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Abstract

Cyclophilins (Cyps) is a kind of ubiquitous protein family in organisms, which has biological functions such
as promoting intracellular protein folding and participating in the pathological processes of inflammation
and tumor. Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are two common intestinal
diseases, but the etiology and pathogenesis of these two diseases are still unclear. IBD and CRC are
closely associated, IBD has always been considered as one of the main risks of CRC. However, the role
of Cyps in these two related intestinal diseases is rarely studied and reported. In this review, the
expression of CypA, CypB and CypD in IBD, especially ulcerative colitis (UC), and CRC, their
relationship with the development of these two intestinal diseases, as well as the possible pathogenesis,
were briefly summarized, so as to provide modest reference for clinical researches and treatments in

future.
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Introduction

Cyps, a highly conserved protein family, is
ubiquitous in prokaryotic and eukaryotic organisms.
[1]. This family generally possesses the activity of
peptidyl prolyl cis-trans isomerase (PPlase), which be
able to catalyze the cis-trans isomerization of proline
residue peptide bonds. Indeed, due to the PPlase
activity, Cyps has been demonstrated to play a role in
protein folding [2, 3], and protein trafficking as well as
chaperone activity [3, 4]. Through this characteristic,
on the one hand, Cyps exerts immunosuppressive
effects. Cyps inhibits the activity of calcineurin
through the interaction with cyclosporin A (CsA), and
immunosuppressive drugs, via theirs PPlase active
site, blocking the translocation of the nuclear factor of

activated T cells (NF-AT) from the cytosol to the
nucleus, and thus preventing the activation of T cells
[5]. On the other hand, Cyps inhibits cell proliferation
and differentiation, promote apoptosis, etc. [6, 7]. In
addition, Cyps has also known to have relationship
with the pathological processes of many diseases,
such as viral infection [8, 9], cardiovascular diseases
[10], inflammatory responses [11, 12] and cancers [13].

Up till now, there are at least 16 known human
Cyps, which are structurally distinct [14], including
Cyclophilin A (CypA), Cyclophilin B (CypB),
Cyclophilin C (CypC), Cyclophilin D (CypD),
Cyclophilin 40 (Cyp40), Cyclophilin NK (CypNK) etc.
[15]. Among them, most of the studies mainly focused
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on CypA, CypB and CypD. These members are found
ubiquitously in different subcellular compartments.
They have their own unique biological functions in
cells consequently.

CypA, expressed in the cytosol, is the most
abundantly expressed and first identified cyclophilin
[16]. Substantial evidence showed that intracellular
CypA (iCypA) is secreted by several cell types,
including vascular smooth muscle cells (VSMC),
macrophages, and endothelial cells (EC), in response
to inflammatory stimuli [17-24]. Apart from the
ordinary functions of Cyps, secreted CypA or named
extracellular CypA (eCypA) participates in both
inflammatory response and signal transduction [12,
23, 25]. Additionally, the eCypA, through autocrine
and paracrine, can mediate intercellular
communications, serving as a chemokine that recruit
inflammatory cells, as well as aggravate oxidative
stress and inflammation [26, 27]. Furthermore, studies
suggested that high CypA expression correlates with
poor outcome in patients with inflammatory diseases
[20]. Meanwhile, various reports have shown that
CypA is upregulated in cancer [28-33] and is involved
in diverse pathological processes of cancer
development, such as synthesis of tumor-associated
proteins, signal transmission of tumor cell growth,
regulation of transcription factors, apoptosis,
metastasis, and drug resistance [13, 16, 34-36].
However, it is worth mentioning that a number of
mechanistic details about CypA in IBD and CRC are
still unknown and await further studies.

CypB is mainly located in the endoplasmic
reticulum (ER), where it attenuates ER stress-induced
cell injury by interacting with the ER-related
chaperones [37]. Cystolic CypB can also be stimulated
by inflammation to form extracellular CypB (eCypB)
[38-40]. eCypB has multiple functions, including
chemotaxis and signaling transduction [41-47]. In
addition, CypB is closely associated with the
replication of hepatitis virus [48-52] and human
immunodeficiency virus (HIV) [53], and found high
expression in breast cancer, pancreatic cancer,
glioblastoma, liver cancer and gastric cancer [54-59].

CypD, a component of the mitochondrial
permeability transition pore (mPTP), is uniquely
located in the mitochondrial matrix. It is responsible
for regulating the opening of the mPTP [60]. mPTP is
a mitochondrial channel complex, primarily
composed by several proteins, including
voltage-dependent anion channel (VDAC), adenine
nucleotide translocator-1 (ANT-1), and CypD [61],
whose main function is to maintain the balance of
mitochondrial respiratory chain [62]. Under resting
conditions, CypD shuts down the channel complex
[62-64]. When facing stimuli of hypoxia, calcium

overload, and oxidative stress, CypD travels to the
inner membrane and binds to ANT-1, which leads to
mPTP sustained opening [63, 65-68], followed by
mitochondrial membrane depolarization,
mitochondria swelling, Ca?* release, and eventually,
cell death [62, 69-71]. CypD is the basic component of
mitochondrial function, and may contribute to
regulating the opening state of mPTP to regulate
inflammation [72] and cancer [73].

IBD has emerged as global diseases [74-80]. New
data suggest that the incidence and prevalence of IBD
are affecting five million patients worldwide, and
approximately 0.3% of the European and North
American population suffer from IBD at the present
time [79, 81, 82]. IBD is a group of chronic,
characterized by macrophages and neutrophils
infiltration. Primarily, there are two clinical types of
IBD: UC and Crohn’s disease (CD) [83-88].

UC, the most common type of IBD, occurs
mostly in the colon, affecting the entire intestinal tract
in a discontinuous manner [89, 90]. CD, on the other
hand, mainly occurs in the rectum and affects part or
all of the colon in a continuous manner [91, 92].
According to statistics, in the countries with the
highest incidence of IBD, the annual incidence of UC
and CD was 24.3 and 12.7 per 100,000 person-years in
Europe, 6.3 and 5 per 100,000 person-years in Asia
and the Middle East, and 19.2 and 20.2 per 100,000
person-years in North America [81, 93, 94]. The
overall incidence is coalescing around a range
between 15 and 5 per 100,000 person years for both
UC and CD [94]. It can be seen that as two of most
common types of IBD diseases, the prevalence and
incidence of UC and CD are rapidly increasing in the
world. Although the researches on IBD have been
growing and deepening in recent years, the exact
etiology and pathogenesis remain unclear, which
brings certain difficulties for clinical researches and
disease treatments.

Clinical studies have shown that both UC and
CD patients are at an increased risk for developing
CRC compared with the general population [79, 95,
96]. Furthermore, IBD can eventually develop into
intestinal malignant tumor through intestinal
adenoma by inducing oncogene instability, oncogene
activation, and regulating cell proliferation. [97-100].
CRC is a common malignant tumor of the digestive
tract. Its incidence is increasing every year, with
affecting approximately 1.23 million patients
worldwide each year and accounting for almost 10%
of all cancers [101-103]. According to statistics, from
2015 to 2020, CRC became one of the leading causes of
cancer deaths in China, ranking firmly in the top five
cancer-related deaths [104]. Its occurrence and
development are affected by many factors, among
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which is closely related to inflammation and damage.
Surgery is still the most effective treatment of CRC.
Although great progress has been made in the
prevention and treatment of tumors, its morbidity
and mortality are still high [105]. The main reason is
that the disease has tumor features, such as invasion,
metastasis, resistance and recurrence and other
characteristics [106].

IBD and CRC are currently two of the common
diseases in the intestinal tract, they are related but
different. In the pathological development of two
diseases, IBD can be regarded as one of the main
causes of CRC, but they are different in disease
characteristics, so this article will discuss the two
diseases separately. In a number of studies, it has been
found that CRC [107-109] and IBD [110-112] patients
generally have high expression of Cyps. The previous
research of our group shown that the lack of
Cyclophilin J (Cyp]) caused the loss of its protective
effect in mouse colitis induced by dextransulfate-
sodium (DSS), and this is related to the ability of Cyp]
blocking the binding of ubiquitin chains, thereby
negatively regulating nuclear factor kappa B (INF-xB)
signaling [113]. More relevant experiments are still
needed to confirm the role of Cyps in enteritis and
bowel cancer.

This article mainly review the expression of
Cyps in IBD and CRC, as well as the possible
mechanisms related to the occurrence and
development of these two diseases, aiming to provide
clues for finding an accurate and detectable biomarker
for the diagnosis of the diseases.

The relationship between Cyps and
inflammatory bowel disease

CypA

It was found that the expression of CypA was
significantly increased in the crypt tissue [114], serum
[110] and lymphocytes [111] of UC patients.
Compared with the concentration of 2 ng/ml in the
serum of health subjects, the CypA level in the serum
of UC patients reached 6 ng/ml [110]. Furthermore,
CypA also showed characteristics related to UC
disease progression. Expression of CypA in active UC
patients was higher than that in remission UC patients
[111]. However, studies have further shown that
CypA was not significantly elevated in colon tissue of
UC patients, nor in serum of CD patients [110]. This
indicates that CypA plays an important role in IBD,
especially in UC, but it is worth mentioning that the
expression level of CypA may be different at different
detection levels in UC patients. Simultaneously, in
addition to the increase of CypA, the serum anti-
CypA antibody in UC patients was also increased,

and the expression level increased with the course of
disease [111, 112], illustrating that the expression level
of anti-CypA antibody may be positively correlated
with the increase of CypA level, which suggests that
anti-CypA also has a certain preoperative diagnostic
value in inflammatory enteritis.

Early studies found that eCypA was produced in
macrophages stimulated by lipopolysaccharide (LPS)
[18] (Figure 1), and it was found to be one of the stable
reference genes for evaluating LPS-stimulated
macrophages [14]. Additionally, eCypA also
upregulated and bound to macrophage surface
differentiation cluster 147 (CD147) [115]. In addition,
eCypA induced the expression of inflammatory
factors such as matrix metalloproteinase 9 (MMP-9),
MMP-2, tissue inhibitor of MMP-1 (TIMP-1) [115, 116]
or IL-1p, 1IL-6, 1IL-17 [117, 118] through
phosphorylation of (ERK1/2/JNK/P38) MAPK and
NF-xB [117, 118], or induced autophagy [119, 120],
apoptosis [120], M1 polarization [118], infiltration
[12], chemotaxis and adhesion [121, 122] of
monocytes/macrophages through these signals,
which play a role in various inflammatory diseases
(Figure 1). Others speculated that eCypA-induced
autophagy in macrophages may be related to
PI3BK/Akt/mTOR signaling pathway, but no
experimental study has been confirmed [95].
However, it is noteworthy that some research results
have proved that iCypA promoted the migration of
dendritic cells [123] and the proliferation of
macrophages [124] by inducing (ERK1/2) MAPK and
NF-xB phosphorylation (Figure 1). This opposite
effect of eCypA and iCypA on macrophages indicates
that different forms of CypA may have opposite
biological significance to the same cell by activating
the same signal.

Not only macrophages, some researchers
speculated that CypA is related to the obvious
activation of lymphocytes in patients with UC, and
the increase of CypA after lymphocytes activation
may participate in the apoptosis of UC [111]. Clinical
studies showed that the levels of MMP-9 and TNF-a
in UC patients were significantly increased with the
increase of serum CypA, and the level of
TIMP-1/MMP-9 complex in UC and CD patients were
also significantly increased [110], suggesting serum
CypA may influence MMPs and TIMPs in IBD
patients. This result is consistent with the previous
discoveries [115, 121, 122], speculating that the high
expression of serum CypA in IBD may regulate the
expression of TIMP-1/MMP-9 by activating ERK1/2,
which promotes the pathogenesis and development of
IBD, expecially UC (Figure 1). Further research is
needed to confirm this hypothesis. In short, the
difference between eCypA and iCypA lies in that the
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former may need to combine with the receptor CD147
and act on it first. Both receptor-mediated eCypA and
iCypA, seems to activate MAPK, NF-xB and other
signals to promote the proliferation or apoptosis,
migration of a variety of immune cells and the
expression of TIMP1, MMP9, MMP2, which may
regulate IBD and other inflammatory diseases, but the
specific mechanism is still unclear.

CD147, also known as extracellular matrix
metalloproteinase inducer (EMMPRIN) or Basigin, is
a transmembrane glycoprotein that can induce
extracellular MMPs [125, 126]. As matrix
metalloproteinases, MMPs have been widely studied
in the migration of inflammatory cells, cancer
invasion and metastasis due to their universal
function of degrading extracellular  matrix
components [121, 127, 128]. In addition, CD147 is the
cell surface receptor of eCypA and eCypB [121, 125,
129, 130]. Heparans may be involved in the signal
transduction induced by the binding of these two
types of cyclophilins with CD147. It appears plausible
that different heparan subtypes on the cell surface,
namely sulfated glycosaminoglycans (GAG) and
heparan sulfates (HPS, a subtype of GAG), which
might facilitate eCypB-CD147 and eCypA-CD147
interaction by first binding eCypB and eCypA,
respectively, then presenting them to CD147 (Figure
1) [131, 132]. The interaction of eCypA-CD147/
eCypB-CD147 and the transfer of eCypA/eCypB into
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the cells are promoted by the transduction activity of
proline 180 (180Pro) and glycine 181 (181Gly) in the
extracellular region of CD147, thereby activating the
ERK signaling cascade [121, 125, 129, 130] (Figure 1).

Up till now, the importance of CD147 has been
generally recognized by researchers [121, 125, 129,
130]. In inflammatory, CD147 mediated the migration
of monocytes/macrophages after binding to eCypA
[121, 122] (Figure 1). In cancer, CD147 interacted with
a variety of proteins, induces the secretion of MMPs,
and promoted tumor invasion and metastasis [129,
133-136]. Recent studies have shown that CD147 was
significantly increased in intestinal mucosa of IBD
patients and aggravated IBD inflammatory response
by activating NF-«xB [137]. This indicates the
important significance of CD147 in inflammatory
diseases, and further confirms the results of previous
studies [116-124] that eCypA firstly bound to CD147
on cell surface, and activated multiple signal
pathways to regulate inflammatory cells, then
promoted the expression of MMPs and other factors
that can promote the occurrence and development of
inflammation such as IBD, expecially UC.

Since the binding of CsA with CypA can inhibit
its PPlase activity and exert immunosuppressive
effect, it may have adverse effects on the normal
immune function or disease treatment of the body
[138-141]. Therefore, a variety of CsA analogues
binding to Cyps without causing immunosuppression
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Figure 1. A summary diagram of the possible mechanism of CypA in IBD. Inflammation stimulates a variety of cells to secrete iCypA to form eCypA. The eCypA is
presented to CD147 by HPS binding and entering into cells by CD147. Both eCypA and iCypA can regulate a variety of factors through NF-kB and MAPK pathways, and exert

biological functions on immune cells regulating IBD.
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have been developed clinically [142-146]. In recent
years, the researches on CypA have focused on the
application of antibodies to diseases. Recombinant
purified CypA proteins from different sources [117,
147] were used as immunogens to prepare polyclonal
antibodies for the treatment of inflammatory diseases
such as acute pneumonia [117] and sepsis [147].
However, the application of anti-CypA antibodies in
the treatment of IBD has not been found so far, which
may indicate a new direction for the treatment of IBD
and other inflammations in the future.

CypD

The regulation of CypD on IBD is major related
to mitochondrial permeability transition (mPT). In
vivo and in vitro studies have shown that the inhibition
or targeted deletion of CypD attenuated the
mitochondrial necrosis of intestinal epithelial cells
[148], macrophages [149] and eosinophils [150]
induced by inflammatory stimuli such as
non-steroidal anti-inflammatory drugs (NSAID), LPS
and Ca?" or oxidative stress, respectively, thereby
regulating enteritis, which is related to the closure of
mPTP after CypD deficiency (Figure 2). Interestingly,
contrary to the results that CypD knockout or
inhibition in macrophages and intestinal epithelial
cells reduced inflammation, CypD knockout in
eosinophils aggravated colon inflammation in mice.
However, this may be related to the different
regulatory roles of different target cells in IBD (Figure

2). In summary, the absence of CypD in intestinal
epithelial cells, macrophages and eosinophils can
protect cells from a series of mitochondrial reactions
caused by the continuous opening of mPTP, such as
mitochondrial membrane depolarization, increased
reactive oxygen species and oxidative stress [66-68],
thereby reducing cell death caused by mitochondrial
necrosis (Figure 2). However, the decrease in the
death of intestinal macrophages and endothelial cells
plays a positive role in inflammation, while the
decrease in the necrosis of eosinophils aggravates
intestinal inflammation. Therefore, the difference in
immune cells makes the lack of CypD also two sides
for IBD.

Other Cyps

In addition to CypA and CypD, other Cyps have
also been found to play an important role in the
development of IBD. Cyp], also known as PPlase-like
3 (PPIL3), is a newly discovered member of the
cyclophilin family in recent years. It mainly exists in
the cytoplasm and nucleus, and it also has PPlase
activity [113]. Previous studies have found that Cyp]
interacted with the Npl4 zinc finger (NZF) domain of
TGF-pB-activated kinase 1 binding protein 2/3 and the
components of linear ubiquitin chain assembly
complexes, blocking the ubiquitin chain binding,
negatively regulating NF-xB signaling, thereby
inhibiting DSS-induced colitis [113].
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Figure 2. The role of CypD in IBD and CRC. When stimulated by inflammation, CypD travels to the inner membrane and binds to ANT-1, which leads to mPTP sustained
opening, Ca2* outflow, mitochondrial necrosis. The apoptosis of intestinal epithelial cells and macrophages can aggravate IBD, the necrosis of eosinophil can reduce IBD (Lower
part). Various drugs or small molecules targeting mPTP can induce apoptosis or necrosis of CRC cells by inducing Warburg changes, necrosis and oxidative stress in

mitochondria, respectively (Upper part).
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The relationship between Cyps and
colorectal cancer

Cyps is high expression in CRC

In many studies, it has been confirmed that the
expression of Cyps is significantly different between
CRC and normal tissues. Over the years, many
researchers have found that CypA [21, 32, 107, 151],
CypB [108, 152, 153], CypE [154] and Cyp] [155] in
CRC tissue were increased expression compared with
those in normal tissues or adjacent tissues. Even CypB
in the serum of patients [107, 153] and CypA in
different CRC cell lines in vitro [107, 153], were found
to be overexpressed. Moreover, the high level of CypB
has been confirmed to be related to the poor prognosis
and low survival rate of patients [108, 152, 153]. Some
studies also found that the high expression of CypA in
colon cancer was accompanied by the up-regulation
of CD147 expression, and the expression changes of
the two were consistent. It is suggest that CD147 may
be positively correlated with the over-expressed of
CypA in colon cancer tissues, which provides clues
for further exploring the mechanism of CypA in CRC.
In summary, compared with non-cancerous tissues,
the expression of Cyps in CRC is generally
up-regulated, suggesting that the expression of Cyps
may be related to the occurrence of CRC.

Besides the markedly high expression of Cyps in
CRC, the expression of Cyps is closely correlated with
the progression of CRC. The expression of Cyps
increased with the decrease of CRC differentiation,
the occurrence of lymph node metastasis [21, 156],
TNM (tumor, node, metastases) stage and tumor
invasion [109, 155]. Consistent with these
experimental results, in addition to the direct study of
CRC patients with pathological tissues, there were
also through the establishment of early submucosal
non-invasive and invasive CRC rat tumor model,
proteomics analysis found that compared with
non-invasive CRC and normal control group, invasive
CRC CypA protein expression increased significantly
[157]. Interestingly, Yeonghwan Kim’s team also
studied the relationship between CypB expression
and tumor progression, but did not find any relevance
between CypB overexpression and the grade or
development of colon cancer [152], which seems to be
in contradiction with the previous researches that
found the expression of CypB in CRC with lymph
node metastasis was significantly increased [156].
Yeonghwan Kim et al. [37] believed that it was related
to the fact that CypB was mainly distributed in ER,
and its expression might be mainly affected by ER
oxidative stress rather than tumor invasion and
metastasis. Urgently, the expression level of CypB in

the progression of CRC needs more experiments to
illustrate, but clearly, these results can be confirmed
that the general high expression of Cyps may be
closely related to the occurrence, development and
metastasis of CRC.

The possible mechanisms of Cyps in CRC

In addition to its high expression in CRC,
different members of Cyps can participate in the
development of CRC in different ways. The
mechanism of Cyps in CRC will be briefly reviewed in
the form of family members.

CypA

The role of CypA in CRC generally focuses on
the proliferation, invasion and metastasis of cancer
cells. The effect of eCypA on CRC is also closely
related to the signal regulation of CD147 receptor. The
combination of eCypA and CD147 on cell membrane
activated downstream pathways through ERK1/2
[122, 158], and the activation of MAPK promoted
tumor metastasis [34] (Figure 3). It is speculate that
eCypA may play a role in the proliferation and
metastasis of CRC by binding to CD147 and
regulating the downstream MAPK signaling
pathway. Meanwhile, a number of experiments have
shown that the regulation of MMPs in tumors was
controlled by the activation of the p38MAPK signal
[159-162], and played an important role in promoting
the invasion and metastasis of cancer cells [35,
159-162]. Consistently, recent studies found that the
activity of MMP-9 promoter was markedly enhanced
in CRC [163] (Figure 3). In summary, it can be
speculated that the combination of eCypA and CD147
may also regulate the expression of MMPs through
the MAPK signaling pathway, which has a certain
effect on the invasion and metastasis of CRC or other
cancer cells (Figure 3).

Apart from eCypA, the inhibition or knockout of
iCypA also affected the proliferation, migration and
invasion of CRC. Early studies discovered that
sanglifehrin A (SFA, one kind of immunosuppressor)
inhibited the proliferation of macrophages through
iCypA [124]. Similarly, SFA was also found to inhibit
the proliferation of human colon cancer cell HCT-116
after binding to iCypA [164]. However, unlike the
inhibition of ERK1/2 activity in macrophages (Figure
1) [124], SFA activated NF-«B signal after inhibiting
iCypA in colon cancer cells. Subsequently, NF-xB
promoted the transcription of tumor suppressor gene
p53 in cancer cells, stimulated the increase of p21
expression, and inhibited the activity of
cyclinE-CDK?2, thereby inhibiting the proliferation of
colon cancer cells [164] (Figure 3). Based on the results
mentioned above, it is suggest that the inhibition of
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iCypA not only negatively regulates the migration
and proliferation of immune cells [124], but also
relates to the inhibition of CRC cell proliferation [164].
However, the difference may be that iCypA has
different effects on CRC cells and immune cells such
as macrophages (Figure 1 and 3).

Nevertheless, in a recent study to explore the
effect of CypA on the progression of colon cancer
[165], the invasion and metastasis of SW480 cells were
significantly inhibited after the iCypA gene was
knocked out, but there was no effect on cell
proliferation (Figure 3). Simultaneously, there was
up-regulation of E-cadherin (regulating the epithelial
properties of cells) and down-regulation of
N-cadherin (regulating the mesenchymal properties
of cells) [165], indicating that iCypA may promote the
invasion and metastasis of colon cancer cells by
regulating epithelial mesenchymal transition (EMT).
It is worth mentioning that, similar to the
phosphorylation of NF-xB signal induced by the
inhibition of iCypA [164], the knockout of iCypA also
caused the activation of p38MAPK (Figure 3). And the
use of p38 inhibitors increased the invasion number of
iCypA knockout colon cancer cells [165], which once
again proves the previous conjecture that the
inhibition or knockout of iCypA in CRC cells may
promote the activation of NF-xB and MAPK signals.
But, it may have the opposite effect in immune cells.
Interestingly, the expression and release of MMPs
involved in cell invasion were also examined.
However, these MMPs did not change after iCypA

Cell membrane |

P
NF-kB

NF-xkB

p53

p21

Proliferation

eCypA

CyclinE

knockout, even lowered than the detection limit [165]
(Figure 3). This seems to be in contradiction with
many experimental results indicating that the
activation of MAPK promotes the expression of
MMPs [34, 121, 134-136], but this suggests that eCypA
and iCypA may have different effects on MAPK in
different cancer cells (Figure 3). Additionally, the
expression of MMPs cannot exclude the possibility of
other signal pathway regulation, which needs further
study. But it is certain that CypA does play an
important role in the invasion and metastasis of CRC.

CypB

In cancer biology, CypB is associated with the
malignant progression and regulation of a variety of
tumors [166-171], but its research in CRC is rarely
reported.

In the last decade, Sung Soo Kim et al. have been
devoted to the study of CypB [108, 152, 172]. In 2011,
they first studied the induction of CypB under
hypoxia and its function in tumor cells in vivo and in
vitro [152]. Their sesults showed that CypB regulated
angiogenesis though hypoxia inducible factor-la
(HIF-1a)-mediated vascular endothelial growth factor
(VEGF), and protected tumor cells including liver
cancer and colon cancer cells from stress-induced
apoptosis, including hypoxia and cisplatin-induced
stress [152] (Figure 4). These results suggest that CypB
may be a new candidate target for the development of
anti- hepatocarcinoma and colon cancer, which also
lays a certain foundation for subsequent researches of

P 038 ERK1/2
P

MAPK
AP-1

MMPs

E-cadherin
N-cadherin

Invasion
Metastasis

Figure 3. The regulatory role of CypA in CRC. eCypA and iCypA have different effects on NF-kB and MAPK pathways. Both iCypA and eCypA can respectively regulate
CyclinE-CDK?2, EMT and MMPs through these two signaling pathways, which have different effects on CRC.
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CypB in chemotherapy resistance of CRC patients.
However, in this study, the relevant mechanism of
hypoxia-induced up-regulation of CypB expression
was not deeply explored. In 2015, they demonstrated
for the first time that hypoxia up-regulated the
transcription of CypB by activating transcription
factor 6 (ATF-6) [172], thus elucidating the mechanism
relatively completely. In recent years, they began to
study the mechanism of CypB regulating
chemoresistance in CRC [108]. The results showed
that tumor suppressor gene p53 wild-type (p53WT)
up-regulated the mRNA and protein levels of CypB,
and overexpressed CypB interacted with ubiquitin E3
ligase (MDM2), so as to make p53WT ubiquitination
degradation and short its half-life, thus inhibiting
oxaliplatin-induced apoptosis of CRC cells (Figure 4).
On the contrary, CypB knockout prolonged the
half-life of p53WT and stimulated apoptosis of cancer
cells [108]. These results suggest that CypB is an
effective target for improving chemoresistance in
patients with CRC. In conclusion, these experiments
suggest that CypB is regulated by oncogene
transcription factors such as HIF-la, ATF-6 and
pS3WT, which may be related to ER stress and
extensive signaling pathways, and determine the role
of CypB in chemotherapy resistance of CRC.

Apart from participating in the regulation of
chemoresistance in CRC, CypB was found to play a
critical role in the invasion and metastasis of CRC
[153, 156]. CypB was knocked out by RNA
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interference plasmid in CRC cell, the results showed
that the migration and invasion abilities of cancer cells
were significantly reduced [156] (Figure 4). However,
the specific mechanism of CypB promoting the
migration and invasion of cancer cells was not
revealed in this study. A recent study showed that
CypB silencing reduced the proliferation, invasion
and migration of colon cancer in vivo and in vitro by
blocking IL-6-induced signal transducer and activator
of transcription-3 (STAT3) phosphorylation and
nuclear translocation [153] (Figure 4). Besides, CypB
silencing also blocked the hydroxylation of type I
collagen and the formation of strip bands, thereby
inhibiting the metastasis of cancer cells [153] (Figure
4). In conclusion, STAT3/CypB/collagen regulatory
axis may play a crucial role in the development of
CRC, and CypB may be an effective target for
preventing the proliferation, invasion and migration
of CRC.

CypD

CypD is a component of mPTP. The role of CypD
in mPTP has been widely used in experiments in
recent years. It seems that the effect of CypD on CRC
also revolves around cell death induced by mPTP
[173-176]. Some chemotherapeutic drugs have been
found to promote the combination of mitochondrial
ANT-1 and CypD, reduce the mitochondrial
membrane potential, promote the opening of mPTP,
and exert a toxic effect on CRC cells through
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Figure 4. Related mechanisms of CypB involved in CRC. HIF-1a. promotes the transcription and expression of VEGF and CypB, thereby inhibiting hypoxia and
cisplatin-induced apoptosis in CRC. Overexpression of CypB can bind to STAT3 and induce its phosphorylation and nuclear transfer in the presence of IL-6, and also positively
promotes the transcription of HIF-1 a and the formation of type | collagen. p53 upregulates the expression of CypB, the interaction between CypB and N-terminal of MDM2 can

degrade p53 protein and inhibit oxaliplatin induced apoptosis of CRCr cells.
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mitochondrial ~programmed necrosis, inducing
necrosis of cancer cells, but not apoptosis (Figure 2).
Consistently, the toxicity was significantly attenuated
when CypD inhibitors or corresponding siRNA were
used [173, 174]. In mouse, after CsA treatment, the
inhibitory effect of chemotherapeutic drugs on the
growth of HCT-116 xenograft was significantly
weakened [174]. Correspondingly, the overexpression
of CypD significantly enhanced the sensitivity and
cytotoxicity of CRC cells to chemotherapeutic drugs
[174]. This indicates that CypD may play an important
role in the cytotoxic effects of chemotherapeutic drugs
on CRC cells, and this effect is closely related to
mitochondrial programmed necrosis. In the study of
Chunxian Zhou et al., it was also found that the
opening of mPTP stimulated by icariin (ICT, a
chemotherapeutic drug), was induced by JNK
activation pathway [173], suggesting that JNK
signaling pathway may be one of the regulatory
mechanisms of CypD involved in chemotherapy-
induced CRC cell necrosis (Figure 2).

However, it is interesting that in addition to
mitochondrial programmed necrosis, a new
anti-cancer drug candidate has been found to induce
apoptosis of CRC cells by disrupting mPTP [175].
Erastin was a VDAC-1 binding small molecule that
promoted VDAC-1 binding to CypD, cytochrome C
release and regulated mPTP opening, thereby
inducing mitochondrial oxidative stress and caspase-
9-dependent apoptosis to produce cytotoxic effects on
various CRC cells (Figure 2). CypD inhibitors
significantly attenuated the drug-induced cytotoxicity
and apoptosis [175]. This not only indicates the
emergence of a potential new drug against CRC, but
also suggests that CypD may also be involved in the
drug-induced apoptosis of CRC cells by regulating
mPTP. To sum up, CypD can participate in the
cytotoxic effect of drugs on CRC not only through the
necrosis, but also through the apoptosis. The
difference of these pathways may be related to the
types of drugs, the molecules bound to CypD, and the
ways to induce the opening of mPTP.

In a recent study, it was found that Ganoderma
acid D (GAD) induced the deacetylation of CypD by
up-regulating the level of mitochondrial deacetylase
Sirtuin 3 (SIRT3) in a dose-dependent manner, which
changed the open state of mPTP, thereby inhibiting
the Warburg effect of colon cancer cells and causing
cells death [176]. This suggests a possible new way
and mechanism for CypD to participate in drugs to
inhibit CRC, but the inhibitory effects of different
drugs on CRC cells are always related to the
involvement of CypD in the regulation of the open
state of mPTP.

Summary

In general, Cyps is highly expressed in IBD and
CRC, and even has a certain correlation with the
course of disease and prognosis, which suggests that
Cyps may be a diagnostic and prognostic indicator.
For IBD, Cyps can play a role in inflammation
through the secretion of inflammatory factors,
apoptosis, autophagy and necrosis of immune cells. In
CRC, Cyps is mainly involved in invasion, metastasis,
apoptosis, necrosis and drug resistance of cancer cells.
The mechanisms of Cyps in these two diseases are
generally focus on the signaling molecules such as
MAPK, NF-xB and mitochondrial programmed death,
and the specific mechanisms remain to be further
explored. However, at least it is certain that Cyps will
play an important role in the future research on IBD
and CRC, and provide effective clues for disease
treatment targets or new drug development.
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