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Abstract 

MicroRNAs (miRNAs) play a critical role in regulating various biological processes, such as cell differentiation 
and immune modulation by binding to their target genes. miR-223 is a miRNA with important functions and has 
been widely investigated in recent years. Under certain physiological conditions, miR-223 is regulated by 
different transcription factors, including sirtuin1 (Sirt1), PU.1 and Mef2c, and its biological functions are 
mediated through changes in its cellular or tissue expression. This review paper summarizes miR-223 
biosynthesis and its regulatory role in the differentiation of granulocytes, dendritic cells (DCs) and 
lymphocytes, macrophage polarization, and endothelial and epithelial inflammation. In addition, it describes the 
molecular mechanisms of miR-223 in regulating lung inflammation, rheumatoid arthritis, enteritis, 
neuroinflammation and mastitis to provide insights into the existing molecular regulatory networks and 
therapies for inflammatory diseases in humans and animals. 
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Introduction 
Inflammatory diseases are commonly caused by 

pathogen infection or external factors (e.g., trauma) 
[1]. Chronic inflammation could result in metabolic 
disorders, organ damages, and severe inflammatory 
diseases that could even cause human or animal 
death. Therefore, exploring different molecular 
mechanisms on the development and progression of 
inflammatory diseases could improve the breeding of 
new animal varieties with strong disease resistance. 
Besides, it could help develop early diagnostic tools 
and biological or chemical therapies for human 
inflammatory diseases. Notably, many factors could 
trigger inflammatory diseases. Recent studies have 
shown that the development and progression of 
inflammatory diseases are very complex and are 
regulated by a molecular network involving multiple 
genes or proteins [2, 3]. miRNAs are a newly 
identified class of non-coding RNAs that could 
influence immune responses, cancer development, 
and cell proliferation, differentiation, and apoptosis 
by regulating the expression of target mRNAs [2]. 
Monitoring their level is critical for early disease 

diagnosis and prognostic observation [3]. Many 
researchers have screened and identified 
inflammation-related miRNAs, and conducted their 
functional analyses in human and animal cells and 
tissue inflammation. Of these miRNAs, miR-223 has 
been identified to exhibit multiple regulatory 
functions during inflammation [4]. This review paper 
has discussed the modulatory effects of miR-233 in the 
differentiation of multiple cell types and 
inflammation. Also, it provides a systematic overview 
of the molecular mechanisms of miR-223 in regulating 
lung inflammation, rheumatoid arthritis, enteritis, 
neuroinflammation and mastitis to offer new insights 
into treatment development for inflammatory 
diseases in humans and animals. 

Biosynthesis of miR-223 
Mature miRNAs are short non-coding RNA 

molecules comprising 19-25 nucleotides [5]. In the 
nucleus, RNA polymerase II synthesizes most 
miRNAs into primary miRNAs (pri-miRNAs) [6] and 
most miRNAs are subsequently cleaved by Drosha 
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RNase III into 70-80 nt long hairpin precursor 
miRNAs (pre-miRNAs) [7]. Next, exportin-5 
transports pre-miRNAs into the cytosol, where they 
are cleaved by the endoribonuclease Dicer [8] to form 
double-stranded RNA molecules. These 
double-stranded RNA molecules are modified by the 
RNA-induced silencing complex (RISC), and one 
strand is retained to target and regulate mRNA 
expression (Figure 1) [9]. 

miR-223 is an important member of the miRNA 
family, first identified by quantitative polymerase 
chain reaction (qPCR) in 2003 [10]. Its genes are 
located in the X chromosome of humans, mice and 
cows. Under certain physiological conditions, 
miR-223 expression is promoted by different 
transcription factors, C/EBPα, PU.1 and C/EBPβ [11, 
12] and inhibited by nuclear factor I A (NFIA), Mef2c 
and KLF6 [13-17], and the importin-α4 and 
importin-α5 transporters [18]. 

miR-223 expression during cellular and 
tissue inflammation 

Several studies have been conducted to 
understand the miR-223 functions that determine its 
cellular and tissue expression [13, 15, 19-22]. Based on 
these studies, miR-223 expression is altered during 
the inflammatory response of various cell types, 
including granulocytes, macrophages, dendritic cells 
(DCs), T cells, endothelial cells and epithelial cells. 
This change in miR-223 expression regulates the 
various functions of these cells and attenuates or 
exacerbates the associated tissue inflammation 
(Table 1). 

 

Table 1. Change in miR-223 expression during the inflammation 
of various cell types 

Cell type miR-223 expression Affected tissue Reference 
Granulocytes Significantly up-regulated Lung tissue [13, 23] 
Macrophages Significantly down-regulated Fat and muscle 

tissues 
[15, 24, 25] 

Dendritic cells Down-regulated Small intestinal 
tissue 

[19, 26] 

T cells Highly expressed Nerve tissues [20,27,28] 
Endothelial cells Mass delivery via micro-

vesicles highly expressed 
Tissues supplied by 
arteries 

[21, 29] 

Epithelial cells Up-regulated Kidney tissues [22, 30] 
 

Molecular mechanism of action of 
miR-223 at the cellular level 

miR-233 regulates the differentiation and 
proliferation of granulocytes, macrophages and DCs 
by binding to specific targets. In addition, miR-223 
regulates pro-inflammatory or anti-inflammatory 
macrophage polarization. miR-223 can also bind 
specific target genes to inhibit pro-inflammatory 
cytokines or inflammatory signals in these cells 
(Table 2). 

Role of miR-223 in granulocyte differentiation 
miR-223 plays a critical role in the differentiation 

and activation of granulocytes. According to 
Johnnidis et al. [13] miR-223 could target the myocyte 
enhancer factor 2C (Mef2c) to regulate neutrophil 
progenitor proliferation and granulocyte 
differentiation and activation in mice. miR-223- 
deficient mice had hyperactive granulocytes that were 
highly sensitive to activating stimuli [13]. 
Additionally, the lipopolysaccharide (LPS) challenge 
resulted in rapid accumulation of endotoxin, and the 

 

 
Figure 1. Synthesis of miR-223 in cells. 
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inflammatory lung pathology induction was 
characterized by excessive lung tissue injury [13]. 
During Group B Streptococcus (GBS)-induced lung 
inflammation, miR-223 was rapidly up-regulated in 
lung-infiltrating granulocytes at 3-6 h post-GBS 
infection and this attenuated lung tissue injury [41]. 

Studies of human hematopoietic progenitor cell 
(HPC) differentiation have revealed that miR-223 is 
significantly up-regulated by the myeloid 
transcription factors, PU.1 and C/EBPβ during HPC 
differentiation into granulocytes and monocytopoiesis 
[12, 23]. However, during erythropoiesis, they are 
expressed at a low level [23]. miR-223 overexpression 
has been shown to increase granulocytopoiesis, 
whereas it impairs erythropoiesis and monocyte- 
macrophage differentiation [23]. Other studies have 
discovered that NFIA could bind to the miR-223 gene 
promoter and repress its expression during 
granulocyte differentiation [11, 17]. However, retinoic 
acid triggers C/EBPα to bind to the miR-223 promoter 
competitively and up-regulates miR-223 expression, 
inhibiting NFIA expression in a targeted manner and 
promotes granulocyte differentiation (Figure 2) [11, 
14]. 

 

Table 2. Intracellular targets and functions of miR-223 

Cell Target Function Reference 
Granulocytes NFIA, C/EBPα, 

and Mef2c 
Regulates granulocyte 
proliferation, and differentiation 

[11, 13, 
14] 

Macrophages STATS, Pknox1, 
and TRAF6 

Regulates macrophage 
differentiation, polarization, and 
pro-inflammatory cytokine release, 
and promotes NF-kB-induced 
inflammatory injury 

[31-33] 

Dendritic cells NLRP3, C/EBPβ, 
TGFBR3, MR, 
Rhob, Rasa1, 
Cfla, and Kras 

Regulates dendritic cell functions 
and influences immune-related 
protein networks 

[19, 26, 
34-36] 

Endothelial cells importin-α4, 
importin-α5, 
NLRP3, and IL-6 

Attenuates endothelial cell injury [18, 37, 
38] 

Epithelial cells NLRP3, Sirt1, 
and ST1M1 

Attenuates epithelial cell injury [30, 39, 
40] 

Role of miR-223 in macrophage polarization 
miRNAs are key regulators of various biological 

processes and have regulated macrophage (Mø) 
polarization and promoted inflammatory activities. 
miR-223 is significantly down-regulated during 
human monocyte-macrophage differentiation [25]. On 
the other hand, macrophage (M1)-mediated 
inflammation in adipose and muscle tissues could 
cause low-grade systemic inflammation development. 
Macrophages are vital coordinators of immune 
activity and homeostasis. They could change 
polarization direction based on temporal and 
environmental cues and play a central role in 
promoting host immune defense mechanisms [24]. 
Furthermore, PPARγ regulates the miR-223 
expression by directly binding onto PPARγ regulatory 
elements (PPREs) in the pre-miR-223 promoter 

(Figure 3) [42]. Rasa1 and NFAT5 real targets of 
miR-223 play a crucial role in controlling selective 
macrophage activation (Figure 3) [42]. The miR-223 
expression could induce the polarization of 
inflammatory macrophages (M1), as its down- 
regulation in macrophages reduces the inhibition of 
STAT genes, promoting the release of LPS-induced 
interleukin 6 (IL-6) and IL-1β. These cytokines can 
regulate miR-223 expression negatively and 
ultimately promote muscle tissue inflammation 
exacerbation and injury (Figure 3) [31, 43, 44]. 
Kruppel-like factor 6 (KLF6) has been identified as a 
new transcription factor involved in macrophage 
polarization (Figure 3) [16]. KLF6 inhibits miR-223 
expression by occupying the miR-223 promoter, and 
KLF6 over-expression has been shown to 
down-regulate miR-223 expression in macrophages. 
Furthermore, KLF6-mediated the miR-223 
down-regulation in macrophages and has been 
reported to promote adipose tissue inflammation [15]. 
Moreover, low lncRNA MEG3 expression inhibits M1 
macrophage polarization, whereas its deletion could 
up-regulate miR-223 expression and promote M2 

 

 
Figure 2. Mechanisms of miR-223 in the regulation of granulocyte differentiation. 
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macrophage polarization. High miR-223 expression 
inhibits TNF receptor-associated factor 6 (TRAF6), 
suppressing the NF-κB signaling pathway and 
alleviating myocarditis-associated injury [33]. Zhuang 
et al. [32] showed that miR-223 overexpression could 
prevent diet-induced adipose tissue inflammation 
and systemic insulin resistance by inhibiting the 
Pknox1 gene expression in mice (Figure 3). However, 
macrophages could use microvesicles (MVs) to 
deliver miR-223, which exerts specific functions in the 
target cells [45]. In summary, miR-223 is a key 
regulator of the dynamic balance between M1/M2 
macrophages and inflammatory diseases. 

 

 
Figure 3. Mechanisms of miR-223 in the regulation of macrophage differentiation. 

 

Role of miR-223 in dendritic cell differentiation 
Although miR-223 does not directly act on DCs, 

it could regulate DC differentiation via several 
pathways (Figure 4). During the differentiation of 
mouse HSCs into DCs, the miR-223 expression is 
altered in HSCs, myeloid stem cells and DCs, 

indicating that miR-223 could play a role in DC 
differentiation [46]. LPS stimulation could up-regulate 
miR-223-3p expression in DCs, and its high 
expression could subsequently down-regulate Rasa1, 
Cfla and Kras mRNA expression and influence 
immune-related protein regulatory networks [19]. 
Also, miR-223-3p could regulate DC differentiation by 
binding to Rhob and inhibiting antigen uptake and 
presentation by DCs [36]. Chen et al. [35] showed that 
miR-223-3p expression was significantly lower in 
mice with autoimmune myocarditis than in normal 
mice. Consequently, miR-223-3p could inhibit the 
NLR family pyrin domain containing 3 (NLRP3) 
inflammasome to promote the polarization of 
tolerogenic DCs [35]. Furthermore, it could regulate 
the differentiation and function of mice and human 
intestinal DCs by targeting C/EBPβ and reducing 
inflammatory injury (Figure 4) [26]. Zhu et al. [34] 
demonstrated that miR-223 directly targeted TGFBR3 
to promote the human embryonic stem cells (ESCs) 
differentiation into DCs. These findings demonstrate 
that miR-223 is an essential regulator of DC 
differentiation. It can regulate DC polarization and 
functions through binding to specific targets, 
improving tissue inflammation, and preventing the 
development of inflammatory diseases (Figure 4). 

Role of miR-223 in T cell-mediated 
inflammation 

Mature T cells travel through the blood, and 
reside and proliferate in the T cell zone of peripheral 
tissues. These cells can be circulated through the body 
via lymphatics, peripheral blood, and tissue fluids to 
exert their cellular immune functions. Hosseini et al. 
[28] showed that miR-223 expression was 
up-regulated in CD4+ T cells during multiple 
sclerosis. Besides, they could modulate chemokine 
signaling to promote T helper 17 (Th17) cell 
expression and suppress regulatory T cell (Treg) 

 

 
Figure 4. Mechanisms of miR-223 in the regulation of dendritic cell differentiation. 
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differentiation, highlighting a potential miR-223 role 
in maintaining the Th17/Treg balance. Another study 
demonstrated that miR-233 is highly expressed in 
immature CD4+ T cells and participates in the 
proliferation and differentiation of these cells during 
rheumatoid arthritis [47]. Moreover, miR-233 could 
regulate myeloid DCs (mDCs) to activate and 
promote the pathological Th17 cells differentiation 
during autoimmunity [20]. Furthermore, miR-223 
promotes T helper 1 (Th1) and Th17 cell 
differentiation and the experimental autoimmune 
encephalomyelitis (EAE) progression, and its 
deficiency prevents the infiltration of Th1 and Th17 
cells into the spinal cord [27]. Additionally, the 
interaction between miR-223 and SRY-box 11 (SOX11) 
has gained importance in research towards treating 
Mantle Cell Lymphoma (MCL) and inflammatory 
diseases [48]. In chicken T cells, both Marek’s disease 
(MD) and overexpressed lnc-GALMD3 result in low 
miR-223 expression, leading to malignant T cell 
proliferation [49,50]. Taken together, miR-233 
regulates T cell proliferation and differentiation and 
modulates inflammatory diseases by promoting 
helper T cell proliferation. 

Role of miR-223 in endothelial inflammation 
Endothelial MVs play a vital role in treating 

numerous cardiovascular diseases, including 
atherosclerosis (AS) [21, 51-54]. Moreover, in horse, 
miR-223 in MV participates in immune system 
regulation by modulating inter leukocyte signaling 
and inflammatory processes [55]. Thrombopoietin 
could stimulate platelets to release numerous 
miR-223-expressing MVs [29]. Similarly, miR-223 
up-regulation has been detected in peripheral MVs 
(P-MV) in the plasma samples of enteritis, hepatitis, 
nephritis, and AS patients [29]. Platelet-derived 

miR-223 could be delivered to human umbilical 
vascular endothelial cells (HUVECs) through P-MVs. 
Also, it down-regulates the insulin-like growth factor 
1 (IGF-1R) expression, promoting HUVEC apoptosis 
induced by advanced glycation end products (Figure 
5) [29]. Li et al. [56] showed that P-MV-derived 
miR-223 could inhibit NF-κB and MAPK signaling 
pathways. Besides, it down-regulates ICAM-1 
expression in HUVECs, demonstrating that miR-223 
is a critical factor in platelet-derived exosomes that 
plays essential roles during inflammation and AS 
(Figure 5). Bao et al. [18] demonstrated that IL-6 
expression in glomerular endothelial cells (GEnCs) of 
immunoglobulin A nephropathy (IgAN) patients 
could induce miR-223 down-regulation. 
Subsequently, they could promote its binding to 
importin-α4 and importin-α5, activating GEnCs, and 
inhibiting the nuclear translocation of P56 and STAT3 
(Figure 5). STAT3 is critical during the induction of 
IL-6 in HUVECs, and its expression is positively 
correlated with IL-6 expression [57], indicating that 
IL-6/miR-223/importin-α4 (-α5)/STAT3 constitutes a 
feedback regulatory network in endothelial cells 
(Figure 5). 

Intriguingly, the Chinese medicine tree peony 
bark (Pae) could be a potential therapeutic agent for 
AS. It could increase monocyte exosome-derived 
miR-223 [57]. Additionally, Pae could increase the 
miR-223 expression level in exosomes derived from 
the plasma of hyperlipidemic rats to inhibit the 
NLRP3 inflammasome pathway in endothelial cells, 
supporting its therapeutic potentials in AS [37, 57]. In 
an endothelial cell study in pigs, miR-223 targeting 
NLRP3 alleviated inflammation development in 
porcine endothelial cells and triggered the aorta 
inflammatory injury [58]. Moreover, miR-223 could 
target β1 integrin to prevent endothelial cell 

 

 
Figure 5. Mechanisms of miR-223 in the regulation of endothelial cells. 



Int. J. Biol. Sci. 2021, Vol. 17 
 

 
http://www.ijbs.com 

2313 

proliferation [59]. Differential miR-223 expression in 
vascular endothelial cell (VEC) MVs influences VEC 
generation and apoptosis that impacts the functioning 
of other cells when delivered into the surrounding 
through VEC-MVs. In contrast, the decrease in 
miR-223 expression in plasma-derived MVs could 
attenuate VEC apoptosis [60]. Previously, different 
studies have shown that miR-223-3p is an important 
regulator of vascular endothelial injury in Kawasaki 
Disease (KD) [38, 61, 62]. It could further reduce 
vascular endothelial injury by inhibiting IL-6 and 
TNF-α production [38], and its overexpression could 
reduce the apoptotic rate of VECs [63]. Therefore, 
there is evidence that some therapeutic agents could 
modulate miR-223 expression to attenuate endothelial 
cell injury (Figure 5). 

Role of miR-223 in epithelial inflammation 
miR-223 plays essential functions in epithelial 

cells. For instance, it could control the growth and 
morphology of mammary epithelial cells [64]. 
Bio-informatic analysis has revealed that NLRP3 is a 
target of miR-223 and could directly act on renal 
tubular epithelial cells (RTECs) to induce renal tissue 
injury in mice [30]. Sun et al. [22] reported that in 
LPS-treated RTECs, baicalin could up-regulate 
miR-223-3p to inhibit TXNIP and NLRP3 gene 
expression, resulting in attenuated LPS-induced 
injury in the proximal tubule epithelial cells (HK-2 cell 
line) (Figure 6). Sirt1 is a direct target of miR-223 in 
HK2 cells. Notably, low expression of lncRNA TUG1 
could increase miR-223 expression, which negatively 
regulates Sirt1 and reduces PI3K and AKT 
phosphorylation [39]. Also, low expression of lncRNA 
TUG1 activates the NF-κB signaling pathway and 
protects HK-2 cells from LPS-induced injury (Figure 

6) [39]. In an in vitro model of endometritis, Zhao et al. 
[65] discovered that LPS treatment could activate the 
NF-κB signaling that promotes the miR-223 
up-regulation in bovine endometrial epithelial cells 
(BEND). Hence, inhibiting NLRP3 activation and 
IL-1β production to prevent inflammatory-induced 
damage (Figure 6). Therefore, miR-223 restricts 
NLRP3 activation and acts as a protective factor 
during inflammatory responses [65]. Liu et al. [40] 
illustrated that the stromal interaction molecule 1 
(STIM1) regulated NLRP3 expression by binding the 
AACUGA motif in miR-223. On the other hand, 
silencing STIM1 alleviates influenza A virus 
(IAV)-induced inflammation in lung epithelial cells by 
inactivating the NLRP3 and inflammasome by 
promoting the miR-223 expression [40]. 

Vesicles are the main structures for information 
transfer between cells, and 80% of them are derived 
from epithelial cells. miRNAs are the main 
components in vesicles and, are transferred between 
cells along with the vesicles. However, miR-223 in 
mouse neutrophils could be transferred through MVs 
to lung epithelial cells and inhibits PARP-1 to prevent 
acute lung injury (Figure 6) [66]. In addition, 
inflammatory mediators could stimulate various 
signaling pathways to induce the expression of 
epithelial-mesenchymal transition-related 
transcription factors (EMT-TFs; e.g., Snail, Zeb, and 
Twist) and epigenetic regulators (e.g., miRNA, DNA, 
and histone-modifying enzymes). The expression of 
miRNA- or DNA-based epigenetic regulators could 
regulate the expression of genes related to these 
inflammation signaling pathways, ultimately forming 
a gene regulatory network [67, 68]. Tang et al. [69] 
reported that miR-223 inhibited cancer cell metastasis 
by regulating the EMT-related protein expression, 

 

 
Figure 6. Mechanisms of miR-223 in the regulation of epithelial inflammation. 
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which involves up-regulating the epithelial markers 
(E-cadherin and α-cadherin) and down-regulating the 
mesenchymal marker vimentin (Figure 6). Briefly, the 
miR-223 expression is up-regulated in epithelial cells, 
produced by neutrophils, and delivered to epithelial 
cells via MVs during inflammation. Subsequently, 
miR-223 regulates the epithelial inflammation process 
through various signaling pathways to reduce tissue 
damage (Figure 6). 

Role of miR-223 in inflammatory diseases 
Recent studies have established that miR-223 

could bind to specific target genes to inhibit the 
production of inflammatory mediators or block 
inflammation signaling pathways, which protect the 
body from inflammation-induced injury [11, 70-81]. 
miR-223 plays a vital role in various inflammatory 
diseases, including acute lung injury, rheumatoid 
arthritis, enteritis, nervous system inflammation and 
mastitis (Table 3). However, the regulatory networks 
through which miR-223 modulates immune responses 
are unclear. 

 

Table 3. Target and role of miR-223 in various inflammatory 
diseases 

Inflammatory disease Target Function Reference 
Acute lung injury (ALI) RHOB, NLRP3, 

and PARP-1 
Alleviates ALI [11,70-73] 

Rheumatoid arthritis 
(RA) 

ARNT and Stirt1 Alleviates RA [74,82] 

Enteritis NLRP3, CLDN8, 
and IKK-α 

Alleviates enteritis [75, 76] 

Nervous system 
inflammation 

ATG16L1 and 
NLRP3 

Alleviates nervous 
system inflammation 

[78, 79] 

Mastitis HMGB1 and 
CBLB 

Alleviates mastitis [80, 81] 

 

Role of miR-223 during lung injury 
Lung injury involves two processes, namely 

inflammatory damage and lung fibrosis. Acute lung 
injury (ALI) is a type of lung injury that has been 
widely investigated in recent years. Accumulating 
evidence indicates that miR-223 regulates the NLRP3 
inflammasome and plays an important role during 
ALI [73]. However, the TLR4 or NLRP3 inhibitors 
could impair the anti-inflammatory effect of miR-223 
in ALI [11, 72]. Moreover, a study showed that the 
miR-223 response was the fastest in the porcine lung 
tissue H1N2 infection and highly predicted that 
NLRP3 could be a miR-223 target, affecting the injury 
of porcine lung tissue through inflammatory factors 
[83]. In a mouse model of macrophage-mediated lung 
inflammation, miR-223 regulates macrophage 
differentiation by targeting the NLRP3 
inflammasome. It is transferred by MVs to inhibit 
lung inflammation (Figure 7) [70]. Overexpression of 

miR-223 can directly inhibit NF-κB in bronchial 
epithelial cells to alleviate lung inflammation [84]. 
Furthermore, miR-223 expression was reported to be 
down-regulated in LPS-treated A549 cells (lung 
adenocarcinoma cells) [72]. In vitro experiments also 
demonstrated that decreased miR-223 expression 
resulted in diminished inhibition of RHOB, NLRP3 
inflammasome and TLR4/NF-κB pathway, 
exacerbating lung injury (Figure 7) [72, 85]. In a 
mouse study of hippocampal inflammation, aerobic 
exercise can induce miR-223 expression in the 
hippocampus, which negatively regulates the 
TLR4/MyD88-NF-κB pathway to improve 
inflammation-induced injury [86]. miR-223 can also 
alleviate neutrophilic airway inflammation by 
inhibiting NLRP3 inflammasome and IL-1β release 
[87]. However, miR-223 was reported to attenuate ALI 
induced by mitochondrial damage-associated 
molecular patterns (MTDs) by limiting the 
differentiation of bone marrow-derived Ly6G+ 
neutrophils and inhibiting NLRP3 inflammasome 
activity and IL-1β production [71]. On the other hand, 
miR-223 deficiency results in persistent NLRP3 and 
IL-1β activation and exacerbates lung injury [88]. 
MV-mediated transfer of miR-223 from neutrophils to 
lung epithelial cells (Calu-3) attenuates ALI via 
inhibition of poly (ADP-ribose) polymerase-1 
(PARP-1) (Figure 7) [89, 90]. However, the miR-223 
expression is significantly down-regulated during 
lung fibrosis, and this is attributed to the antioxidative 
properties of the amino acid hydroxyproline (HYP) 
[91]. miR-223 can alleviate ALI by regulating the 
process of inflammation, which serves as a new 
potential therapeutic target and prognostic marker for 
ALI (Figure 7). 

Role of miR-223 in rheumatoid arthritis 
Rheumatoid arthritis (RA) is a chronic 

inflammatory disease. Studies have demonstrated 
that miR-223 is significantly higher in the plasma, 
serum and peripheral mononuclear cells (PBMCs) of 
RA patients than those of controls, indicating that 
miR-223 could be associated with the development, 
progression and severity of RA [92, 93]. The reliability 
of the biological functions of miR-223 in RA has been 
confirmed by accurately measuring the AUC value, 
and sensitivity and specificity of miR-223 [94]. Also, 
other studies have shown that the expression of 
miR-223 in PBMCs and plasma is positively correlated 
with the level of rheumatoid factor (RF) in RA 
patients [95-98]. miR-223 is differentially expressed 
between the PBMCs and plasma in RA patients, 
suggesting that miR-223 could be a biological marker 
for RA diagnosis [95-98]. 
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Figure 7. Mechanisms of miR-223 in the modulation of acute lung injury (ALI). 

 
Figure 8. Mechanisms of miR-223 in the modulation of rheumatoid arthritis (RA). 

 
The role of miR-223 in RA is highly complex 

(Figure 8). miR-223 is significantly up-regulated 
during RA in mice. Some target genes regulated by 
miR-223 include actin alpha 1 (ACTA1), (ACVR2A), 
cholecystokinin B receptor (CCKBR), dual-specificity 
phosphatase 10 (DUSP10), forkhead box O1 (FOXO1), 
heat shock protein 90 beta family member 1 
(HSP90B1), interleukin 6 cytokine family signal 

transducer (IL6ST), inositol polyphosphate-5- 
phosphatase B (INPP5B), MX dynamin-like GTPase 1 
(MX1), protein tyrosine phosphatase non-receptor 
type 2 (PTPN2), and tyrosine 3-monooxygenase/ 
tryptophan 5-monooxygenase activation protein 
gamma (YWHAG) [99]. According to a recent study in 
the arthritis fibroblast cell line MH7A, IL-17 receptor 
D (IL-17RD) was identified as a target gene of 
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miR-223-3p [100]. Overexpression of miR-223-3p 
could down-regulate IL-17RD expression and 
alleviate RA-induced injury [100, 101]. Furthermore, 
the mouse model also showed that icariin could 
inhibit NLRP3 by up-regulating miR-223-3p 
expression, reducing the apoptosis of RA joint 
fibroblast-like synovial cells (RA-FLSCs), and 
attenuates RA-induced injury [102, 103]. Sirt1 is also a 
target gene of miR-223-3p, and lncRNA-GAS5 is a 
molecular sponge for miR-223-3p [82, 104]. Down- 
regulation of lncRNA-GAS5 during RA leads to the 
up-regulation of miR-223-3p and down-regulation of 
Sirt1. It decreases the secretion of TNF-α, IL-6, IL-8, 
and IL-1β and reduces RA-FLSC apoptosis, hence 
slowing RA progression [82, 104]. Macrophages are 
critical players in RA pathogenesis, and these are the 
most abundant inflammatory cells in RA. Ogando et 
al. [74] discovered that miR-223 was significantly 
up-regulated in the macrophages of RA patients. 
Increased miR-223 expression inhibited ARNT 
protein synthesis (a co-receptor for AHR) [105] and 
prevented AHR/ARNT-mediated pro-inflammatory 
cytokine expression. AHR agonists could suppress the 
gene expression of pro-inflammatory cytokines 
(TNF-α, IL-1β, and IL-6), Notch3, and HEY. A low 
level of HEY could up-regulate miR-223 expression in 
macrophages (Figure 8) [74]. These findings 
demonstrate that miR-223 regulates RA progression 
by increasing the macrophage sensitivity to 
pro-inflammatory cytokines and dampening their 
response to anti-inflammatory signals during RA [74]. 

Role of miR-223 in enteritis 
Enteritis could be classified into bacterial 

enteritis, parasitic enteritis and viral enteritis based on 

pathogens. Bacteria cause it, and microbes and viruses 
in the intestine could also induce enteritis [106, 107]. 
Several studies have demonstrated that miR-223 is 
highly expressed in the intestinal tissues, serum, and 
feces of ulcerative colitis (UC) and inflammatory 
bowel disease (IBD) patients, suggesting that miR-223 
is involved in its regulation and could serve as a 
biomarker for UC and IBD [108-110]. Besides, NLRP3 
inflammasome expression in mice and humans is 
gradually elevated as IBD exacerbates [111, 112], 
demonstrating that the expression of inflammasomes 
(NLRP1, NLRP2 and NLRP3) dictates the severity of 
IBD [113]. 

miR-223 plays a vital role in the development 
and progression of IBD and UC. Studies have found 
that miR-223 expression is significantly increased in 
the mucosal biopsy tissues of UC patients [114]. 
miR-223 regulates UC by inhibiting the expression of 
IKK-α, a negative regulator of NF-κB, and promotes 
the release of p56 and pro-inflammatory cytokines 
(IL-1β and IL-8) (Figure 9) [75]. In the case of IBD, LPS 
stimulation induces the inhibition of FOXO3a by 
miR-223, which subsequently down-regulates IκB-α 
and activates the NF-κB signaling pathway to release 
pro-inflammatory cytokines, thus promoting IBD 
progression (Figure 9) [115]. Neudecker et al. [76] 
showed that miR-223 expression was up-regulated 
during experimental IBD in mice. The increase in 
miR-223 expression caused the down-regulation of 
NLRP3 inflammasome and IL-1β secretion, reducing 
IBD severity (Figure 9) [76]. In the dextran sodium 
sulfate (DSS) colitis model, miR-223 can alleviate 
intestinal inflammation by reducing the release of 
inflammatory mediators via inhibition of IL-6 and 
STAT3 signaling [116]. Claudin-8 (CLDN8) is a 

member of the claudin multigene family and 
the primary tight junction protein. CLDN8 
expression has been significantly 
down-regulated in the inflamed colonic 
mucosa of IBD patients and mice with 
trinitrobenzene sulfonic acid (TNBS)-induced 
colitis. Its level could be restored in colitic 
mice treated with IL-23 antibody. However, 
miR-223 could bind to CLDN8, and its 
up-regulation exacerbates IBD (Figure 9). 
Therefore, the interaction among IL-23, 
miR-223, and CLDN8 could serve as a new 
therapeutic strategy for IBD [77]. 

Role of miR-223 in central nervous 
system inflammation 

Inflammation of the central nervous 
system (CNS) mainly includes EAE, multiple 
sclerosis (MS), and bacterial meningitis 
[117-119]. Microglial cells (bv-2) are resident 

 

 
Figure 9. Mechanisms of miR-223 in the modulation of enteritis. 
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macrophages of the CNS and have critical 
physiological functions in attenuating CNS 
inflammation and maintaining tissue homeostasis 
[120, 121]. miR-223 deficiency increases the autophagy 
of resting microglia and microglia in the brain, which 
significantly reduces demyelination and improves 
CNS inflammation and the clinical symptoms of EAE 
[78]. Notably, normal cell proliferation and autophagy 
are metabolic processes required to maintain 
homeostasis, and abnormal proliferation and 
autophagy could cause inflammatory diseases. 
Different, studies have shown that miR-223 could 
inhibit P21 by inhibiting NFIA expression, resulting in 
abnormal microglia proliferation [78, 122]. In mouse 
EAE and MS, the miR-223 expression was 
significantly increased as the disease duration 
increased [123, 124]. Deleting miR-223 (miR-223-/-) 
could significantly delay EAE onset, alleviate spinal 
injury and decrease neurological symptoms in mice, 
demonstrating that miR-223 is a potential marker and 
therapeutic target for EAE (Figure 10) [123, 124]. Also, 
miR-223 promotes MS progression by inhibiting bv-2 
autophagy via the down-regulation of ATG16L1 
(Figure 10) [78]. Galloway et al. [125] found that 
miR-223 effectively regulated M2 polarization and 
promoted bone marrow activation and CNS 
remyelination. These findings demonstrate a critical 
pathophysiological relationship between miR-223 and 
MS, and other neurodegenerative diseases, thus 
providing new insights into MS diagnosis and 
treatment [78]. During BM, resveratrol could 
modulate the miR-223-3p/NLRP3 pathway to inhibit 
downstream caspase-1 activation and IL-1β and IL-18 
processing in neurons and bv-2 cells, protecting 
cortical neurons from inflammatory damage and 
death (Figure 10) [79]. However, findings from bv-2 

cells have shown that lncRNA GAS5 and NLRP3 are 
ceRNAs that sponge miR-223-3p and a high 
expression of lncRNA GAS5 promotes NLRP3 
activation and pro-inflammatory cytokine release 
[126]. 

Myeloid-derived suppressor cells (MDSCs) play 
essential regulatory and effector functions in MS and 
EAE. miR-223 knockout (miR-223-/-) mice have 
increased MDSCs in the spleen and spinal cord and 
milder EAE, supporting the critical role of miR-223 in 
the regulation of MDSCs during EAE and MS and 
further highlights the possibility of miR-223 as a new 
therapeutic agent [127]. 

Role of miR-223 in mastitis 
Mastitis could be caused by several factors, 

including pathogen infection and environmental 
changes and has complex pathogenesis. Staphylococcus 
aureus, Streptococcus. uberis, and Escherichia. coli are 
common causative agents of mastitis [128]. LPS is a 
surface component of E. coli that induces 
inflammation. Hao et al. [129] demonstrated that 
miR-223 was significantly up-regulated during 
LPS-induced mammary epithelial inflammation in 
mice. In addition, miR-223 expression was 2.5-3 times 
higher in the mammary tissue of cows with mastitis 
than that of healthy cows [130-134], suggesting that it 
could be a biomarker for mastitis [135, 136]. 

The molecular mechanism of miR-223 in 
regulating mastitis has been investigated in cows, 
humans, and mice. Moreover, miR-223 in MVs 
released by platelets could effectively inhibit the 
carcinogenesis of human breast cells [137]. miR-223 
could participate in TLR signaling and down-regulate 
IL-6 protein expression (not gene expression) to 
inhibit inflammation (Figure 11) [138]. Studies of 

Staphylococcus. aureus or lipoteichoic 
acid (LTA)-induced mastitis have 
identified CBLB as a target gene for 
miR-223 [81, 139]. Bovine miR-223 
could target CBLB and inhibit the 
PI3K/AKT/NF-κB signaling pathway 
to suppress IL-6 expression and 
attenuate inflammation (Figure 11) 
[81]. Furthermore, miR-223 could 
inhibit CXCL14 and regulate bovine 
mastitis through a series of complex 
gene regulatory networks (GRNs) 
(Figure 11) [140]. 

High mobility group box 1 
(HMGB1) is involved in the 
pathogenesis of multiple inflammatory 
diseases, including bovine mastitis 
[141]. The functional SNP in the 3’-UTR 
of HMGB1 could affect its binding to 

 

 
Figure 10. Mechanisms of miR-223 in the modulation of experimental autoimmune encephalomyelitis (EAE). 
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miR-223, thereby influencing bovine mastitis 
regulation through miR-223 (Figure 11) [80]. Also, 
miR-223 has demonstrated protein-protein 
interactions with the predicted candidate genes (F-box 
protein 30 (FBXO30), SMAD specific E3 ubiquitin- 
protein ligase 2 (SMURF2), F-box and WD repeat 
domain containing 7 (FBXW7), and ubiquitin-like 
modifier activating enzyme 2 (UBA2), suggesting that 
miR-223 could regulate mastitis through bacterial 
invasion, endocytosis, antigen processing, immune 
response, and TGF-β and MAPK signaling in 
mammary epithelial cells [142-144]. 

 

 
Figure 11. Mechanisms of miR-223 in the modulation of mastitis. 

 

Conclusions and future perspectives 
miR-223 is a multifunctional miRNA regulated 

by several transcription factors, and its expression is 
significantly elevated during cellular or tissue 
inflammation. miR-223 regulates immune cell 
proliferation, differentiation and polarization, and has 
immunomodulatory effects in certain tissues. It also 
serves as a messenger and a regulator of inflammation 
in immune and resident cells. Furthermore, it plays a 
critical role in cell-cell, cell-tissue, and cell-tissue- 
inflammatory disease interactions. Elucidation of its 
molecular mechanisms in immune modulation could 
provide insights in developing early diagnosis or 
treatment for inflammatory diseases. Although 
several miR-223 target genes have been identified in 
humans and animals have effectively mediated the 
regulatory functions of miR-223, some of these 
functional studies have only been conducted using in 
vitro setups or at the cellular level. Thus, it is 

imperative to establish in vivo studies to validate these 
findings. In addition, the miR-223 target genes could 
be used to construct a detailed multi-species miR-223 
regulatory network based on their sequence 
homology to identify precise miR-223-targeting 
drugs. These drugs could range from bioactive 
ingredients to DNA, mRNA, and translated proteins, 
and drugs identified using this method have high 
precision. Lastly, the drugs could exhibit better 
efficacy in treating inflammatory diseases, especially 
autoimmune disorders. 
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