-2 infection may 
predispose to thromboembolism [34], in which 
elevated levels of proinflammatory factors (including 
IL-6, GM-CSF, IL1B, and IFN-γ) may play a role 
[35-38]. COVID-19 infection promotes the 
transformation of pathogenic T lymphocytes and 
induces inflammatory monocytes to express IL-6 and 
accelerate inflammation [38]. Hence, a coagulation 
cascade may be activated by a cytokine storm [32]. 

The lower incidence of septic shock in COVID-19 
was in line with the finding that up to 76% of the 
COVID-19 cohort was culture-negative for bacteria 
and fungi [24]. The hypothesis of virus sepsis and 
severe COVID-19 is a topic of lively debate [32]. 
Immune response disorders characterized by cytokine 
storms may be positively involved in the pathogenic 
mechanism of viral sepsis [39]. The cytokine storm 



Int. J. Biol. Sci. 2021, Vol. 17 
 

 
http://www.ijbs.com 

547 

induced by invasion of the novel coronavirus causes 
diffuse lung damage and systematic inflammation, 
leading to multiple organ failure and viral sepsis [39]. 
Interleukin 6 and GM-CSF are two key triggers in 
cytokine storms [40]. Application of cytokine- 
modulatory therapy, especially anti-IL-6 agents, is 
expected to improve the prognosis of severe 
COVID-19. 

We used CT localizer scans as surrogates of a 
standard CXR. Localizer scans are physically 
equivalent to an x-ray, although differences remain. 
Localizer scans can be presented as coronal and 
sagittal scans of patients in a supine position, 
although their parameter adjustment is not as precise 
as for x-rays, leading to lower-quality images 
containing less radiological information. Therefore, 
we may have underestimated the value of CXR. In 
addition, localizers usually cover a wider view than 
CXR and the additional imaging, such as of 
ventilators, may result in artificial effects. To 
overcome these issues, we cropped out the lung areas 
of every scan manually to force the system to focus on 
lung area when making diagnostic decisions. 
Although viral pneumonias usually have similar 
imaging characteristics, there are still different 
radiological patterns between COVID-19 and 
influenza, in either CT or x-rays. The predominant 
pattern in COVID-19 is characterized by ground-glass 
opacities and consolidation opacities with a 
peripheral distribution, while the typical radiological 
findings of influenza are diffuse ground-glass 
opacities and small nodules with more central 
locations [41-44]. In the bronchovascular area, a 
crazy-paving pattern is observed more often in 
COVID-19 and often indicates a poor prognosis [44, 
45]. Pleural effusions are more common in influenza, 
while pleural thickening may occur in COVID-19 [44, 
46, 47]. 

There are several limitations to our study. First, 
the numbers of cases of COVID-19 and influenza were 
not balanced, which may increase the overfitting risk. 
The prediction of all cases in the category with the 
greatest numbers (COVID-19 in our experiments) can 
also yield good accuracy performance, with high 
sensitivity, but low specificity. Our model overcame 
this drawback by adding number-balanced weights 
for loss function and augmenting the size of the 
influenza category with fewer patients, resulting in 
high sensitivity and specificity, and successfully 
eliminating the influence of unbalanced numbers. 
Second, because this study examined retrospective 
cohorts, larger prospective validation cohorts are 
warranted in the future. 

In conclusion, we devised a rapid screening 
classifier constructed using clinical and CXR features 

to distinguish COVID-19 from influenza A/B 
pneumonia. The classifier was efficient, economical, 
and radiation safe. Our combined classifier may be an 
ideal rapid screening tool during the COVID-19 
pandemic. 
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