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Abstract 

The adaptive immune checkpoints such as PD-1(programmed death-1)/PD-L1 (programmed death-ligand 
1) play an important role in cancer immunotherapy, whereas increasing evidence suggests that cancer cell 
evades immune surveillance by innate immune checkpoints such as SIRPα (signal-regulatory protein 
α)/CD47 (cluster of differentiation 47). In multiple types of cancer cells and solid tumor tissues, highly 
expressed CD47 protein level has been observed, which is triggered by some transcription factors 
including NFκB, Myc, and HIF. As a transmembrane protein, the binding of CD47 to SIRPα ligand on 
phagocytes results in phagocytosis resistance and cancer cell immune escape. In contrast, CD47-SIRPα 
interaction blockade enhances cancer cell clearance by phagocytes such as macrophages and dendritic 
cells (DCs) to activate an innate immune response, whereas this process could promote antigen 
cross-presentation by antigen present cells (APCs) leading to T cell priming, consequently, activates an 
adaptive antitumor immune response. In this review, we discussed the current SIRPα-CD47 
axis-mediated cancer cell immune escape and immunotherapy, which could provide an effective 
antitumor strategy by the innate and adaptive immune response. 
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Introduction 
The innate and adaptive immune systems of host 

play an important role in killing cancer cells and 
inhibiting tumor progression [1-3], while cancer cell 
exhibits immune escape by expression of some 
immune checkpoint proteins such as PD-L1 
(programmed death-ligand 1) and CD47 (cluster of 
differentiation 47) [3, 4]. PD-1(programmed death-1)/ 
PD-L1 checkpoint functions as “don’t find me” signal 
to the adaptive immune response [5-7], whereas 
SIRPα (signal-regulatory protein α)-CD47 axis serves 
as “don’t eat me” signal to the innate immune 
response [7, 8] (Figure 1). The interaction of PD-L1 
with surface PD-1 receptor on T cells leads to 
inhibition of cancer cell killing [9, 10], whereas the 
binding of CD47 to surface SIRPα receptor on 
phagocytes inhibits cancer cell clearance [7, 8, 11]. 

CD47 is a widely expressed glycoprotein in normal 
and cancer cells with five transmembrane domains 
[12, 13], which binds to the extracellular domain of 
SIRPα on phagocytes leading to inhibition of 
phagocytosis [7, 12]. The SIRPα/CD47 checkpoint 
was first identified in 1999 [14, 15], which suppresses 
phagocytosis of phagocytes and promotes cancer 
immune escape [8, 16, 17]. The clinical analysis shows 
that CD47 is highly expressed on multiple types of 
cancer patients including glioblastoma, ovarian, 
breast, bladder, colon, and hepatocellular carcinoma, 
which correlates with low survival [18]. CD47 
expression is trigged by multiple transcriptional 
factors including NFκB, Myc, and HIF, etc [3, 11, 19, 
20], while the SIRPα-CD47 axis blockade enhances 
phagocytosis by macrophages and DCs to activate 
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innate immune response resulting in tumor 
regression [3, 7, 11, 12, 18], whereas the phagocytosis 
by DCs activates DNA-sensing cGAS-STING-INF- 
γ-mediated adaptive immune response leading to T 
cell priming [21-23], suggesting that inhibition of 
SIRPα-CD47 axis could enhance innate and adaptive 
antitumor immune response. In this review, we 
discussed the regulatory mechanism of 
CD47-mediated cancer immune escape and 
immunotherapy.  

 

 
Figure 1. “Don’t eat me” and “don’t find me” signal. The binding of CD47 to 
SIRPα on phagocytes inhibits phagocytosis, which functions as “don’t eat me” signal, 
whereas the binding of PD-L1 to PD-1 serves as “don’t find me” signal that inhibits T 
cell killing. APCs: antigen present cells. 

 

SIRPα-CD47 axis protects cancer cell from 
phagocytosis  

SIRPα is one of the SIRP family members, which 
was first identified in 1997 [24]. Thibaudeau et al [25] 
reports that SIRPα is highly expressed on 
macrophages. After that, CD47 was identified as the 
first ligand of SIRPα [14, 15]. The binding of SIRPα to 
CD47 triggers SIRPα phosphorylation of ITIMs 
(immunoreceptor tyrosine-based inhibitory motifs) 
resulting in deactivation of myosin IIA, which is a 
critical step to block phagocytosis [16]. CD47 
glycoprotein is highly expressed in multiple types of 
cancer cells and human tumor tissues [7, 18, 26, 27], 
which is regulated by Myc oncogene [11]. In this 
study, Myc directly binds to CD47 promoter and 
triggers its gene expression. In T cell acute 
lymphoblastic leukemia (T-ALL) xenograft tumor 
model, activation of Myc leads to tumor growth and 
inhibition of phagocytosis, which is alleviated by Myc 
inactivation [11]. Interestingly, another report shows 

that silenced CD47 reduces Myc expression in oral 
squamous cell carcinoma [27], which suggests that 
CD47 could increase Myc expression. However, it is 
unclear whether CD47-Myc-CD47 feedback signal 
could regulate CD47 expression. In addition to direct 
regulation of CD47 promoter by Myc binding [11], 
extracellular stimuli also trigger CD47 gene 
expression [20, 28]. In response to TNFα, activated 
NFκB (nuclear factor- κB) directly binds to a specific 
constituent enhancer of CD47 and increases its gene 
expression in MCF-7 breast cancer cells resulting in 
tumor growth by inhibiting phagocytosis [28]. 
Moreover, under hypoxia condition, HIF-1 
(hypoxia-inducible factor 1) binds to CD47 promoter 
and increases its expression resulting in inhibition of 
phagocytosis in breast cancer cells, which is a strong 
correlation between CD47 and HIF-1 by clinical 
analysis from thousands of breast cancer patients [20]. 
The ChIP-Seq-based analysis shows that nuclear 
respiratory factor 1 (NRF-1) targets CD47 promoter 
[29]. Consistent with this, oncogenic activation of ERK 
signal induces CD47 expression by NRF-1-mediated 
CD47 gene transcription in melanoma cells leading to 
inhibition of phagocytosis [30]. In contrast, IDH1 
(R132H) mutation in gliomas, negatively regulates 
CD47 gene transcription, which disrupts the binding 
of PKM2/β-catenin/BRG1 complex to TCF4 
transcription factor resulting in inhibition of 
TCF4-mediated CD47 expression [31]. In addition, 
Berkovits and Mayr [32] have described the 
mechanism of how does the new synthesized CD47 to 
be delivered to the cell surface. This study suggests 
that CD47 protein is present on the cell surface and 
intracellular, whereas the long 3'UTR of CD47 is 
critical for its surface localization. Mechanistically, the 
binding of HuR to long 3'UTR recruits SET to develop 
CD47 mRNA/HuR/SET complex and targets the 
endoplasmic reticulum (ER) surface, subsequently, 
the binding of SET to the new synthesized 
cytoplasmic domains of CD47 recruits RAC1 and 
forms a CD47/SET/RAC1 complex leading to the 
plasma membrane translocation of CD47 protein [32]. 
Moreover, the expression of CD47 protein undergoes 
transcriptional modification by glutaminyl-peptide 
cyclotransferase-like (QPCTL), which induces CD47 
pyroglutamate formation shortly after biosynthesis 
[17]. In this study, it shows that the formation of 
pyroglutamate on CD47 enhances the binding of 
SIRPα to CD47, consequently, inhibits cancer cell 
clearance by phagocytes. In addition to present on cell 
surface, CD47 protein is observed on exosomes 
[33-35]. Exosomes are extracellular vesicles (30–
150 nm) with double-layer membrane, which is 
secreted from cells and effectively enter into other 
cells [36]. High CD47 levels on the exosomes of breast 
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cancer patients may be unfavourable [33, 34], and 
CD47 on the exosomes inhibits cancer cell clearance 
by phagocytes in pancreatic cancer [35], while it still 
unclear the secreted mechanism of CD47 on the 
exosomes. Taken together, CD47 gene expressions are 
regulated by multiple transcription factors, which 
could be transcriptional modification by 
pyroglutamate formation that enhances the binding of 
CD47 to SIRPα, consequently, inhibits phagocytosis 
by phagocytes and promotes cancer cell immune 
escape. CD47 on the exosomes also decreases 
antitumor activity by inhibition of phagocytosis. So, 
the surface CD47 on cancer cells and exosomes should 
be blocked for cancer immunotherapy (Figure 2).  

CD47 blockade enhances the innate and 
adaptive antitumor immune response  

CD47-SIRPα axis serves as “don’t eat me” signal 
to the innate immune response [7, 8], whereas 

SIRPα-CD47 checkpoint blockade promotes 
phagocytosis by phagocytes such as macrophages and 
DCs leading to tumor regression by activation of 
innate immune response [23, 37, 38]. The antitumor 
activity by CD47 blockade enhances cancer cell 
clearance by both of phagocytes and T cells [26, 37], 
and anti-CD47 antibody enhances CD8+ T cells killing 
but not CD4+ T cell in colon cancer cells [37]. Silenced 
CD47 in T cells leads to enhanced T cell killing in 
irradiated melanoma cells [26]. Vaccination with 
CD47 knockout tumor cells induces CD11c+ 

SIRPα+ DCs activation and enhances T cell response 
in B16F0 melanoma mouse tumor model [39]. As 
APCs, DCs engulf cancer cells and tumor-derived 
DNA in DCs activates cGAS (cGAMP), a cytosolic 
DNA sensor, subsequently, activates the downstream 
cGAS-cGAMP-STING innate immune response that 
exhibits antitumor activity [23, 40], whereas highly 
expressed CD47 inhibits this signaling pathway in 

 

 
Figure 2. SIRPα-CD47 axis protects cancer cell from phagocytosis. Multiple transcription factors regulate CD47 expression in response to intracellular oncogenic 
activation pathways or extracellular stimuli. The new synthesized CD47 protein is delivered to the cellular surface by binding to SET/RAC complex proteins, which undergoes 
pyroglutamate formation by cyclotransferase-like (QPCTL) shortly after biosynthesis leading to increased phagocytosis resistance. In addition, the CD47 protein on the surface 
of the exosomes inhibits phagocytosis. 
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cancer cells leading to tumor immune escape [7, 8]. 
CD47-SIRPα blockade by anti-CD47 antibody 
enhances antigen cross-presentation by DCs and 
promotes T cell priming, consequently, CD8+ T cells, 
but not CD4+ T cells, mediate killing on colon cancer 
cells. In this process, cytosolic DNA sensor STING 
(Stimulator of interferon genes) is required for 
anti-CD47 antibody-mediated tumor regression [23]. 
In addition, bispecific anti-PD-L1-SIRPα, both of 
SIRPα/CD47 and PD-1/PD-L1 checkpoints blockade, 
significantly enhances CD8+ T cell killing on colon 
cancer cells compared to SIRPα/CD47 or PD-1/PD-L1 
blockade alone, which is involved in activation of 
STING-IFN-γ pathway in DCs [41]. Combined 
CD47/SIRPα blockade with temozolomide in 
glioblastoma enhances phagocytosis and promotes T 
cell priming by activation of STING-IFN-γ pathway in 
DCs [38]. In addition to tumor-derived DNA, the 
tumor mitochondrial DNA (mtDNA) can also trigger 
the cGAS-cGAMP-STING innate immune response 
[42]. In this study, it reports that CD47 blockade leads 

to inhibition of degradation of tumor mtDNA by 
activation of NADPH oxidase NOX2 in DCs, 
consequently, activates the mtDNA-cGAS-STING- 
IFN-γ pathway in DCs. These findings suggest that 
CD47 blockade activates cGAS-cGAMP-STING- 
mediated innate immune response as well as adaptive 
immune response by cGAS-STING-IFN-γ signal- 
mediated T cell priming (Figure 3).  

SIRPα-CD47 checkpoint blockade in 
cancer immunotherapy  

Increasing evidence suggests that SIRPα-CD47 
checkpoint blockade enhances the efficacy of cancer 
immunotherapy (Table 1). SIRPα-CD47 axis blockade 
by using anti-CD47 antibody significantly enhances 
phagocytosis by macrophages and inhibits tumor 
growth [8, 18, 23, 26, 37, 43]. Furthermore, SIRPα 
specific monoclonal antibody KWAR23 disrupts 
SIRPα-CD47 interaction resulting in inhibition of 
tumor growth by increasing phagocytosis [44]. 

 

 
Figure 3. CD47 blockade activates innate and adaptive antitumor immune response. CD47-SIRPα axis blockade activates cGAS-cGAMP-STING-mediated innate 
immune response by tumor-derived nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) in DCs, whereas the release of IFN-γ via cGAS-cGAMP-STING-INFR signal results 
in cytotoxic T cell priming and activates adaptive antitumor immune response.  
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TTI-621 (SIRPαFc), a recombinant protein for CD47 
binding, activates macrophage phagocytosis and 
inhibits tumor growth [45, 46]. In addition to block 
CD47/SIRPα checkpoint alone, combined SIRPα/ 
CD47 with PD-1/PD-L1 blockade enhances the 
efficiency of antitumor immunotherapy [41, 47, 48], 
suggesting that SIRPα-CD47 axis blockade could 
enhance PD-1/PD-L1 blockade therapy for cancer. 
The binding of the bispecific anti-PD-L1-SIRPα fusion 
protein to both of PD-L1 and CD47 on cancer cells 
significantly enhances antitumor activity in MC-38 
colon cell xenograft tumor model [41]. Similarly, 
anti-CD47 antibody synergizes with PD-L1 blockade 
for cancer immunotherapy in B16F10 melanoma 
tumor model [47]. Moreover, combined with 
chemotherapy or radiotherapy also enhances the 

efficacy of cancer immunotherapy, which could 
increase T cell priming via the release of 
tumor-derived antigens consequent activation of 
APCs [21, 22]. Similarly, cotrimoxazole synergizes 
with anti-CD47 antibody treatment leading to 
enhanced antitumor activity by both of phagocytosis 
and cGAS-STING DNA sensing signal [23]. In 
response to mitoxantrone, anti-CD47 antibody 
significantly enhances antitumor activity in breast 
cancer cells [49]. SIRPα-CD47 axis blockade enhances 
cancer cell clearance by phagocytes, which in turn 
promotes antigen cross-presentation by APCs 
resulting in enhanced T cell priming. Therefore, a 
rational combination of SIRPα-CD47 axis blockade 
contributes to cancer immunotherapy (Figure 4, Table 
1).  

 

 
Figure 4. SIRPα-CD47 checkpoint blockade enhances antitumor immunotherapy. A rational combination of SIRPα-CD47 axis blockade contributes to enhancing the 
efficacy of cancer immunotherapy. 
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Table 1. SIRPα/CD47 blockade and antitumor immunotherapy 

Targets Tumor model  Reference 
Anti-CD47+BRAF/MEK 
inhibitors 

Melanoma 30 

Anti-CD47 Acute myeloid leukemia (AML) stem cells 8 
Anti-CD47 Breast cancer 49 
KWAR23 (Anti-SIRPα) Burkitt’s lymphoma 44 
TTI-621 (SIRPαFc) Lymphoma. AML 46 
Anti-PD-L1-SIRPα Colon cancer 41 
Anti-CD47+ anti-PD-L1 Melanoma 47 
Cotrimoxazole+anti-CD47 Colon, B cell lymphoma 23 
Mitoxantrone+anti-CD47 Breast cancer 49 
1H9(anti-SIRPα)+anti-PD-L1 Melanoma 48 
SRF23(anti-CD47) Burkitt’s lymphoma 43 

 

Conclusion 
Highly expressed CD47 levels are present in 

multiple types of cancers including solid tumors and 
hematologic malignancies, which is major regulated 
by some transcription factors such as NFκB, Myc, 
HIF-1 and NRF-1. Although CD47 protein on 
exosomes has been observed, the mechanism of 
secreted pathway is still unclear. Given that normal 
and blood red cells are widely expressed CD47 that 
will limit the efficiency of anti-CD47 antibody 
therapy, therefore, a specific anti-CD47 antibody for 
CD47/SIRPα blockade is necessary. Especially, 
combined CD47/SIRPα with PD-1/PD-L1 check-
points blockade will be preferred to inhibit cancer cell 
immune evasion. Since DNA damage stimuli could 
trigger an adaptive antitumor immune response by 
DNA-sensing cGAS-STING-INF-γ pathway or release 
of tumor-derived antigens, a rational combined 
anti-CD47 antibody with chemotherapy or 
radiotherapy could enhance the efficiency of 
antitumor immunotherapy.  
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