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Abstract 

Cyclophilins (Cyps) is a kind of ubiquitous protein family in organisms, which has biological functions such 
as promoting intracellular protein folding and participating in the pathological processes of inflammation 
and tumor. Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are two common intestinal 
diseases, but the etiology and pathogenesis of these two diseases are still unclear. IBD and CRC are 
closely associated, IBD has always been considered as one of the main risks of CRC. However, the role 
of Cyps in these two related intestinal diseases is rarely studied and reported. In this review, the 
expression of CypA, CypB and CypD in IBD, especially ulcerative colitis (UC), and CRC, their 
relationship with the development of these two intestinal diseases, as well as the possible pathogenesis, 
were briefly summarized, so as to provide modest reference for clinical researches and treatments in 
future. 
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Introduction 
Cyps, a highly conserved protein family, is 

ubiquitous in prokaryotic and eukaryotic organisms. 
[1]. This family generally possesses the activity of 
peptidyl prolyl cis-trans isomerase (PPIase), which be 
able to catalyze the cis-trans isomerization of proline 
residue peptide bonds. Indeed, due to the PPIase 
activity, Cyps has been demonstrated to play a role in 
protein folding [2, 3], and protein trafficking as well as 
chaperone activity [3, 4]. Through this characteristic, 
on the one hand, Cyps exerts immunosuppressive 
effects. Cyps inhibits the activity of calcineurin 
through the interaction with cyclosporin A (CsA), and 
immunosuppressive drugs, via theirs PPIase active 
site, blocking the translocation of the nuclear factor of 

activated T cells (NF-AT) from the cytosol to the 
nucleus, and thus preventing the activation of T cells 
[5]. On the other hand, Cyps inhibits cell proliferation 
and differentiation, promote apoptosis, etc. [6, 7]. In 
addition, Cyps has also known to have relationship 
with the pathological processes of many diseases, 
such as viral infection [8, 9], cardiovascular diseases 
[10], inflammatory responses [11, 12] and cancers [13]. 

Up till now, there are at least 16 known human 
Cyps, which are structurally distinct [14], including 
Cyclophilin A (CypA), Cyclophilin B (CypB), 
Cyclophilin C (CypC), Cyclophilin D (CypD), 
Cyclophilin 40 (Cyp40), Cyclophilin NK (CypNK) etc. 
[15]. Among them, most of the studies mainly focused 
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on CypA, CypB and CypD. These members are found 
ubiquitously in different subcellular compartments. 
They have their own unique biological functions in 
cells consequently. 

CypA, expressed in the cytosol, is the most 
abundantly expressed and first identified cyclophilin 
[16]. Substantial evidence showed that intracellular 
CypA (iCypA) is secreted by several cell types, 
including vascular smooth muscle cells (VSMC), 
macrophages, and endothelial cells (EC), in response 
to inflammatory stimuli [17-24]. Apart from the 
ordinary functions of Cyps, secreted CypA or named 
extracellular CypA (eCypA) participates in both 
inflammatory response and signal transduction [12, 
23, 25]. Additionally, the eCypA, through autocrine 
and paracrine, can mediate intercellular 
communications, serving as a chemokine that recruit 
inflammatory cells, as well as aggravate oxidative 
stress and inflammation [26, 27]. Furthermore, studies 
suggested that high CypA expression correlates with 
poor outcome in patients with inflammatory diseases 
[20]. Meanwhile, various reports have shown that 
CypA is upregulated in cancer [28-33] and is involved 
in diverse pathological processes of cancer 
development, such as synthesis of tumor-associated 
proteins, signal transmission of tumor cell growth, 
regulation of transcription factors, apoptosis, 
metastasis, and drug resistance [13, 16, 34-36]. 
However, it is worth mentioning that a number of 
mechanistic details about CypA in IBD and CRC are 
still unknown and await further studies. 

CypB is mainly located in the endoplasmic 
reticulum (ER), where it attenuates ER stress-induced 
cell injury by interacting with the ER-related 
chaperones [37]. Cystolic CypB can also be stimulated 
by inflammation to form extracellular CypB (eCypB) 
[38-40]. eCypB has multiple functions, including 
chemotaxis and signaling transduction [41-47]. In 
addition, CypB is closely associated with the 
replication of hepatitis virus [48-52] and human 
immunodeficiency virus (HIV) [53], and found high 
expression in breast cancer, pancreatic cancer, 
glioblastoma, liver cancer and gastric cancer [54-59]. 

CypD, a component of the mitochondrial 
permeability transition pore (mPTP), is uniquely 
located in the mitochondrial matrix. It is responsible 
for regulating the opening of the mPTP [60]. mPTP is 
a mitochondrial channel complex, primarily 
composed by several proteins, including 
voltage-dependent anion channel (VDAC), adenine 
nucleotide translocator-1 (ANT-1), and CypD [61], 
whose main function is to maintain the balance of 
mitochondrial respiratory chain [62]. Under resting 
conditions, CypD shuts down the channel complex 
[62-64]. When facing stimuli of hypoxia, calcium 

overload, and oxidative stress, CypD travels to the 
inner membrane and binds to ANT-1, which leads to 
mPTP sustained opening [63, 65-68], followed by 
mitochondrial membrane depolarization, 
mitochondria swelling, Ca2+ release, and eventually, 
cell death [62, 69-71]. CypD is the basic component of 
mitochondrial function, and may contribute to 
regulating the opening state of mPTP to regulate 
inflammation [72] and cancer [73]. 

IBD has emerged as global diseases [74-80]. New 
data suggest that the incidence and prevalence of IBD 
are affecting five million patients worldwide, and 
approximately 0.3% of the European and North 
American population suffer from IBD at the present 
time [79, 81, 82]. IBD is a group of chronic, 
characterized by macrophages and neutrophils 
infiltration. Primarily, there are two clinical types of 
IBD: UC and Crohn’s disease (CD) [83-88]. 

UC, the most common type of IBD, occurs 
mostly in the colon, affecting the entire intestinal tract 
in a discontinuous manner [89, 90]. CD, on the other 
hand, mainly occurs in the rectum and affects part or 
all of the colon in a continuous manner [91, 92]. 
According to statistics, in the countries with the 
highest incidence of IBD, the annual incidence of UC 
and CD was 24.3 and 12.7 per 100,000 person-years in 
Europe, 6.3 and 5 per 100,000 person-years in Asia 
and the Middle East, and 19.2 and 20.2 per 100,000 
person-years in North America [81, 93, 94]. The 
overall incidence is coalescing around a range 
between 15 and 5 per 100,000 person years for both 
UC and CD [94]. It can be seen that as two of most 
common types of IBD diseases, the prevalence and 
incidence of UC and CD are rapidly increasing in the 
world. Although the researches on IBD have been 
growing and deepening in recent years, the exact 
etiology and pathogenesis remain unclear, which 
brings certain difficulties for clinical researches and 
disease treatments. 

Clinical studies have shown that both UC and 
CD patients are at an increased risk for developing 
CRC compared with the general population [79, 95, 
96]. Furthermore, IBD can eventually develop into 
intestinal malignant tumor through intestinal 
adenoma by inducing oncogene instability, oncogene 
activation, and regulating cell proliferation. [97-100]. 
CRC is a common malignant tumor of the digestive 
tract. Its incidence is increasing every year, with 
affecting approximately 1.23 million patients 
worldwide each year and accounting for almost 10% 
of all cancers [101-103]. According to statistics, from 
2015 to 2020, CRC became one of the leading causes of 
cancer deaths in China, ranking firmly in the top five 
cancer-related deaths [104]. Its occurrence and 
development are affected by many factors, among 
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which is closely related to inflammation and damage. 
Surgery is still the most effective treatment of CRC. 
Although great progress has been made in the 
prevention and treatment of tumors, its morbidity 
and mortality are still high [105]. The main reason is 
that the disease has tumor features, such as invasion, 
metastasis, resistance and recurrence and other 
characteristics [106]. 

IBD and CRC are currently two of the common 
diseases in the intestinal tract, they are related but 
different. In the pathological development of two 
diseases, IBD can be regarded as one of the main 
causes of CRC, but they are different in disease 
characteristics, so this article will discuss the two 
diseases separately. In a number of studies, it has been 
found that CRC [107-109] and IBD [110-112] patients 
generally have high expression of Cyps. The previous 
research of our group shown that the lack of 
Cyclophilin J (CypJ) caused the loss of its protective 
effect in mouse colitis induced by dextransulfate-
sodium (DSS), and this is related to the ability of CypJ 
blocking the binding of ubiquitin chains, thereby 
negatively regulating nuclear factor kappa B (NF-κB) 
signaling [113]. More relevant experiments are still 
needed to confirm the role of Cyps in enteritis and 
bowel cancer. 

This article mainly review the expression of 
Cyps in IBD and CRC, as well as the possible 
mechanisms related to the occurrence and 
development of these two diseases, aiming to provide 
clues for finding an accurate and detectable biomarker 
for the diagnosis of the diseases. 

The relationship between Cyps and 
inflammatory bowel disease 
CypA 

It was found that the expression of CypA was 
significantly increased in the crypt tissue [114], serum 
[110] and lymphocytes [111] of UC patients. 
Compared with the concentration of 2 ng/ml in the 
serum of health subjects, the CypA level in the serum 
of UC patients reached 6 ng/ml [110]. Furthermore, 
CypA also showed characteristics related to UC 
disease progression. Expression of CypA in active UC 
patients was higher than that in remission UC patients 
[111]. However, studies have further shown that 
CypA was not significantly elevated in colon tissue of 
UC patients, nor in serum of CD patients [110]. This 
indicates that CypA plays an important role in IBD, 
especially in UC, but it is worth mentioning that the 
expression level of CypA may be different at different 
detection levels in UC patients. Simultaneously, in 
addition to the increase of CypA, the serum anti- 
CypA antibody in UC patients was also increased, 

and the expression level increased with the course of 
disease [111, 112], illustrating that the expression level 
of anti-CypA antibody may be positively correlated 
with the increase of CypA level, which suggests that 
anti-CypA also has a certain preoperative diagnostic 
value in inflammatory enteritis. 

Early studies found that eCypA was produced in 
macrophages stimulated by lipopolysaccharide (LPS) 
[18] (Figure 1), and it was found to be one of the stable 
reference genes for evaluating LPS-stimulated 
macrophages [14]. Additionally, eCypA also 
upregulated and bound to macrophage surface 
differentiation cluster 147 (CD147) [115]. In addition, 
eCypA induced the expression of inflammatory 
factors such as matrix metalloproteinase 9 (MMP-9), 
MMP-2, tissue inhibitor of MMP-1 (TIMP-1) [115, 116] 
or IL-1β, IL-6, IL-17 [117, 118] through 
phosphorylation of (ERK1/2/JNK/P38) MAPK and 
NF-κB [117, 118], or induced autophagy [119, 120], 
apoptosis [120], M1 polarization [118], infiltration 
[12], chemotaxis and adhesion [121, 122] of 
monocytes/macrophages through these signals, 
which play a role in various inflammatory diseases 
(Figure 1). Others speculated that eCypA-induced 
autophagy in macrophages may be related to 
PI3K/Akt/mTOR signaling pathway, but no 
experimental study has been confirmed [95]. 
However, it is noteworthy that some research results 
have proved that iCypA promoted the migration of 
dendritic cells [123] and the proliferation of 
macrophages [124] by inducing (ERK1/2) MAPK and 
NF-κB phosphorylation (Figure 1). This opposite 
effect of eCypA and iCypA on macrophages indicates 
that different forms of CypA may have opposite 
biological significance to the same cell by activating 
the same signal. 

Not only macrophages, some researchers 
speculated that CypA is related to the obvious 
activation of lymphocytes in patients with UC, and 
the increase of CypA after lymphocytes activation 
may participate in the apoptosis of UC [111]. Clinical 
studies showed that the levels of MMP-9 and TNF-α 
in UC patients were significantly increased with the 
increase of serum CypA, and the level of 
TIMP-1/MMP-9 complex in UC and CD patients were 
also significantly increased [110], suggesting serum 
CypA may influence MMPs and TIMPs in IBD 
patients. This result is consistent with the previous 
discoveries [115, 121, 122], speculating that the high 
expression of serum CypA in IBD may regulate the 
expression of TIMP-1/MMP-9 by activating ERK1/2, 
which promotes the pathogenesis and development of 
IBD, expecially UC (Figure 1). Further research is 
needed to confirm this hypothesis. In short, the 
difference between eCypA and iCypA lies in that the 
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former may need to combine with the receptor CD147 
and act on it first. Both receptor-mediated eCypA and 
iCypA, seems to activate MAPK, NF-κB and other 
signals to promote the proliferation or apoptosis, 
migration of a variety of immune cells and the 
expression of TIMP1, MMP9, MMP2, which may 
regulate IBD and other inflammatory diseases, but the 
specific mechanism is still unclear. 

CD147, also known as extracellular matrix 
metalloproteinase inducer (EMMPRIN) or Basigin, is 
a transmembrane glycoprotein that can induce 
extracellular MMPs [125, 126]. As matrix 
metalloproteinases, MMPs have been widely studied 
in the migration of inflammatory cells, cancer 
invasion and metastasis due to their universal 
function of degrading extracellular matrix 
components [121, 127, 128]. In addition, CD147 is the 
cell surface receptor of eCypA and eCypB [121, 125, 
129, 130]. Heparans may be involved in the signal 
transduction induced by the binding of these two 
types of cyclophilins with CD147. It appears plausible 
that different heparan subtypes on the cell surface, 
namely sulfated glycosaminoglycans (GAG) and 
heparan sulfates (HPS, a subtype of GAG), which 
might facilitate eCypB-CD147 and eCypA-CD147 
interaction by first binding eCypB and eCypA, 
respectively, then presenting them to CD147 (Figure 
1) [131, 132]. The interaction of eCypA-CD147/ 
eCypB-CD147 and the transfer of eCypA/eCypB into 

the cells are promoted by the transduction activity of 
proline 180 (180Pro) and glycine 181 (181Gly) in the 
extracellular region of CD147, thereby activating the 
ERK signaling cascade [121, 125, 129, 130] (Figure 1). 

Up till now, the importance of CD147 has been 
generally recognized by researchers [121, 125, 129, 
130]. In inflammatory, CD147 mediated the migration 
of monocytes/macrophages after binding to eCypA 
[121, 122] (Figure 1). In cancer, CD147 interacted with 
a variety of proteins, induces the secretion of MMPs, 
and promoted tumor invasion and metastasis [129, 
133-136]. Recent studies have shown that CD147 was 
significantly increased in intestinal mucosa of IBD 
patients and aggravated IBD inflammatory response 
by activating NF-κB [137]. This indicates the 
important significance of CD147 in inflammatory 
diseases, and further confirms the results of previous 
studies [116-124] that eCypA firstly bound to CD147 
on cell surface, and activated multiple signal 
pathways to regulate inflammatory cells, then 
promoted the expression of MMPs and other factors 
that can promote the occurrence and development of 
inflammation such as IBD, expecially UC. 

Since the binding of CsA with CypA can inhibit 
its PPIase activity and exert immunosuppressive 
effect, it may have adverse effects on the normal 
immune function or disease treatment of the body 
[138-141]. Therefore, a variety of CsA analogues 
binding to Cyps without causing immunosuppression 

 

 
Figure 1. A summary diagram of the possible mechanism of CypA in IBD. Inflammation stimulates a variety of cells to secrete iCypA to form eCypA. The eCypA is 
presented to CD147 by HPS binding and entering into cells by CD147. Both eCypA and iCypA can regulate a variety of factors through NF-kB and MAPK pathways, and exert 
biological functions on immune cells regulating IBD. 
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have been developed clinically [142-146]. In recent 
years, the researches on CypA have focused on the 
application of antibodies to diseases. Recombinant 
purified CypA proteins from different sources [117, 
147] were used as immunogens to prepare polyclonal 
antibodies for the treatment of inflammatory diseases 
such as acute pneumonia [117] and sepsis [147]. 
However, the application of anti-CypA antibodies in 
the treatment of IBD has not been found so far, which 
may indicate a new direction for the treatment of IBD 
and other inflammations in the future. 

CypD 
The regulation of CypD on IBD is major related 

to mitochondrial permeability transition (mPT). In 
vivo and in vitro studies have shown that the inhibition 
or targeted deletion of CypD attenuated the 
mitochondrial necrosis of intestinal epithelial cells 
[148], macrophages [149] and eosinophils [150] 
induced by inflammatory stimuli such as 
non-steroidal anti-inflammatory drugs (NSAID), LPS 
and Ca2+ or oxidative stress, respectively, thereby 
regulating enteritis, which is related to the closure of 
mPTP after CypD deficiency (Figure 2). Interestingly, 
contrary to the results that CypD knockout or 
inhibition in macrophages and intestinal epithelial 
cells reduced inflammation, CypD knockout in 
eosinophils aggravated colon inflammation in mice. 
However, this may be related to the different 
regulatory roles of different target cells in IBD (Figure 

2). In summary, the absence of CypD in intestinal 
epithelial cells, macrophages and eosinophils can 
protect cells from a series of mitochondrial reactions 
caused by the continuous opening of mPTP, such as 
mitochondrial membrane depolarization, increased 
reactive oxygen species and oxidative stress [66-68], 
thereby reducing cell death caused by mitochondrial 
necrosis (Figure 2). However, the decrease in the 
death of intestinal macrophages and endothelial cells 
plays a positive role in inflammation, while the 
decrease in the necrosis of eosinophils aggravates 
intestinal inflammation. Therefore, the difference in 
immune cells makes the lack of CypD also two sides 
for IBD. 

Other Cyps 
In addition to CypA and CypD, other Cyps have 

also been found to play an important role in the 
development of IBD. CypJ, also known as PPIase-like 
3 (PPIL3), is a newly discovered member of the 
cyclophilin family in recent years. It mainly exists in 
the cytoplasm and nucleus, and it also has PPIase 
activity [113]. Previous studies have found that CypJ 
interacted with the Npl4 zinc finger (NZF) domain of 
TGF-β-activated kinase 1 binding protein 2/3 and the 
components of linear ubiquitin chain assembly 
complexes, blocking the ubiquitin chain binding, 
negatively regulating NF-κB signaling, thereby 
inhibiting DSS-induced colitis [113]. 

 

 
Figure 2. The role of CypD in IBD and CRC. When stimulated by inflammation, CypD travels to the inner membrane and binds to ANT-1, which leads to mPTP sustained 
opening, Ca2+ outflow, mitochondrial necrosis. The apoptosis of intestinal epithelial cells and macrophages can aggravate IBD, the necrosis of eosinophil can reduce IBD (Lower 
part). Various drugs or small molecules targeting mPTP can induce apoptosis or necrosis of CRC cells by inducing Warburg changes, necrosis and oxidative stress in 
mitochondria, respectively (Upper part). 
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The relationship between Cyps and 
colorectal cancer 
Cyps is high expression in CRC 

In many studies, it has been confirmed that the 
expression of Cyps is significantly different between 
CRC and normal tissues. Over the years, many 
researchers have found that CypA [21, 32, 107, 151], 
CypB [108, 152, 153], CypE [154] and CypJ [155] in 
CRC tissue were increased expression compared with 
those in normal tissues or adjacent tissues. Even CypB 
in the serum of patients [107, 153] and CypA in 
different CRC cell lines in vitro [107, 153], were found 
to be overexpressed. Moreover, the high level of CypB 
has been confirmed to be related to the poor prognosis 
and low survival rate of patients [108, 152, 153]. Some 
studies also found that the high expression of CypA in 
colon cancer was accompanied by the up-regulation 
of CD147 expression, and the expression changes of 
the two were consistent. It is suggest that CD147 may 
be positively correlated with the over-expressed of 
CypA in colon cancer tissues, which provides clues 
for further exploring the mechanism of CypA in CRC. 
In summary, compared with non-cancerous tissues, 
the expression of Cyps in CRC is generally 
up-regulated, suggesting that the expression of Cyps 
may be related to the occurrence of CRC. 

Besides the markedly high expression of Cyps in 
CRC, the expression of Cyps is closely correlated with 
the progression of CRC. The expression of Cyps 
increased with the decrease of CRC differentiation, 
the occurrence of lymph node metastasis [21, 156], 
TNM (tumor, node, metastases) stage and tumor 
invasion [109, 155]. Consistent with these 
experimental results, in addition to the direct study of 
CRC patients with pathological tissues, there were 
also through the establishment of early submucosal 
non-invasive and invasive CRC rat tumor model, 
proteomics analysis found that compared with 
non-invasive CRC and normal control group, invasive 
CRC CypA protein expression increased significantly 
[157]. Interestingly, Yeonghwan Kim’s team also 
studied the relationship between CypB expression 
and tumor progression, but did not find any relevance 
between CypB overexpression and the grade or 
development of colon cancer [152], which seems to be 
in contradiction with the previous researches that 
found the expression of CypB in CRC with lymph 
node metastasis was significantly increased [156]. 
Yeonghwan Kim et al. [37] believed that it was related 
to the fact that CypB was mainly distributed in ER, 
and its expression might be mainly affected by ER 
oxidative stress rather than tumor invasion and 
metastasis. Urgently, the expression level of CypB in 

the progression of CRC needs more experiments to 
illustrate, but clearly, these results can be confirmed 
that the general high expression of Cyps may be 
closely related to the occurrence, development and 
metastasis of CRC. 

The possible mechanisms of Cyps in CRC 
In addition to its high expression in CRC, 

different members of Cyps can participate in the 
development of CRC in different ways. The 
mechanism of Cyps in CRC will be briefly reviewed in 
the form of family members. 

CypA 
The role of CypA in CRC generally focuses on 

the proliferation, invasion and metastasis of cancer 
cells. The effect of eCypA on CRC is also closely 
related to the signal regulation of CD147 receptor. The 
combination of eCypA and CD147 on cell membrane 
activated downstream pathways through ERK1/2 
[122, 158], and the activation of MAPK promoted 
tumor metastasis [34] (Figure 3). It is speculate that 
eCypA may play a role in the proliferation and 
metastasis of CRC by binding to CD147 and 
regulating the downstream MAPK signaling 
pathway. Meanwhile, a number of experiments have 
shown that the regulation of MMPs in tumors was 
controlled by the activation of the p38MAPK signal 
[159-162], and played an important role in promoting 
the invasion and metastasis of cancer cells [35, 
159-162]. Consistently, recent studies found that the 
activity of MMP-9 promoter was markedly enhanced 
in CRC [163] (Figure 3). In summary, it can be 
speculated that the combination of eCypA and CD147 
may also regulate the expression of MMPs through 
the MAPK signaling pathway, which has a certain 
effect on the invasion and metastasis of CRC or other 
cancer cells (Figure 3). 

Apart from eCypA, the inhibition or knockout of 
iCypA also affected the proliferation, migration and 
invasion of CRC. Early studies discovered that 
sanglifehrin A (SFA, one kind of immunosuppressor) 
inhibited the proliferation of macrophages through 
iCypA [124]. Similarly, SFA was also found to inhibit 
the proliferation of human colon cancer cell HCT-116 
after binding to iCypA [164]. However, unlike the 
inhibition of ERK1/2 activity in macrophages (Figure 
1) [124], SFA activated NF-κB signal after inhibiting 
iCypA in colon cancer cells. Subsequently, NF-κB 
promoted the transcription of tumor suppressor gene 
p53 in cancer cells, stimulated the increase of p21 
expression, and inhibited the activity of 
cyclinE-CDK2, thereby inhibiting the proliferation of 
colon cancer cells [164] (Figure 3). Based on the results 
mentioned above, it is suggest that the inhibition of 
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iCypA not only negatively regulates the migration 
and proliferation of immune cells [124], but also 
relates to the inhibition of CRC cell proliferation [164]. 
However, the difference may be that iCypA has 
different effects on CRC cells and immune cells such 
as macrophages (Figure 1 and 3). 

Nevertheless, in a recent study to explore the 
effect of CypA on the progression of colon cancer 
[165], the invasion and metastasis of SW480 cells were 
significantly inhibited after the iCypA gene was 
knocked out, but there was no effect on cell 
proliferation (Figure 3). Simultaneously, there was 
up-regulation of E-cadherin (regulating the epithelial 
properties of cells) and down-regulation of 
N-cadherin (regulating the mesenchymal properties 
of cells) [165], indicating that iCypA may promote the 
invasion and metastasis of colon cancer cells by 
regulating epithelial mesenchymal transition (EMT). 
It is worth mentioning that, similar to the 
phosphorylation of NF-κB signal induced by the 
inhibition of iCypA [164], the knockout of iCypA also 
caused the activation of p38MAPK (Figure 3). And the 
use of p38 inhibitors increased the invasion number of 
iCypA knockout colon cancer cells [165], which once 
again proves the previous conjecture that the 
inhibition or knockout of iCypA in CRC cells may 
promote the activation of NF-κB and MAPK signals. 
But, it may have the opposite effect in immune cells. 
Interestingly, the expression and release of MMPs 
involved in cell invasion were also examined. 
However, these MMPs did not change after iCypA 

knockout, even lowered than the detection limit [165] 
(Figure 3). This seems to be in contradiction with 
many experimental results indicating that the 
activation of MAPK promotes the expression of 
MMPs [34, 121, 134-136], but this suggests that eCypA 
and iCypA may have different effects on MAPK in 
different cancer cells (Figure 3). Additionally, the 
expression of MMPs cannot exclude the possibility of 
other signal pathway regulation, which needs further 
study. But it is certain that CypA does play an 
important role in the invasion and metastasis of CRC. 

CypB 
In cancer biology, CypB is associated with the 

malignant progression and regulation of a variety of 
tumors [166-171], but its research in CRC is rarely 
reported. 

In the last decade, Sung Soo Kim et al. have been 
devoted to the study of CypB [108, 152, 172]. In 2011, 
they first studied the induction of CypB under 
hypoxia and its function in tumor cells in vivo and in 
vitro [152]. Their sesults showed that CypB regulated 
angiogenesis though hypoxia inducible factor-1α 
(HIF-1α)-mediated vascular endothelial growth factor 
(VEGF), and protected tumor cells including liver 
cancer and colon cancer cells from stress-induced 
apoptosis, including hypoxia and cisplatin-induced 
stress [152] (Figure 4). These results suggest that CypB 
may be a new candidate target for the development of 
anti- hepatocarcinoma and colon cancer, which also 
lays a certain foundation for subsequent researches of 

 

 
Figure 3. The regulatory role of CypA in CRC. eCypA and iCypA have different effects on NF-κB and MAPK pathways. Both iCypA and eCypA can respectively regulate 
CyclinE-CDK2, EMT and MMPs through these two signaling pathways, which have different effects on CRC. 
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CypB in chemotherapy resistance of CRC patients. 
However, in this study, the relevant mechanism of 
hypoxia-induced up-regulation of CypB expression 
was not deeply explored. In 2015, they demonstrated 
for the first time that hypoxia up-regulated the 
transcription of CypB by activating transcription 
factor 6 (ATF-6) [172], thus elucidating the mechanism 
relatively completely. In recent years, they began to 
study the mechanism of CypB regulating 
chemoresistance in CRC [108]. The results showed 
that tumor suppressor gene p53 wild-type (p53WT) 
up-regulated the mRNA and protein levels of CypB, 
and overexpressed CypB interacted with ubiquitin E3 
ligase (MDM2), so as to make p53WT ubiquitination 
degradation and short its half-life, thus inhibiting 
oxaliplatin-induced apoptosis of CRC cells (Figure 4). 
On the contrary, CypB knockout prolonged the 
half-life of p53WT and stimulated apoptosis of cancer 
cells [108]. These results suggest that CypB is an 
effective target for improving chemoresistance in 
patients with CRC. In conclusion, these experiments 
suggest that CypB is regulated by oncogene 
transcription factors such as HIF-1α, ATF-6 and 
p53WT, which may be related to ER stress and 
extensive signaling pathways, and determine the role 
of CypB in chemotherapy resistance of CRC. 

Apart from participating in the regulation of 
chemoresistance in CRC, CypB was found to play a 
critical role in the invasion and metastasis of CRC 
[153, 156]. CypB was knocked out by RNA 

interference plasmid in CRC cell, the results showed 
that the migration and invasion abilities of cancer cells 
were significantly reduced [156] (Figure 4). However, 
the specific mechanism of CypB promoting the 
migration and invasion of cancer cells was not 
revealed in this study. A recent study showed that 
CypB silencing reduced the proliferation, invasion 
and migration of colon cancer in vivo and in vitro by 
blocking IL-6-induced signal transducer and activator 
of transcription-3 (STAT3) phosphorylation and 
nuclear translocation [153] (Figure 4). Besides, CypB 
silencing also blocked the hydroxylation of type I 
collagen and the formation of strip bands, thereby 
inhibiting the metastasis of cancer cells [153] (Figure 
4). In conclusion, STAT3/CypB/collagen regulatory 
axis may play a crucial role in the development of 
CRC, and CypB may be an effective target for 
preventing the proliferation, invasion and migration 
of CRC. 

CypD 
CypD is a component of mPTP. The role of CypD 

in mPTP has been widely used in experiments in 
recent years. It seems that the effect of CypD on CRC 
also revolves around cell death induced by mPTP 
[173-176]. Some chemotherapeutic drugs have been 
found to promote the combination of mitochondrial 
ANT-1 and CypD, reduce the mitochondrial 
membrane potential, promote the opening of mPTP, 
and exert a toxic effect on CRC cells through 

 

 
Figure 4. Related mechanisms of CypB involved in CRC. HIF-1α promotes the transcription and expression of VEGF and CypB, thereby inhibiting hypoxia and 
cisplatin-induced apoptosis in CRC. Overexpression of CypB can bind to STAT3 and induce its phosphorylation and nuclear transfer in the presence of IL-6, and also positively 
promotes the transcription of HIF-1α and the formation of type I collagen. p53 upregulates the expression of CypB, the interaction between CypB and N-terminal of MDM2 can 
degrade p53 protein and inhibit oxaliplatin induced apoptosis of CRCr cells. 
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mitochondrial programmed necrosis, inducing 
necrosis of cancer cells, but not apoptosis (Figure 2). 
Consistently, the toxicity was significantly attenuated 
when CypD inhibitors or corresponding siRNA were 
used [173, 174]. In mouse, after CsA treatment, the 
inhibitory effect of chemotherapeutic drugs on the 
growth of HCT-116 xenograft was significantly 
weakened [174]. Correspondingly, the overexpression 
of CypD significantly enhanced the sensitivity and 
cytotoxicity of CRC cells to chemotherapeutic drugs 
[174]. This indicates that CypD may play an important 
role in the cytotoxic effects of chemotherapeutic drugs 
on CRC cells, and this effect is closely related to 
mitochondrial programmed necrosis. In the study of 
Chunxian Zhou et al., it was also found that the 
opening of mPTP stimulated by icariin (ICT, a 
chemotherapeutic drug), was induced by JNK 
activation pathway [173], suggesting that JNK 
signaling pathway may be one of the regulatory 
mechanisms of CypD involved in chemotherapy- 
induced CRC cell necrosis (Figure 2). 

However, it is interesting that in addition to 
mitochondrial programmed necrosis, a new 
anti-cancer drug candidate has been found to induce 
apoptosis of CRC cells by disrupting mPTP [175]. 
Erastin was a VDAC-1 binding small molecule that 
promoted VDAC-1 binding to CypD, cytochrome C 
release and regulated mPTP opening, thereby 
inducing mitochondrial oxidative stress and caspase- 
9-dependent apoptosis to produce cytotoxic effects on 
various CRC cells (Figure 2). CypD inhibitors 
significantly attenuated the drug-induced cytotoxicity 
and apoptosis [175]. This not only indicates the 
emergence of a potential new drug against CRC, but 
also suggests that CypD may also be involved in the 
drug-induced apoptosis of CRC cells by regulating 
mPTP. To sum up, CypD can participate in the 
cytotoxic effect of drugs on CRC not only through the 
necrosis, but also through the apoptosis. The 
difference of these pathways may be related to the 
types of drugs, the molecules bound to CypD, and the 
ways to induce the opening of mPTP. 

In a recent study, it was found that Ganoderma 
acid D (GAD) induced the deacetylation of CypD by 
up-regulating the level of mitochondrial deacetylase 
Sirtuin 3 (SIRT3) in a dose-dependent manner, which 
changed the open state of mPTP, thereby inhibiting 
the Warburg effect of colon cancer cells and causing 
cells death [176]. This suggests a possible new way 
and mechanism for CypD to participate in drugs to 
inhibit CRC, but the inhibitory effects of different 
drugs on CRC cells are always related to the 
involvement of CypD in the regulation of the open 
state of mPTP. 

Summary 
In general, Cyps is highly expressed in IBD and 

CRC, and even has a certain correlation with the 
course of disease and prognosis, which suggests that 
Cyps may be a diagnostic and prognostic indicator. 
For IBD, Cyps can play a role in inflammation 
through the secretion of inflammatory factors, 
apoptosis, autophagy and necrosis of immune cells. In 
CRC, Cyps is mainly involved in invasion, metastasis, 
apoptosis, necrosis and drug resistance of cancer cells. 
The mechanisms of Cyps in these two diseases are 
generally focus on the signaling molecules such as 
MAPK, NF-κB and mitochondrial programmed death, 
and the specific mechanisms remain to be further 
explored. However, at least it is certain that Cyps will 
play an important role in the future research on IBD 
and CRC, and provide effective clues for disease 
treatment targets or new drug development. 
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