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Abstract 

Human cytomegalovirus (HCMV), a ubiquitous in humans, has a high prevalence rate. Young people are 
susceptible to HCMV infection in developing countries, while older individuals are more susceptible in 
developed countries. Most patients have no obvious symptoms from the primary infection. Studies have 
indicated that the virus has gradually adapted to the host immune system. Therefore, the control of 
HCMV infection requires strong immune modulation. With the recent advances in immunotherapy, its 
application to HCMV infections is receiving increasing attention. Here, we discuss the immune response 
to HCMV infection, the immune escape mechanism, and the different roles that HCMV plays in various 
types of immunotherapy, including vaccines, adoptive cell therapy, checkpoint blockade therapy, and 
targeted antibodies. 
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Introduction 
Human cytomegalovirus (HCMV), also known 

as human herpesvirus 5 (HHV-5), is a linear 
double-stranded DNA β-herpesvirus that belongs to 
the family of herpesviruses [1]. HCMV infection 
results in the enlargement of infected tissue cells and 
the formation of large nuclear inclusion bodies. 
HCMV was first isolated in 1957 from an infant who 
was suspected to have congenital toxoplasmosis [2]. 

A recent systematic review and meta-analysis 
estimated a global HCMV seroprevalence of 83% in 
the general population, 86% in women of 
reproductive age, and 86% in donors of organs or 
blood [3]. HCMV can be transmitted through mother- 
to-child transmission; horizontal transmission; 
hospital-acquired respiratory, neurological, blood, 
and digestive system diseases; and other multi-system 
diseases, resulting in fetal malformation, birth defects 
[4], or poor prognosis of transplant patients with low 
immunity [5-8]. Following the establishment of 
infection, HCMV is usually latent (with only a few 
virus particles being released outside the cell), and the 
infected persons remain asymptomatic and become 

lifelong infectious carriers [9]. However, it is a huge 
health threat for immunocompromised patients, such 
as newborns [10, 11], AIDS patients [12], and 
transplant recipients [13]. It often causes infectious 
mononucleosis-like syndrome, retinitis, pneumonitis, 
gastrointestinal diseases, mental retardation, and 
vascular disorders [14]. Interestingly, recent studies 
have reported the presence of active HCMV infection 
in gliomas [15] and breast cancer [16]. HCMV 
infection induces the activation of mitotic signals 
transmitted by the products of proto-oncogenes such 
as c-fos c-jun and c-myc, which may be involved the 
tumorigenicity of HCMV [17]. 

Currently used drugs, such as Ganciclovir 
(GCV), Cidofovir (CDV) and Foscavir (FOS), have 
problems such as poor antiviral effect, large side 
effects and drug resistance, which cannot meet the 
clinical needs. Therefore, it is urgent to develop new 
prevention and treatment methods [18]. Antiviral 
drugs used in the treatment of patients with HCMV 
infection have low oral bioavailability and 
dose-related toxicities, such as bone marrow 
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suppression, hepatotoxicity, and nephrotoxicity [19, 
20]. In addition, vaccines against HCMV are being 
developed, but no licensed vaccine is available thus 
far [21]. Fortunately, a number of studies have shown 
that immunotherapy is a promising strategy to 
overcome the side effects of antiviral treatment and 
for the development of prevention measures. 

The structural characteristics of HCMV 
The virion of HCMV is composed of 

double-stranded DNA (dsDNA), which is enclosed in 
a capsid comprising four integral protein (pUL46, 
pUL80.5, pUL85, pUL104) that are organized into 162 
capsomeres (150 hexamers plus 12 pentamers) and 
320 triplexes located between the capsomeres [22]. 
The capsid, with a diameter of 100 nm, is surrounded 
by a poorly defined area and enclosed by a lipid 
bilayer envelope containing viral glycoproteins 
providing a final diameter of approximately 180 nm 
for the whole virion [23]. The HCMV genome is the 
largest known human herpes virus genome. Recent 
analysis has suggested that the DNA genome of 
HCMV consists of 235,000 base pairs, encoding at 
least 700 open reading frames [24]. The structure of 
the HCMV genome is similar to that of other herpes 
virus members. It is composed of the unique sequence 
of long component (UL) and the unique sequence of 
short component (US) and has reverse repeating 
sequences, specifically terminal repeat of long 
component (TRL), inverted repeat of long component 
(IRL), inverted repeat of short component (IRS), and 
terminal repeat of short component (TRS) The order 
of expression was immediate-early (IE), early (E), and 
late (L) genes. IE genes are expressed within hours 
after infection and initiate the transcription of viral 
genes essential for genome replication. E genes 
encode proteins, such as DNA polymerase and the 
terminase complex, which contribute to viral DNA 
replication and packaging and regulate host cell 
functions to facilitate virus replication. L genes 
encode structural proteins of the outer tegument layer 
and the envelope required for the assembly of the 
infectious virion [25]. HCMV genome encodes 
approximately 54 membrane proteins including at 
least 25 membrane glycoproteins found in the virion 
envelope [26-28]. A well-defined list of HCMV 
membrane proteins necessary for virus entry into the 
cells is not available because most HCMV mutants 
have been classified as essential or nonessential for 
replication, and have not been tested for defects in 
virus entry [29, 30]. Glycoprotein B (gB), glycoprotein 
H (gH), glycoprotein L (gL), glycoprotein M (gM), 
and glycoprotein N (gN) are the main 
HCMV-encoded glycoproteins. gB is a viral fusogene 
that is essential for entry into all cell types, [31]. 

Furthermore, gB (UL55) is highly expressed and an 
immune-dominant target following natural infection, 
making it an attractive target for vaccination [32]. The 
gH/gL assemble into UL128, UL130, and UL131 
proteins producing gH/gL/UL128-131, which are 
found in the virion envelope and mediate infection of 
epithelial and endothelial cells and monocyte- 
macrophages [33-35]. Among HCMV proteins, the 
tegument phosphoprotein pp65 (pUL83) is a common 
clinically detected antigen and plays a major role in 
immunomodulation and immune evasion.  

The life cycle of HCMV 
The life cycle of HCMV starts when it binds to 

receptors on the surface of host cells and enters into 
the cytoplasm. Current data support two models of 
HCMV entering the cytoplasm through receptor- 
mediated endocytosis and membrane fusion [36]. One 
model involves the interaction of the trimeric 
gH/gL/gO complex (TC) with platelet-derived 
growth factor receptor alpha (PDGFRα), activating gB 
to fuse the virus envelope with the membrane of 
fibroblasts [37]. The other model involves the 
interaction of the pentameric gH/gL/UL128–131 
complex (PC) with neuropilin-2 (Nrp2), which 
promotes endocytosis of virus particles in epithelial 
cells/endothelial cells, followed by gB activation by 
gH/gL/gO (or gH/gL) and entry into the cytoplasm 
through endosomes [38]. The network of 
microtubules (MTs) are closely related to the entry of 
HCMV into the nucleus. When the MTs are 
depolymerized by nocodazole, fluorescently labelled 
pp150 is blocked in the cytoplasm. Furthermore, in 
the absence of the MT network, the capsids that have 
entered the cytoplasm do not move in close proximity 
to the nucleus, suppressing IE gene expression [39, 
40]. After the entry of viral DNA into the cell nucleus, 
cellular RNA polymerases I and II (Pol I and II) are 
employed to transcribe viral genes by binding to the 
major immediate early promoter (MIEP) [41]. 
Previous studies have demonstrated that inhibition of 
Rho-associated coiled-coil kinase (ROCK) protein 1 
results in increased levels of tegument protein UL32 
and viral DNA in the cytoplasm, suggesting that 
ROCK activity hinders efficient egress of HCMV 
particles out of the nucleus [42]. Such impairments 
have been previously linked to the failure to control 
HCMV infection [43]. In addition, The transcriptome 
of HCMV-infected cells showed features of a 
pro-oncogenic cellular environment with upregulated 
expression of multiple oncogenes, enhanced 
activation of pro-survival genes, cell proliferation, 
and upregulated markers of stem cells and epithelial 
mesenchymal transition (EMT) [44].  

There are two types of cell infection status: latent 
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infection and lysogenic infection. For a latent 
infection, latency-associated transcript (LAT) HCMV 
genes are transcribed and accumulated in host cells 
[45]. A number of HCMV LATs have been identified, 
including UL138 [46], latent undefined nuclear 
antigen (LUNA) [47], UL81-82 [48], US28 [49, 50], and 
pUL11 [51]. Experimentally, latently infected CD34+ 
and CD14+ cells have been shown to secrete 
chemokines, which can recruit T cells, as well as IL-10 
and TGF-β, both of which can modulate the activity of 
T cells that have migrated to the environment 
surrounding the latent infection [51, 52]. In this case, 
viruses can indefinitely persist in host cells and have a 
latent infection pathway. Primary infection may be 
accompanied by a limited illness, and long-term 
latency is often asymptomatic [53]. Reactivation of 
HCMV in IL-6-stimulated dendritic cells (DC) has 
been reported to be dependent on ERK-MAPK 
pathway [54]. 

The immune response of HCMV 
infection 

The reason why we have not found an effective 
way to combat HCMV is probably that the immune 
responses to HCMV infections are still poorly 
understood. Changes in the level of the immune 
response directly affect the severity of HCMV 
infection. However, how the immune system 
responds to HCMV infection is not yet clear.  

It is well known that cell-mediated immunity 
and antibody-mediated immunity are necessary to 
suppress HCMV infection [55-57].Firstly, HCMV can 
infect a broad range of cells, including epithelial cells 
of glandular and mucous tissues, smooth muscle cells, 
fibroblasts, macrophages [58], hepatocytes, dendritic 
cells [59], and vascular endothelial cells [60], all of 
which provide a platform for the efficient 
proliferation of HCMV [36]. HCMV infection of 
precursor monocytes leads to the generation of 
toll-like receptors (TLRs) responsive inflammatory 
macrophages resistant to down-regulatory stromal 
TGF-β, allowing the macrophages to react to invading 
pathogens and immunostimulatory products with 
inflammation mediated by the Smad7 cytokine 
response [61].Within the innate immune system, 
natural killer (NK) cells act as the first line of defense 
and play an important role in limiting early 
cytomegalovirus (CMV) infection [62]. Monocytes 
play a pivotal role in viral dissemination in organ 
tissues during primary infection and subsequent 
reactivation from latency [63]. One hallmark of CMV 
infection is the maintenance of large populations of 
CMV-specific memory CD8+ T cells, a phenomenon 
termed memory inflation, and emerging data suggest 
that memory inflation is associated with impaired 

immunity in the elderly [55]. HCMV can activate the 
expression of B cell-activating factor (BAFF-R), 
thereby promoting polyclonally activated B 
lymphocytes [64]. HCMV pp65 may be an 
autoimmune or lupus-prone B cell epitope and may 
catalyze further epitope spreading to induce 
anti-dsDNA antibody production in 
lupus-susceptible individuals [65]. pp65 inhibits 
interleukin-1β (IL-1β) in an NF-κB-dependent 
manner, induces IL-1β in a caspase-8 dependent 
manner [66], and together with IE1 antigen efficiently 
induces and expands virus-specific T cells [67]. There 
are still several proteins that play important roles in 
HCMV infection and immunity, which are worth 
further exploration and research.  

Currently, CD4+ or CD8+ T cells and NK cells 
are considered to play significant roles in the host 
defense against HCMV, and they are the key 
participants in the cellular immune response. CD4+ or 
CD8+ T cells restrain viral replication and prevent 
disease, but do not eliminate the latently infected host 
cell. How do latently infected cells pose a health risk 
from a potential reactivation? HCMV may be 
reactivated by immunosuppression, inflammation, 
differentiation, or critical diseases [9], to begin 
generating a large number of viral progenies to cause 
symptoms and diseases, described as the lytic life 
cycle. When HCMV are reactivated, the transcription 
of viral genes switches from LAT genes to lytic genes 
to enhance viral DNA replication and virion 
production [45]. However, it is not clear how HCMV 
senses changes in the surrounding immune 
microenvironment and proliferates. Maintaining the 
transcription of the LAT gene, maintaining the latent 
state, inhibiting lysogenic infection, and thus 
inhibiting the progression of infection, is a good 
balance for stabilizing the patient. 

The immune escape mechanism of 
HCMV 

HCMV can evade an immune response in three 
ways: evasion from immune recognition receptors, 
inhibition of immune cell activation, or suppression of 
effector function (Figure 1). 

In terms of evading immune recognition 
receptors, TLRs comprise a significant signaling 
pathway required for antiviral defense. The 
HCMV-encoded glycoproteins US7 and US8 target 
the TLR3 and TLR4 signaling pathways by promoting 
the degradation of these TLRs; US7 targets TLR3 and 
TLR4 by a ubiquitin/proteasome system; and US8 
promotes TLR3 and TLR4 destabilization. This results 
in the overall downregulation of TLR-mediated innate 
antiviral response [68]. Recognition of HCMV DNA 
by the cytosolic sensor cyclic GMP/AMP synthase 
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(cGAS) initiates stimulator of interferon genes 
(STING)-dependent innate antiviral responses. 
However, the HCMV tegument protein UL82 (also 
known as pp71) has been identified as a negative 
regulator of STING-dependent antiviral responses. 
UL82 inhibits the translocation of STING from the 
endoplasmic reticulum to perinuclear microsomes by 
disrupting the STING-iRhom2-TRAPb translocation 
complex. UL82 also impairs the recruitment of 
TANK-binding kinase 1 (TBK1) and interferon 
regulatory factory (IRF3) to the STING complex and 
impairs STING-mediated signaling [69].  

In addition, in order to inhibit immune cell 
activation, previous studies have shown that there are 
many HCMV proteins that can inhibit immune cell 
activation, such as UL16 [70], UL18 [71], US6 [72], 
US18, US20 [73], US21 [74], UL26 [75], UL140, UL141 
[76-78], UL142 [79], US18, US20 [80] even some 
miRNAs [81, 82]. Recent studies have shown that 
HCMV infection increases the expression of immune 
checkpoint genes encoding PD-L1, PD-L2, PD-1, 
CD80, CD86, Tim-3, LAG3, as well as other T-cell 
markers such as CD4 and CD8A in tumors along the 
gastrointestinal tract, including the esophagus, 
stomach, and intestine [83]. By examining 

lymphocytes isolated from subjects at the time of 
viremia, it was found that T cells from individuals 
with short telomeres proliferated less, produced fewer 
cytokines, and had less induction of the transcription 
factor T-box expressed in T cells(T-bet) when 
stimulated with viral peptides [84]. Helicase-like 
transcription factor (HLTF), a DNA helicase 
important for DNA repair, potently inhibits early 
viral gene expression but is rapidly degraded during 
infection. The HCMV protein UL145 facilitates HLTF 
degradation by recruiting the Cullin4 E3 ligase 
complex and additionally targets tumor protein 
p53-binding protein 1 (TP53BP1) to invoke this 
immune evasion strategy in the cytoplasm. 

HCMV mainly breaks the link, or the interaction 
or the communication or the cross talk between 
cellular immunity and humoral immunity by 
inhibiting the engagement of HCMV-specific 
antibody Fc fragments to FcR, and then suppressing 
effector function. Antibody-dependent cellular 
phagocytosis (ADCP) occurs upon engagement of 
virus-specific antibody Fc fragments to FcR, resulting 
in the cytotoxic killing of infected cells and whole 
virion degradation. HCMV also encode their own 
viral FcRs, which recognize the Fc regions of host 

 

 
Figure 1. The immune modulation induced by HCMV. HCMV entry into the infected cells through the interaction of the trimeric gH/gL/gO complex (TC) with PDGFRα 
or the binding of the pentameric gH/gL/UL128–131 complex (PC) with Nrp2, etc. There are multiple strategies for the HCMV to achieve immune escape. For instance, US7 and 
US8 bind both TLR3 and TLR4, facilitating receptor destabilization by distinct mechanisms; US11 inhibits the assembly of FcRn with β2m resulting in the retention of FcRn in the 
endoplasmic reticulum, consequently blocking FcRn trafficking to the endosome; UL16, UL142 bind to ligands for NKG2D, the natural killer cell-activating receptor; UL18, US6 
interfere with the physical association between MHC class I molecules and TAP; US18, US20 downregulation of B7-H6 leads to evasion from NKp30-mediated killing; US21 
protein is a viral-encoded ion channel that regulates intracellular Ca2+ homeostasis and protects cells against apoptosis; UL26 downregulates the expression of antiviral genes; 
UL82 inhibits STING-mediated signaling; UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112; UL145 hijacks Cullin4 to invoke HLTF; 
miR-UL22A and miR-US5-2 suppress the secretion of TGF-β; gp68, gP34, gpRL13 and gP95 bind to the Fc segment of IgG on the membrane, resulting in the inability of FcγR
ⅢA receptor on effector cells to bind to the antibody on the target cells and hinder the communication or cross talk between cellular immunity and humoral immunity. 
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immunoglobulins. Mimicking host FcRs, vFcRs 
enable herpesviruses to reduce and evade antiviral 
immune responses [85]. In addition, gp68 [86], gp34 
[87], gpRL13, and gp95 [88, 89], were found to be 
expressed on the membrane surface of HCMV 
infected cells, and bind to the Fc segment of IgG on 
the membrane [85], resulting in the inability of 
FcγRIIIA receptor on NK cells to bind to the antibody 
on the target cells and hinder the bridge between 
cellular immunity and humoral immunity [90, 91]. 
One study proposed that the HCMV glycoprotein 
US11 inhibits neonatal Fc receptor functions (FcRn), 
causing its degradation in the endoplasmic reticulum, 
which may dampen mucosal and maternal immunity 
and reduce IgG half-life in blood and tissues, 
ultimately helping HCMV to escape antibody- 
mediated immunity [92]. 

 In fact, there are multiple strategies for the 
“tricky” HCMV to achieve immune escape. At the 
same time, the elucidation of these immuno-
suppressive strategies of HCMV also provides ideas 
for controlling the progression of infection. 

Current status of immunotherapy for 
HCMV 

Immunotherapy is the treatment of diseases by 
artificially enhancing or suppressing the immune 
function of the body. Immunotherapy has been 
widely used in the treatment of a large number of 
cancers, and has achieved good results in different 
cancers such as the brain [93, 94], breast [95], lung 
[96], and ovarian cancer [97]. At the same time, it must 
be admitted that there are still many areas for 
improvement in immunotherapy. HCMV, which is 
latent in cells, has been co-evolving with humans over 
the millenary, and the efficacy of antiviral drug 
therapy seems suboptimal. With the advancement of 
immunotherapy, an increasing number of researchers 
have applied immunotherapy for HCMV infection 
(Figure 2). 

Vaccines: prophylactic and therapeutic 
Several types of HCMV vaccine candidates have 

been developed or are currently under development, 
including first-generation vaccines (live-attenuated 
Towne), second-generation vaccines (gB protein- 
based, peptide vaccines, virus-like particles), and 
third-generation vaccines (nucleic acid vaccines) [98].  

The first-generation vaccine, Towne, attenuated 
by serial in vitro passaging, seems to have lost its 
ability for persistent immune induction, as indicated 
by gradually declining T lymphocyte responses [99]. 
The Towne vaccine does not cause local or systemic 
reactions and has an faultless safety record [100, 101]. 
However, seronegative kidney transplant recipients 

who received the Towne vaccine were partially 
protected against HCMV disease, but not against 
wild-type HCMV infection [102]. The Toledo genome 
contains mutations disrupting RL13, UL9, UL36, and 
UL128, and a 14-kb inversion of UL/b’ sequences 
encoding UL130 to UL148 [103]. Thus, due to 
disruption of UL128, Toledo resembles Towne by not 
expressing the PC and consequently lacks epithelial or 
endothelial cell tropism. 

The second-generation vaccine, based on early 
investigation, the chimeras Towne and Toledo of the 
magnitude and duration of the serologic responses 
were not notably more rapid or more robust [103]. To 
date, the most extensively studied vaccine is a subunit 
vaccine based on the viral envelope glycoprotein B 
(gpUL55) and tegument phosphoprotein 65(PP65). gB 
is an essential glycoprotein that plays a crucial role in 
virus binding to the cell surface, therefore it has been 
proposed as a target for the development of 
recombinant vaccines [104]. Furthermore, pp65 is 
regarded as a significant target of cytotoxic T cell 
(CTL) [105, 106], and the most likely vaccine target 
candidate to induce CTL-mediated protection against 
HCMV diseases [107]. The subunit gB vaccine was 
developed in the late 1980s and is composed of a 
Chinese hamster ovary (CHO) cell-derived protein 
admixed with an oil-in-water emulsion [108]; such the 
MF59-adjuvanted gB protein subunit vaccine 
(gB/MF59) is still an important research topic [109, 
110]. In the design of the gB/MF59 vaccine, gB was 
truncated at the transmembrane domain, and the 
furin protease site was deleted to facilitate 
purification from CHO cell supernatants. The vaccine 
was found to be safe and immunogenic in phase I 
studies [111] and can enhance the neutralizing 
potency of antibodies against HCMV gB and immune 
sera under complement enhancement [112]. 
Acanarypox vector–expressing CMV phosphoprotein 
65 is the first recombinant vaccine to elicit 
CMV-specific CTL responses in humans [113]. 
Ad-gBCMVpoly is a novel chimeric vaccine based on 
a replication-deficient adenovirus that encodes a 
truncated form of CMV-encoded gB antigen and 
multiple CMV T-cell epitopes from eight different 
CMV antigens, restricted through multiple human 
leukocyte antigen (HLA) class I and class II alleles, as 
a single fusion protein [114]. An enveloped virus-like 
particle (eVLP) vaccine expressing full-length or 
chimeric HCMV gB protein was generated by 
Variation Biotechnologies Incorporated (VBI) 
laboratories, where the extracellular domain (ECD) of 
gB is membrane-anchored using the transmembrane 
and cytoplasmic domains of the vesicular stomatitis 
virus G protein [115]. eVLP was shown to induce a 
neutralizing antibody response 10-fold higher than its 
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soluble recombinant protein counterpart [115]. 
Therefore, a vaccine against the combination of gB, 
pp65, or US28 (which seems to be a more significant 
antigen of HCMV) may be more efficacious. 

The third-generation vaccine ASP0113 (Astellas 
Pharma, Tokyo, Japan), a DNA vaccine containing 
two plasmids encoding CMV antigens (gB aimed at 
inducing the production of antibodies against CMV 
and PP65 inducing T-cell mediated responses), was 
found to be safe and well tolerated in Japanese 
recipients undergoing allogeneic hematopoietic 
stem-cell transplantation (HCT). VCL-CB01, a 
candidate CMV DNA vaccine that contains plasmids 
encoding CMV pp65 and gB to induce cellular and 
humoral immune responses, is formulated with 
poloxamer CRL1005 and benzalkonium chloride to 
enhance immune responses [116]. The data regarding 

CMVPepVax, a novel HCMV peptide vaccine 
formulated with the TLR9 agonist adjuvant 
PF03512676, provide proof of concept that an HCMV 
vaccine, in the HCT setting, can increase the number 
of pp65-specific CD8 T cells, protect from HCMV 
reactivation, and reduce the use of antivirals [117]. 
VCL-CT02, a trivalent HCMV DNA vaccine 
consisting of three plasmids, VCL-6368 (encoding 
pp65), VCL-6365 (encoding exon 2 and exon 4 of the 
IE1 gene), and VCL-6520 (encoding the extracellular 
domain of CMV Gb), appears to safely prime for a 
memory response to CMV antigens observed after 
administration of a live, attenuated CMV, and the 
strength of CMV antigen-specific immune response 
correlates with the priming effect of the DNA vaccine 
as measured by a cultured IFN-γ ELISPOT assay 
[118]. 

 

 
Figure 2. The current prevention and therapy strategies for HCMV infection. With respect to vaccines to prevent HCMV infection, inactivated virus (e.g., Towne, 
Toledo) weakened by a series of in vitro subcultures and subunit vaccines (e.g., gB/MF59), DNA vaccines (e.g., CMVPepVax, e.g., CMVPepVax, Chimeras, ASP0133, VCL-CB01), 
have been developed. When these vaccines are injected in the body, they can activate lymphocytes to kill the infected cell antigen-presenting cells (e.g., dendritic cells, 
macrophages, monocytes). A classic common antiviral inhibitor (cidofovir, ganciclovir, etc.) is a nucleotide analog that mainly impedes the DNA of HCMV synthesis. The target 
of checkpoint blockade therapy and targeted antibodies in HCMV infection is still under research. HCMV, as an oncolytic virus, usually infects tumor cells and creates an 
inflammatory microenvironment by causing infected cells to express molecules that target antigenic determinants and recruit immune cells (such as T lymphocytes, macrophages, 
monocytes, etc.) to cause infected cell apoptosis. ATC involves extraction of PBMC from the body, isolation of target cells (such as T lymphocytes and NK cells) in vitro genetic 
modification to immunotherapy cells, including HCMV-specific T cells, TCR-T cells, CAR-T cells, and then multiplication, and finally reinfusion into the body. 
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Some scholars propose that an mRNA-based gB 
vaccine may ultimately prove more efficacious than 
some second-generation vaccines and increase the 
durability and breadth of vaccine-elicited antibody 
responses that can prevent HCMV-associated disease 
[119]. Nevertheless, the gB vaccine is not entirely 
reliant on the classic biological activity of 
neutralization [120]. These potent vaccines are a 
composite of anti-gB and other major glycoprotein 
targets, including the trimer gH/gL/gO and the 
pentameric complex, which may explain the success 
of the gB HCMV vaccine. However, many molecules, 
including IE1, IE2, and pp65, have been used as 
targets for the development of CMV vaccines and the 
application of vaccine-based immunotherapy 
[121-123]. 

Adoptive cell therapy  
Adoptive cell therapy (ACT) involves the 

extraction of immune cells from the body, in vitro 
genetic modification and amplification, and 
transfusion back into the patient [124, 125], as a 
personalized immunotherapy [126]. At present, there 
are four adoptive cell therapies that have made great 
progress in international research, including 
tumor-infiltrating lymphocytes (TILs), T-cell receptor 
(TCR)-engineered T cells, chimeric antigen receptor 
(CAR) T cells [127], and natural killer (NK) cell 
therapy [125]. In 1992, adoptive CMV-specific T-cell 
therapy against viral infections achieved its first 
clinical application [128]. Two different strategies 
have been developed to enrich, isolate, or purify 
virus-specific T cells [129]. The one is in vitro 
stimulation and expansion of virus-specific T cells; 
autologous dendritic cells (DCs) pulsed with viral 
lysate were used as antigen-presenting cells (APCs) to 
stimulate CMV-specific T cells in vitro [130], then cells 
can either be used for in vitro expansion or isolation 
and direct infusion into the patient. By stimulation 
and amplification in vitro, a large number of 
virus-specific T cells can be obtained from a small 
amount of blood [129]. The second is the direct 
selection of virus-specific T-cells. For the direct 
selection of virus-specific T cells, donor white blood 
cells are isolated ex vivo via peptide-HLA multimers, 
cytokine-capture method [131, 132], exposure to viral 
antigens, or methods based on the expression and 
upregulation of activation molecules on the surface of 
T cells [133]. Virus-specific T cells are obtained in 
small amounts and infused into patients where they 
can expand efficiently and induce viral clearance as 
well as sustained protection. 

ACT has become a therapeutic strategy for 
HCMV reactivation in patients undergoing allogeneic 
hematopoietic stem cell transplantation (HSCT) [134, 

135] and solid organ transplant (SOT) [136]. For 
instance, in patients with glioblastoma multiforme 
(GBM), CMV antigens were found in GBM tissues but 
not surrounding healthy brain cells [15], suggesting 
that HCMV plays a key role in glioblastoma and has 
implications for immunotherapeutic strategies [137]. 
HCMV promotes murine glioblastoma growth via 
pericyte recruitment and angiogenesis. A study has 
shown direct killing of primary GBM cells by 
autologous HCMV-specific T cells [138], and some 
investigators developed a novel adoptive 
immunotherapy approach targeting CMV antigens 
for patients with recurrent GBM, and experimental 
results showed that autologous T-cell therapy was 
completely safe and associated with extended 
progression-free survival in 4 out of 10 patients [139]. 
Furthermore, adoptive transfer of virus-specific T 
cells (VSTs) to achieve antiviral protection for patients 
treated with allogeneic HSCT resulted in response 
rates for HCMV of 94% [140]. These results also 
demonstrate that CMV-specific T cells can effectively 
target glioblastoma cells for immune killing and 
support the theoretical basis for the development of 
CMV directed immunotherapy in patients [138]. 
Bringing forward strategies of adoptive T-cells 
promoted the application of transplantation in the 
treatment of refractory viral infections after HSCT 
[129]. In clinical application, a 21-year-old female 
patient with acute myeloid leukemia (AML), was 
treated with adoptive HCMV-specific T cells from her 
HLA-haploidentical sister, indicating that HCMV 
replication could be intermittently controlled by VSTs 
from an HCMV-positive donor [141]. In recent years, 
there has been numerous clinical evidence for 
adoptive HCMV-specific T cell immunotherapy that 
has achieved satisfactory therapeutic effects [134, 135, 
142-144]. These studies strongly suggest that adoptive 
cellular immunotherapy is a safe and effective 
approach for treating cancer patients with severe 
HCMV infections in the future. Indeed, the 
application of immunotherapy not only provided a 
new method to anti-CMV strategies, but it is also 
worthy to be considered in other treatments of 
refractory viral infections, such as Epstein-Barr virus 
(EBV), adenovirus (AdV), and even multivirus 
infections [135, 143, 144]. 

Oncolytic viruses  
CMV is a unique oncolytic virus that is produced 

by genetic modification of some virulent viruses 
existing in nature. It uses the inactivation or defect of 
tumor suppressor genes in target cells to specifically 
recognize and infect tumor cells, replicate in large 
quantities, and eventually destroy tumor cells. It also 
stimulates an immune response that attracts more 
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immune cells to continue killing the remaining cancer 
cells, and this is a growing field aimed to identify new 
therapies for treating cancer. Recently, there has been 
interest in developing vaccines based on CMV, which 
can induce large numbers of CD8+ T cells that are 
specific for an epitope that the virus encodes, better 
known as memory inflation [53, 145-148], thus it can 
be manipulated to express genes of interest for 
vaccination [146]. CMV vector expressing the NKG2D 
ligand RAE-1γ, as a CD8+ T-cell-based 
anti-malignancy vaccine, could delay tumor growth 
and even provide complete protection against tumor 
attack during prevention and treatment [149]. 

For a lot of “cold tumors,” tumors with low 
immunogenicity, the response to traditional methods 
such as radiotherapy, chemotherapy, and 
immunotherapy is limited [150]; Recent studies have 
demonstrated that the response is correlated with T 
cell infiltration and an “inflamed” tumor phenotype 
[151, 152]. Thus, some scholars have applied 
CMV-based vaccine methods for converting 
“non-inflamed” to “inflamed” tumors combined with 
adoptive T cellar immunotherapy to treat this subset 
of patients. For instance, MCMVgp100KGP vaccine 
targeting melanoma gp100 antigen was generated in a 
laboratory utilizing recombinant murine CMV as a 
vaccine carrier, gp100 specific CD8+ T cells were 
activated by the vaccine to effectively protect mice 
against highly aggressive lung B16-F10 melanoma 
[153]. Furthermore, MCMVgp100KGP vaccine 
combined with adoptive T cell therapy have also 
showed CMV-based vaccines are effective therapies 
against immunosuppressive solid tumors [154]. The 
reason why recombinant CMV as a vaccine vector is 
that CMV-specific CD8+ effector/effector memory T 
cell populations are large[55], highly dynamic [155], 
strong cytotoxic effect [156], and have the effect of a 
longer duration [155, 156]. Therefore, using HCMV as 
an oncolytic virus to activate the immune system 
response is beneficial for both the anti-tumor and 
potentially antiviral response, and ultimately 
alleviates the disease and may cure the patient. 

Whether the CMV can be used as an oncolytic 
virus is a question that needs to be considered and 
solved. We have to consider whether CMV has 
oncogenic properties, infects other normal cells, and 
produces severe viral infections that exacerbate the 
disease. 

Checkpoint blockade therapy and 
targeted antibodies 

HCMV viremia in renal transplant recipients 
also appears to upregulate PD-1 expression on CD4 T 
cells [157]. Studies have indicated that the use of 
immune checkpoint inhibitors (ICIs) can restore 

immune function and cause an immune response to 
CMV antigen when the infection is still latent [158]. 
The pS-CIFT-aPD-1 is a vector for the expression of 
the anti-programmed cell death protein 1 (anti-PD-1) 
antibody gene under the control of a chimeric 
promoter composed of the CMV enhancer, the core 
IFN-γ promoter and human T-lymphotropic virus 
long terminal repeat sequence (TLTR), which 
co-transfected with the CAR construct into T cells 
showed increased production of anti-PD-1 antibodies, 
increased release of IFN-γ, greater T cell activation, 
and superior antitumor activity [159]. 

Targeted antibodies are antibodies designed to 
target antigens on cancer cells, primarily to disrupt 
the unrestricted growth and proliferation of infected 
cells. One approach uses antibody peptide epitope 
conjugates (APECs) to deliver suitable antigens to the 
tumor surface, which directs pre-existing CMV 
immunity against tumor cells and activates 
specifically CMV-reactive effector T cells, whereas a 
bispecific T-cell engager activates both effector and 
regulatory T cells [160]. To eliminate the virus, it is 
more important to activate cellular immunity, 
whereas antibodies play crucial roles in preventing 
HCMV spreading in the blood. 

Conclusions and future directions 
In general, it is obvious that the development of 

vaccines designed to target HCMV proteins as 
antigens and stimulate the body to produce effective 
antibodies and immunocytes has still a long way to 
go. In adoptive immunotherapy, HCMV is often used 
as a target antigen to activate anti-CMV-specific T 
lymphocytes, thereby killing tumor cells infected with 
CMV. In terms of immune checkpoints, HCMV 
infection upregulates the expression of genes 
encoding immune checkpoint genes as well as other 
immunocyte markers. Although antibody therapy is 
very limited for CMV because of its intracellular 
presence in a latent form, interrupting the 
FcR-associated immune escape pathway and 
targeting immune checkpoints are promising 
strategies. In oncolytic virus therapy, CMV is often 
used as a vector to express oncogenes and induce the 
anti-tumor ability of T lymphocytes. Of course, due to 
safety concerns, research in the area of oncolytic 
viruses is cautious, and the existing research is based 
on cell and animal models, instead of patients. 

HCMV continues to be one of the most 
significant pathogens affecting the short-term and 
long-term outcomes of immunocompetent and 
immunocompromised patients. Firstly, HCMV 
asymptomatic latent infection and its severity once 
reactivated are the main obstacles of fundamental 
research and clinical therapeutics. Considering 
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standardization and personalized immunotherapy, it 
is difficult to design a relatively perfect 
immunotherapy regimen to account for the particular 
complexity of commonly infected patients, different 
organ transplants, the heterogeneity of tumors (hot 
and cold tumors), and co-infection with other 
pathogens simultaneously. Secondly, identification of 
targets for HCMV immunotherapy, clinically 
meaningful inclusion criteria, and markers of immune 
responses, such as peripheral blood cell changes and 
inflammatory cytokines (IL-6, IFN-γ, TNF-α, 
IFN-α/β, etc.) is crucially important. Thirdly, the 
efficacy of single-target immunotherapy or single 
immunotherapy is limited. However, multi-target or 
multi-combination immunotherapy may cause 
unpredictable inflammatory cell infiltration, even 
cytokine storm, which are worthy of consideration. 
Finally, advances in immunotherapy technology 
coupled with the recent fundamental advances in the 
understanding of HCMV infection have created 
opportunities for the development of effective 
immunotherapy for HCMV infection. It is likely that 
combinatorial regimens with complementary 
mechanisms of action are required to achieve a broad 
and durable anti-HCMV benefit.  
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