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Abstract 

Urologic oncologies are major public health problems worldwide. Both microRNA and autophagy, 
separately or concurrently, are involved in a variety of the cellular and molecular processes of multiple 
cancers, including urologic malignancies. In this review, we have summarized the related studies and 
found that microRNA-mediated autophagy acted as carcinogenic factors or suppressors in prostate 
cancer, kidney cancer, and bladder cancer. MiRNAs, targeted genes, and the different signaling pathways 
constitute a complex network that orchestrates autophagy regulation, militating the oncogenic and 
tumor-suppressive effects in urologic malignancies. Aberrant expression of miRNAs may induce the 
dysregulation of the autophagy process, resulting in tumorigenesis, progression, and resistance to 
anticancer therapies. Targeting specific miRNAs for autophagy modulation may present as reliable 
diagnostic and prognostic biomarkers or promising therapeutic strategies for urologic oncologies. 
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Introduction 
Urologic oncology mainly includes prostate 

cancers, bladder cancers, kidney cancers, adrenal 
tumors, penile neoplasms, testicular neoplasms, and 
ureteral neoplasms. According to the GLOBOCAN 
2018, the incidence and mortality of urologic 
oncologies are reported at 12.3% and 7.7%, 
respectively [1]. Prostate cancer (PCa) is the most 
common malignancy and the second leading cause of 
cancer-related death among male subjects in Western 
countries. As reported, bladder cancer is the 10th most 
common cancer worldwide in 2018 [1]. Renal cell 
carcinoma is one of the most frequently diagnosed 
cancers, representing 2-3% of all malignant tumors in 
adults. As predicted, the incidence of urological 
cancer may elevate substantially amid a growing, 
aging population. As a result, examinations and 
interventions of urologic cancers may continuously 

bring a large financial burden worldwide. Statistics 
showed that in 2020, the annual costs for treating and 
curing prostate, bladder, and kidney cancers in the 
United States were projected to reach $31.47 billion 
[2]. 

Despite recent advances in diagnosis and 
therapy for urologic oncologies, these cancers, 
especially in patients with advanced and metastatic 
conditions, are still the leading causes of death as 
compared to other urologic diseases. Radical surgery 
is still the first therapeutic option for the early stage of 
urologic cancers. However, unresectable patients with 
advanced-stage of tumors usually have a poor 
prognosis due to their highly resistance to 
chemotherapy or radiotherapy. 

Exploring the molecular mechanism of 
tumorigenesis in urologic oncologies would be a 
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prerequisite for the diagnosis, therapeutic 
management, and prognosis of these diseases. 
Finding a way to increase the sensitivity of 
radiotherapy and chemotherapy for urologic cancers 
is urgent. It is well known that cell apoptotic 
metabolic disorders play a key role in multiple 
cancers, including urologic cancers [3-5]. A growing 
number of studies demonstrated that microRNAs 
(miRNAs) could promote apoptosis of cells by 
regulating autophagy [6-8]. In this review, we aim to 
systematically review the relevant literatures to 
characterize the effect of the miRNAs-autophagy axis 
in the progression and prognosis of human urologic 
oncologies. 

Overview of Autophagy 
Autophagy is characterized by “self-digestion”, 

which is an effective cellular process toward 
maintaining cellular biosynthesis and energy 
requirement for the eukaryotic cells. So far, there are 
three main subsets of autophagy, including 
macroautophagy, microautophagy, and chaperone- 
mediated autophagy (CMA) [9]. The most commonly 
investigated autophagy usually indicates 
macroautophagy. It begins with the formation of the 
endoplasmic reticulum and gradually expands into 
the precursor of the autophagosome, i.e., isolation 
membrane or cup-shaped phagophore [10]. The 
autophagy microtubule-associated protein light chain 
3 (LC3) forms LC3-Ⅰ and LC3-Ⅱ through a series of 
chemical reactions, which ensure elongation and 
expansion of autophagy [11]. Next, cytoplasmic 
components are engulfed with phagophore and 
sealed into a double-membrane vesicle, termed the 
autophagosome [12]. Autophagosome fuses with the 
acidic lysosomal membrane, forming autolysosomes, 
where autophagic body together with its cargo are 
degraded [12]. Autophagy is a highly conserved 
catabolic process in which cellular unnecessary or 
dysfunctional materials (such as mitochondria and 
proteins) are transported to the lysosome for 
degradation [13]. Autophagy-related genes (ATGs), 
first been identified in yeast and later found in 
mammals, were subsequently proved to being 
mediated by the autophagosome formation [14]. 
Under stress, autophagy exerts a cytoprotective effect 
by eliminating damaged organelles and proteins. 
Conversely, hyperactivation of autophagy was shown 
to induce autophagic cell death. Autophagy has dual 
roles in both oncogenicity and tumor suppressor 
according to different molecular mechanisms. 

The role of autophagy in urological 
cancers 

Mounting evidence demonstrates that 

dysregulation of autophagy may correlate with 
numerous human diseases. In 1999, Levine et al. [15] 
first reported the association between autophagy and 
tumor. However, the exact role of autophagy on 
multiple cancers remains a debate. Many 
investigators suggest that autophagy may have an 
antitumorigenic effect but quite a few researchers 
believe autophagy can promote tumorigenesis and 
the progression of cancers. For urological tumors, it 
was reported that autophagy served as a tumor 
suppressor by maintaining genomic integrity. Once a 
tumor has been established, autophagy can be utilized 
by cancer cells to survive cellular stresses in the 
unfavorable microenvironment. Poillet et al. [16] 
demonstrated that autophagy might induce 
epithelial-mesenchymal transition (EMT) in bladder 
cancer via the TGF-β1/Smad3 signaling pathway, 
which significantly promoted the invasion of the 
cancer cells. As reported, the level of autophagy is low 
in normal cells but increase in numerous cancer cells 
due to the elevated metabolic demand of cancer cells 
[17, 18]. Autophagy provides bioenergetic and 
biosynthetic substrates to the TCA cycle by recycling 
macromolecules, which can maintain energy 
homeostasis [19, 20]. Therefore, autophagy may 
promote tumor growth and survival through its 
capability to sustain metabolic functions of tumor 
cells. 

Autophagy defects have been identified in 
prostate cancer, bladder cancer, and kidney cancer, 
which indicate that it is also a tumor suppressor in 
these tumors [21-23]. Paradoxically, it was also 
reported that elevated autophagy could promote the 
progression of urinary tumors. Lu et al. [24] suggested 
that increased expression of autophagy induced by 
dCTP pyrophosphatase 1 was related to unfavorable 
outcomes of prostate cancer. Tong et al. [25] 
demonstrated that a high level of autophagy induces 
EMT via the TGF-β1/Smad3 signaling pathway, 
which significantly promotes the invasion of bladder 
cancer cells. Inversely, chloroquine (CQ) or 
3-methyladenine (3MA) remarkably decreased 
EMT-mediated invasion by inhibiting autophagy [25]. 
A more recent study developed by Patergnani et al. 
[26] revealed that autophagy increased both cell 
proliferation and migration of kidney cancer cells by 
degrading p53. Moreover, they further found that the 
capability of both proliferation and migration was 
significantly inhibited by suppressing the expression 
of the autophagy, while p53 degradation was reduced 
[26]. Based on the above evidence, autophagy is 
closely related to the progression of urinary tumors. 
Therefore, it is very important for the treatment of 
urinary tumors to control their expression. 
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Autophagy can be regulated by many proteins. 
The mammalian target of rapamycin (mTOR) and the 
AMP-responsive protein kinase (AMPK) pathways 
are considered to be major pathways involved in 
autophagy [27]. Under nutrient-rich conditions, 
mTOR is activated and inhibits autophagy by 
phosphorylating unc-51-like kinase 1(ULK1), a key 
protein for inducing autophagy. On the contrary, 
nutrient deprivation stimulates autophagy via 
stimulating AMPK to activate Tuberous Sclerosis 
Complex (TSC1/2), the suppressors of mTOR [28]. On 
the other hand, several cancer-linked genes, (p53, p62, 
p21, STAT3, and BCL2) and tumor-associated 
stressful signals (MEK/ERK, IRE1/JNK, 
PERK/eukaryotic initiation factor 2α (eIF2α)/ ATF4 
pathway) also stimulate or inhibit autophagy [29]. 

In addition to various autophagy-related 
proteins, autophagy also tightly interplays with 
microRNAs (miRNAs) and miRNAs triggered 
signaling. Extensive studies have revealed that 
mountains of microRNAs are involved in the 
regulation of autophagy. 

miRNAs 
MiRNAs are a major class of conserved and 

single-stranded noncoding RNAs found in a wide 
range of animals, plants, and some viruses, which 
play essential roles in post-transcriptional gene 
silencing by promoting messenger RNA (mRNA) 
degradation or by inhibiting mRNA translation [30]. 
Most miRNAs genes are transcribed as large primary 
miRNAs. They contain a few stem-loop structures 
which consists of approximately 70 nucleotides each 
[30]. Mature miRNAs are guided to the 3 end of their 
target mRNA, and contributions to the mRNA 
translational repression. The first miRNA was found 
in Caenorhabditis elegans in 1993 and the first human 
miRNA in 2000 [31]. Currently, 2,675 human mature 
miRNAs have been identified in the miRBase miRNA 
database. However, the biology of miRNAs is very 
complex. Presently, many molecular mechanisms of 
miRNA activity have been uncovered, such as single 
nucleotide polymorphisms, asymmetric miRNA 
strand selection, histone or DNA methylation, and 
RNA editing [32]. They tightly regulate the biological 
processes including differentiation and cell 
proliferation under physiological conditions or in 
diseases [32]. Numerous physiological and 
pathological processes, including cancer, metabolic 
and cardiovascular diseases, relying highly on 
miRNAs. 

The expression levels of miRNAs in human 
cancers are different from that in healthy cells. The 
relationship between miRNA expression and cancer 
development has been described for the first time in 

chronic lymphocytic leukemia [33]. It was reported 
that miRNAs have a two-sided effect on cancer. 

Cancer-associated miRNAs are correspondingly 
divided into oncogenic miRNAs (oncomiRs) and 
tumor-suppressive miRNAs (miRsupps). OncomiRs 
contribute to tumor progression and are frequently 
highly expressed in cancer cells [34]. MiRsupps inhibit 
tumorigenesis by regulating cell growth, apoptosis, 
and other cancer-associated events, and these are 
usually down-regulated in various cancers [34]. 
Studies also showed that single miRNAs can play 
different roles in different cancers. Yang et al. [35] 
discovered that the upregulated miR-17 significantly 
inhibits cell proliferation, migration, and invasion 
abilities in bladder cancer cells. Ting et al. [36] 
reported that b-cell lymphoma patients with 
increased miR-17 expression had a shorter 
progression-free survival, indicating it plays an 
oncogenic role. 

Recently, more and more studies have shown 
that some regulators at induction, vesicle nucleation, 
vesicle elongation, and retrieval stages of autophagy 
can be regulated by miRNAs. Zhu et al. [37] first 
confirmed that miR-30a could markedly negatively 
regulate the autophagic activity. Soni et al. [38] 
demonstrated that in breast cancer cells, miR-489 
could reduce tumor cell survival through inhibiting 
autophagy by targeting ULK1 and sensitizes tumor 
cells to doxorubicin via autophagy inhibition. 

Zhang et al. [39] have proved that 
MicroRNA-133a-3p could block autophagy-mediated 
glutaminolysis by targeting ATG13, further inhibiting 
gastric cancer growth and metastasis. MiRNAs also 
emerged as key regulators for autophagy in urologic 
cancers. This led us to review related literature to 
identify the regulation of autophagy by miRNAs 
associated with urologic cancers, which may 
contribute to developing new therapeutic strategies to 
target urologic cancers effectively. 

Regulation of autophagy by miRNA in 
urologic cancers (Table 1) 
Interaction of miRNA and autophagy in PCa 
(Figure 1) 

MiR-361-5p/Sp1/PKM2 signaling 
In the autophagy and miRNA literature, the 

most widely studied urologic cancer is the PCa. 
MiR-361-5p acts as an anticancer role in PCa by 
regulating autophagy [40, 41]. Ahmad et al. [42] 
reported that pyruvate kinase isoenzyme type M2 
(PKM2) affected the autophagic process by 
upregulating LC3B or Beclin-1. Studies have shown 
that specificity protein 1 (Sp1) directly regulates 
PKM2, controlling the autophagic process [43]. Sp1 
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plays a key role in PCa progression by regulating cell 
proliferation, angiogenesis, apoptosis, migration, and 
invasion [44]. It is reported that Sp1 knockdown 
significantly decreased the expression levels of PKM2, 
and inhibited autophagy and cell growth in PCa [45]. 
Recently, Ling et al. [45] reported that highly 
expressed miR-361-5p in PCa cell lines negatively 
regulates Sp1 and PKM2 by directly targeting the 
binding site in the 3' untranslated region (3'UTR), 
subsequently affecting the autophagic process. 
Meanwhile, it dramatically suppresses PCa cell 
growth and migration [45]. Notably, miR-361-5p 
inhibits autophagy by suppressing the Sp1/PKM2 
signaling, consequently affecting the proliferation and 
metabolism of PCa cells, which is a potential target in 
PCa therapy. 

MiR-143/autophagy-related 2B (ATG2B) signaling 
It was reported that curcumin 

(diferuloylmethane) had a promising anti-tumor 
effect in multiple cancers [46]. Curcumin might 
suppress damage-induced autophagy in various 
cancer cells. Besides, curcumin is considered to be a 
radiosensitizer in PCa. miR-143 is well-identified 
being a tumor suppressor in some types of cancers, 
including PCa. Liu et al. demonstrated that miR-143 
could inhibit autophagy in PC3 and DU145 cells via 
downregulating ATG2B expression, leading curcumin 
sensitizes PCa cells to radiation [47]. 

MiR-34a, miR-381, and miR-146b mediated mTOR 
signaling 

miR-34a has been frequently identified as a 

tumor suppressor or oncogene and deregulated 
across different cancer types. As is known, mTOR is a 
serine/threonine kinase that regulates varieties of 
cellular processes which include autophagy [48]. It is 
reported that mTOR inhibitors were used as 
immunosuppressors and be approved for the 
treatment of malignancies [48]. miR-34a was 
downregulated in PCa and overexpression of it 
reduced proliferation and colony formation [49]. Liao 
et al. [50] reported that miR-34a overexpression 
significantly downregulated p-AMPK and 
upregulated p-mTOR, which inhibited autophagy 
and enhanced chemosensitivity in PCa. 

A more recent study [51] indicated that 
over-expression of miR-381 could inhibit the PI3K/ 
AKT/mTOR signaling pathway by down-regulating 
reelin (RELN), resulting in promoting PCa cell 
apoptosis. The author further concluded that miR-381 
might function as a tumor suppressor for PCa and 
speculated this biological effect of miR-381 was 
depended on the strengthening of autophagy. 

On the contrary, a study developed by Gao et al. 
[52] demonstrated that upregulation of miR-146b 
promoted the proliferation of PCa cells by activating 
the AKT/mTOR signaling pathway. However, they 
observed that the autophagy process was enhanced 
after elevating the miR-146b expression, which was 
opposite with the functioning of miR-34a/mTOR. 

Collectively, miR-34a, miR-381, and miR-146b 
could affect PCa progression by regulating mTOR- 
related autophagy but the exact mechanisms were 
different among studies. 

 

Table 1. The Role of Autophagy Modulated by MiRNAs in Cancer Initiation and Cancer Development 

Cancer Specificity MiRNAs oncomiRNA/tsmiRNA Target Anti-/Proautophagy References 
Prostate cancer miR-26b tsmiRNA ULK2 Antiautophagy [65,66] 

miR-32 oncomiRNA DAB2IP Proautophagy [57] 
MiR-34a tsmiRNA pAMPK Antiautophagy [49,50] 
miR-101 tsmiRNA AR Proautophagy [80] 
miR-124/144 tsmiRNA PIM1 Antiautophagy [62] 
miR-143 tsmiRNA ATG2B Antiautophagy [47] 
miR-146b oncomiRNA AKT/mTOR Proautophagy [52] 
miR-205 tsmiRNA TP53INP1 Antiautophagy [77] 
miR-212 tsmiRNA SIRT1 Antiautophagy [73] 
miR-301a/b oncomiRNA NDRG2 Proautophagy [53,55] 
miR-361-5p tsmiRNA Sp1/PKM2 Antiautophagy [45] 
miR-381 tsmiRNA RELN Proautophagy [51] 
miR-17-92a oncomiRNA AR Antiautophagy [81] 

Renal cancer MiR-30a tsmiRNA Beclin-1 Antiautophagy [83,85] 
MiR-100 tsmiRNA NOX4 Proautophagy [91] 
miR-143 tsmiRNA K-RAS Proautophagy [92] 
MiR-204 tsmiRNA LC3B Antiautophagy [89,90] 
MiR-335 tsmiRNA CCNB1 Antiautophagy [88] 
miR-429 tsmiRNA ZEB1/JUN Antiautophagy [93] 

Bladder cancer miR-24-3p oncomiRNA DEDD Proautophagy [102,104] 
miR-139-5p tsmiRNA Bmi-1 Proautophagy [105,107] 
miR-221 oncomiRNA TP53INP1 Proautophagy [96-98] 
miR-222 oncomiRNA Akt/mTOR Antiautophagy [94] 
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Figure 1. Schematic diagram of the association between miRNA-mediated autophagy in prostate cancer. AR: androgen receptor; ATG2B: autophagy-related 2B; DAB2IP: DAB2 
interacting protein; NDRG2: N-myc downsream regulator gene 2; PIM1: Polymers of intrinsic microporosity-1; SIRT1: Sirtuin 1; Sp1/PKM2: RELN: Reelin; Specificity protein 
1/pyruvate kinase isoenzyme type M2; TP53INP1: Tumor protein p53 inducible nuclear protein 1; ULK2: Unc-51 like kinase 2. 

 

MiR-301a/miR-301b/NDRG2 signaling 
MiR-301a and miR-301b are two oncogenes 

involved in multiple cancers, including PCa. Previous 
studies indicated that the expression of 
miRNA-301a/b was evidently higher in PCa than in 
the normal prostate tissues [19, 53]. Further study 
showed that miRNA-301a/b promoted cell 
proliferation and autophagy of PCa cells [19, 53]. It 
was reported that n-myc downstream regulator gene 
2 (NDRG2), a member of the alpha/beta hydrolase 
superfamily, might be involved in the regulation of 
autophagy and is also considered to be a tumor 
suppressor in PCa [54]. A study from Wang et al. [55] 
showed that miRNA-301a/b can bind to 3’UTR of 
NDRG2 and significantly downregulate its 
expression, subsequently enhancing autophagy and 
radioresistance in PCa cells. Additionally, they also 
observed that autophagy and radioresistance of PCa 
cells were markedly enhanced after knockdowning 
NDRG2, while highly expressed NDRG2 can inhibit 
autophagy and promote radiosensitivity [55]. Based 
on this evidence, miR-301a/b-NDRG2 axis might be a 
key signaling pathway regulating the radiosensitivity 

of PCa cells. 

MiR-32/DAB2 interacting protein (DAB2IP) 
MiR-32 functioned as an oncomiR in PCa, breast 

cancer, and colorectal carcinoma, which could 
modulate the tumor growth and metastasis. DAB2 
interacting protein (DAB2IP) is also called 
aspartokinase (ASK1)-interacting protein-1 and is 
downregulated, with autophagy inhibitory and 
apoptosis enhancing, in PCa cells [56]. Liao et al. [57] 
reported that miR-32 overexpression significantly 
inhibited DAB2IP expression via a directly binding 
site within the DAB2IP 3'UTR in PCa. In addition, 
both miR-32 mimics and DAB2IP-knockdown 
dramatically promote cell survival and decrease 
radiosensitivity in PCa cells [57]. More significantly, 
autophagy was significantly enhanced by 
overexpression of miR-32 and knockdown of DAB2IP 
[57]. On the basis of the above reports, miR-32 may 
have an important effect on the radioresistance by 
suppressing autophagy through targeting DAB2IP in 
PCa and may provide a therapeutic target for treating 
PCa. 
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MiR-124/miR-144/polymers of intrinsic 
microporosity-1 (PIM1) signaling 

It was reported that miR-124 and miR-144 might 
serve as tumor suppressors. Up-regulation of miR-124 
and miR-144 significantly could inhibit the 
proliferation, migration, and invasion of PCa cells [58, 
59]. The PIM kinases are the family of 
serine/threonine kinases and involved in regulating 
proliferation, apoptosis, metabolism, and autophagy 
of cancer cells [60]. PIM1 is an important subtype of it. 
Eerola et al. [61] found that the expression of PIM1 is 
usually upregulated in PCa, which promoted the 
capability of PCa cells migration and invasion. Gu et 
al. [62] confirmed that miR-124 and miR-144 might 
simultaneously regulate PIM1 by binding to their 
3’UTR. PIM1 overexpression significantly enhanced 
autophagy and reduced apoptosis after irradiation. 
Paradoxically, PIM1 knockdown reduced autophagy 
and enhance the sensitivity PCa cells to irradiation. 
On the basis of the above evidence, overexpression of 
miR-124 and miR-144 may inhibit autophagy and 
enhance radiosensitivity by downregulating PIM1 in 
PCa. 

MiR-26b/unc-51 like kinase 2 (ULK2) axis 
So far, mounting evidence showed that miR-26b 

played a key role in the development of multiple 
cancers, including PCa [63]. Hodzic et al. [64] reported 
overexpression of miR-26b significantly augmented 
PCa cell death, which suggests its inhibitory effect on 
the tumor. Wang et al. [65] found that ULK2 can 
interact with Atg13 and FIP200 to stimulate 
autophagy, subsequently, modulating the 
proliferation and apoptosis of tumor cells. A further 
study from John et al. [66] found that miR-26b can 
inhibit autophagy by targeting ULK2 in PCa cells, 
promoting cell apoptosis. However, ULK2 
overexpression dramatically rescued miR-26b 
mediated autophagy inhibition in PCa cells [66]. In 
summary, miR-26b/ULK2 has a modulatory effect on 
the development of PCa and may be a novel 
therapeutic target for PCa. 

MiR-212/Sirtuin 1 (SIRT1) signaling 
MiR-212, a non-coding RNA located in 

chromosome 17p13.3, has both tumor-promoting or 
tumor-suppressor functions in multiple cancers [67]. 
It has been reported to be derived from an intron of a 
non-protein-coding gene. A recent study has 
demonstrated miR-212 is significantly down- 
regulated in PCa as compared to the normal 
epithelium and/or stroma [68]. Moreover, a study 
showed that miR-212 overexpression dramatically 
suppressed PCa cell proliferation and invasion [69]. Li 
et al. [70] reported that miR-212 inhibited tumor 

growth by targeting SIRT1. SIRT1 is a highly 
conserved family of the class III histone deacetylase, 
commonly regulating the signaling axis by interacting 
with some genes involved [71]. Luo et al. [72] reported 
that SIRT1 promoted autophagy and reduced 
hypoxia-induced apoptosis. Ramalinga et al. [73] 
showed that miR-212 down-regulation enhances 
autophagy by directly targeting SIRT1 in PCa cells, 
promoting angiogenesis and cellular senescence. It 
suggests a therapeutic potential of miR-212 for PCa. 

MiR-205/TP53INP1 signaling 
MiR-205, generally to be considered as a tumor 

suppressor, is reported to regulate the radiosensitivity 
of PCa cells by mediating the autophagy pathway 
[74]. Bezawy et al. [75] reported that miR-205 
reconstitution could significantly increases prostate 
response to radiotherapy. Similarly, tumor protein 
p53 inducible nuclear protein 1 (TP53INP1) is also a 
potential target of miR-205 in radiosensitivity 
regulation. Clinical data provide compelling evidence 
that autophagy contributes to both disease 
progression and therapeutic resistance in advanced 
PCa [76]. Wang et al. [77] reported that miR-205 
overexpression inhibited irradiation-induced 
autophagy in PCa by directly targeting TP53INP1 and 
substantially reduced the survival fraction of cells. 
However, TP53INP1 knockdown could suppress 
irradiation-induced autophagy and significantly 
enhance radiosensitivity in PCa cells [77]. Moreover, 
restoring TP53INP1 substantially reversed the 
enhanced radiosensitivity induced by miR-205 
overexpression [77]. The miR-205/TP53INP1 
mediated autophagy pathway may represent a novel 
therapeutic target for the treatment of PCa. 

MiR-101/miR-17-92a/androgen receptor (AR) 
signaling 

MiR-101 usually acts as a tumor suppressor in 
various malignancies, i.e., lung, gastric, liver, and 
colorectal cancer [78]. In addition, it was reported that 
there was a close relationship between miR-101 and 
autophagy in multiple cancers [79]. AR plays a key 
role in the growth of PCa cells and the progression of 
PCa. Celastrol has potential effects for treating PCa. 
Guo et al. revealed that AR could inhibit the celastrol- 
induced autophagy process through transactivation of 
miR-101 [80]. The authors found that the AR binding 
site is located in the upstream region of the miR-101 
gene and highlighted that the miR-101-AR-autophagy 
axis might be a novel therapeutic target in PCa. 
Another study developed by Guo et al. showed that 
celastrol inhibited AR and its target miR-17-92a, 
resulting in autophagy induction in LNCaP cells [81]. 
Collectively, the miR-101/miR-17-92a-AR axis 
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involved autophagy played an important role in the 
development of PCa. 

Interaction of autophagy and miRNA in kidney 
cancer (Figure 2) 

MiR-30a/Beclin-1 signaling 
MiR-30a was dysregulated in several types of 

cancer and contributed to cancer carcinogenesis and 
progression. Jiang et al. [82] found that miR-30a was 
significantly down-regulated in renal cell carcinoma 
(RCC) tissues and cell lines as compared with adjacent 
non-cancerous tissues and normal renal cell lines. 
Moreover, re-expression of miR-30a could inhibit 
proliferation and migration of RCC cells [82]. MiR-30a 
has been recognized as a potent inhibitor of 
autophagy by directly targeting Beclin-1 [83]. 
Meanwhile, autophagy activation induced by 
sorafenib was involved in chemo-resistance in RCC 
cells [84]. Zheng et al. [85] demonstrated that miR-30a 
overexpression significantly inhibits autophagy 
activation and enhances sorafenib-induced 
cytotoxicity in RCC cells. These studies indicate that 
miR-30a may affect the effectiveness of 
sorafenib-mediated apoptosis via regulating 
autophagy, thus providing a novel strategy for 
treating RCC. 

miR-335/Cyclin B1 (CCNB1) signaling 
As a tumor suppressor or oncogene, miR-335 is 

down-regulated in multiple cancer tissues, and 
regulates the proliferation, invasion, and apoptosis of 
cancer cells. A recent study has shown that CCNB1 
can be targeted by a specific miRNA and closely 
related to the occurrence and development of cancer 

[86]. CCNB1 is a member of the cyclin family and 
triggers the G2/M transformation process via 
regulating CDK1 kinase, which may contribute to 
gene mutation or even tumor [87]. Yan et al. [88] 
reported that the expression level of miR-335 in renal 
cancer tissues was lower than that in adjacent tissues. 
Also, inhibition of the miR-335/CCNB1 pathway 
promotes gemcitabine-induced autophagy and tumor 
growth, thus enhancing gemcitabine resistance in 
renal cancer [88]. In addition, miR-335/CCNB1 
overexpression can enhance gemcitabine sensitivity 
by inhibiting autophagy [88]. Therefore, miR-335 may 
be a novel therapeutic target for the treatment of renal 
cancers with gemcitabine resistance. 

miR-204/LC3B signaling 
MiR204 is located in intron-9 of Transient 

Receptor Potential Melastatin 3 (TRPM3) on human 
chromosome 9. It was reported that several members 
of the TRPM family are implicated in multiple 
cancers. Since the genomic localization of miR-204 is 
within the TRPM3 gene, the TRPM3-miR-204 axis 
may play role in cancer development. Mikhaylova et 
al. [89] reported that miR-204 was almost lost in clear 
cell RCCs when compared to adjacent kidney tissues. 
And the authors further found that the VHL- 
regulated miR-204 could suppress RCC growth by 
inhibiting autophagy. MAP1LC3B (LC3B) was the 
direct target for miR-204. A subsequent study 
conducted by Hall et al. [90] revealed that TRPM3 
could promote the growth of clear cell RCC and 
stimulate LC3A and LC3B autophagy, and the 
underlying mechanism was the VHL repressed 
TRPM3 expression via miR-204. 

miR-100/NADPH oxidase 4 
(NOX4)/mTOR signaling 

MiR-100 was reported to serve as a 
promising prognostic marker for RCC. 
NOX4, a direct target gene of miR-100, 
is a sensor for oxygen, having the 
function of inhibition of tumor 
dissemination. A recent study [91] 
indicated that miR-100 could trigger 
autophagy and repress the invasion and 
migration of RCC cells by inhibiting the 
mTOR pathway via downregulating of 
NOX4 expression. 

miR-143/K-RAS signaling 
MiR-143 usually acts as an 

anti-oncomiR, suppressing the 
tumorigenesis in various types of 
cancers. K-RAS belongs to the RAS gene 
family members and have the function 
of encoding a small guanosine 

 

 
Figure 2. Schematic diagram of the association between miRNA-mediated autophagy in kidney cancer. 
CCNB1: Cyclin B1; LC3B: MAP1LC3B; NOX4: NADPH oxidase 4. 
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triphosphatase. Takai et al. [92] showed that ectopic 
expression of miR-143 might strengthen autophagy 
and G0/G1 cell-cycle arrest, thus remarkably 
inhibiting the growth of RCC cells. The authors 
further revealed that the mechanism was mainly 
based on miR-143 impairing K-RAS-signaling 
networks in RCC. 

miR-429/ZEB1/JUN signaling 
Long non-coding RNAs (lncRNAs) are one of the 

non-coding RNAs family. Secretory Carrier 
Membrane Protein 1 (SCAMP1) has been reported to 
be involved in the progression of various cancers. 
Additionally, miR-429 was proved to suppress the 
development of RCC via different mechanisms. Shao 
et al. [93] have conducted an in-vitro and in-vivo study 
and suggested that lncRNA SCAMP1 could regulate 
the expression of ZEB1/JUN as well as autophagy to 
promote the growth of pediatric RCC under oxidative 
stress through miR-429. 

Interaction of autophagy and miRNA in 
bladder cancer (Figure 3) 

miR-222-PPP2R2A/Akt/mTOR axis 
It was reported that elevated miR-222 levels are 

closely associated with a poor prognosis of bladder 
cancer. Zeng et al. [94] found that miR-222 plays a role 
in enhancing the proliferation of the T24 bladder 
cancer cell line. Cisplatin is the first-line treatment of 
chemotherapy in advanced bladder cancer. Zeng et al. 
also observed that miR-222 could attenuate 
cisplatin-induced cell death by inhibiting autophagy 
through activating the Akt/mTOR pathway. Further 
study revealed that blocking mTOR with rapamycin 
dramatically prevented miR-222-induced 
proliferation [94]. Protein phosphatase 2A subunit B 
(PPP2R2A) is the direct target of miR-222, which 
commonly palys the role of a tumor suppressor. 
MiR-222 might modulate the PPP2R2A/Akt/mTOR 

axis to regulate the proliferation of bladder cancer 
cells and chemotherapeutic drug resistance. 

MiR-221/TP53INP1/p-ERK axis 
MiR-221 acts as an oncogene in various cancers, 

including bladder cancer by regulating autophagy. 
Tsikrika et al. [95] reported that bladder cancer 
patients with high expression of miR-221 have a 
higher short-term recurrence rate. Moreover, miR-221 
overexpression has been reported to be an 
independent prognostic value for these patients' poor 
prognosis [95]. It is reported that the tumor protein 
p53 inducible nuclear protein 1 (TP53INP1) is not only 
a regulator of autophagy but also a direct functional 
target of miR-221 [96]. Wang et al. [97] reported that 
autophagy acts in an inhibitory role in the initiation of 
bladder cancer. Liu et al. [98] found that the 
downregulation of miR-221 enhances autophagy 
activation via increasing TP53INP1 and inhibits 
migration and invasion of bladder cancer cells. In 
addition, TP53INP1 knockdown could partially 
abrogate the effect of the inhibition of miR-221 
induced autophagy activation and suppression of cell 
invasion and migration [98]. 

miR-24-3p/death effector domain-containing protein 
(DEDD) axis 

Differential expression of miR-24-3p is involved 
in many human diseases including bladder cancer 
[99]. MiR-24-3p was down-regulated in PCa, while 
miR-24-3p overexpression significantly inhibited 
survival rate after the treatment of paclitaxel [100]. 
DEDD belongs to the death effector domain- 
containing protein family and commonly carries out 
crucial roles in cell apoptosis and cell cycle. A recent 
study suggested that DEDD could reverse EMT via 
regulating selective autophagy [101]. Yu et al. [102] 
reported that miR-24-3p increased autophagy by 
repressing DEDD, which promoted cell migration 
inhibiting apoptosis in bladder cancer. Based on this 

evidence, miR-24-3p may represent a 
pivotal potential therapeutic 
approach for the treatment of bladder 
cancer. On the other hand, Ye et al. 
[103] reported that miR-24-3p worked 
as a suppressor and might be 
recognized as a potential prognostic 
biomarker in nasopharyngeal 
carcinoma. However, the biological 
effect of miR-24-3p in bladder cancer 
was inconsistent with that in 
nasopharyngeal carcinoma. 
MiR-24-3p was overexpressed in 
bladder cancer and promoted cell 
proliferation, migration, and invasion 

 

 
Figure 3. Schematic diagram of the association between miRNA-mediated autophagy in bladder cancer. 
PPP2R2A: TP53INP1: Protein phosphatase 2A subunit B; tumor protein p53 inducible nuclear protein 1; DEDD: 
death effector domain-containing protein; Bmi-1: B cell‑specific Moloney murine leukemia virus integration site 1. 
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of the cancer cells [104]. 

miR-139-5p/Bmi-1/AMPK/mTOR pathway 
It was reported that miR-139-5p expression 

could predict the prognosis of multiple cancers, while 
increased miR-139-5p indicated a worse prognosis in 
patients. Luo et al. [105] suggested that miR-139-5p 
inhibited the proliferation capability in bladder cancer 
by directly targeting Bmi-1. A recent study that 
investigated bladder cancer also indicated that Bmi-1 
was the target protein of miR-139-5p. It was suggested 
that sodium butyrate (NaB) has antitumor effects in 
multiple human cancer cells. Bmi-1 plays an 
important role in maintaining mitochondrial function 
and reactive oxygen species (ROS) homeostasis. 
Depletion of Bmi-1 genetically often caused ATP 
reduction and AMPK-activated autophagy [106]. 
Wang et al. [107] demonstrated that NaB inhibited 
migration and induced AMPK-mTOR pathway- 
dependent autophagy and ROS-mediated apoptosis 
through the miR-139-5p/Bmi-1 axis in bladder cancer 
cells. AMPK/mTOR pathway could activate 
autophagy and mitochondrial dysfunction in bladder 
cancer cells. 

The therapeutic potentials related to the 
interference of miRNA-autophagy related 
mechanisms 

According to the current evidence, it was 
suggested that microRNA-mediated regulation of 
autophagy can influence the sensitivity of urological 
cancer cells to radiotherapy and chemotherapy. 
Autophagic activation is a response of tumor cells to 
radiotherapy or chemotherapy [22, 108]. In most of 
the cases, abnormal autophagy may lead to 
carcinogenesis, promoting tumor cells to become 
resistant to radiotherapy or chemotherapy [109]. This 
action may cause by autophagy which providing the 
energy required for evade apoptosis induced by 
radiotherapy and chemotherapy, leading to treatment 
resistance [110]. microRNAs have been found to act as 
major autophagy regulatory factors affecting 
radiotherapy/chemotherapy resistances, including 
urologic malignancies [111, 112]. For example, Liu et 
al. reported that miR-143 might sensitize the PCa cells 
(PC3 and DU145) to radiation by inhibiting 
autophagy. Consistent with this finding, Wang et al. 
[77] found that miR-205 overexpression significantly 
suppressed irradiation-induced autophagy in PCa 
cells and thus reduced the survival fraction of the 
cancer cells. As for renal cell carcinoma, Yan et al. [88] 
demonstrated that hsa-circ_0035483 binds miR-335 to 
enhance gemcitabine resistance by elevating 
autophagic level. Clinically, miRNA-mediated 
autophagy also play role in bladder cancer 

progression. Zeng et al. [94] showed that has-miR-222 
dramatically attenuated chemotherapeutic drug- 
induced cell death in bladder cancer cells through the 
inhibition of autophagy. These findings provide a 
novel insight into the role of miRNA-mediated 
autophagy in urologic oncology radiotherapy and 
chemotherapy. Aberrant urologic cancer-related 
miRNAs may concur with autophagy to determine 
the cancer cells response to radiation and drug 
therapy, which is a key field needing further 
investigation. 

Limitations and future perspectives 
To our knowledge, this is the first study that 

performs a systematic review to summarize all the 
evidence of the association between miRNA and 
autophagy in urologic oncologies. As shown in Figure 
4, numerous specific miRNAs-mediated autophagy 
may play a crucial role in malignant transformation of 
the urologic cancers, affecting the capability of 
proliferation, apoptosis, cell-cycle, migration, 
invasion, angiogenesis, and cellular senescence of the 
cancer cells. For prostate cancer, miR-34a, miR-146b, 
miR-301a/b, and miR-361-5p-mediated autophagy 
play their roles in cancer development via affecting 
the proliferation capability of the cancer cells, while 
miR-26b, miR-32, miR-124, miR-144, and miR-381 and 
their corresponding autophagic process are associated 
with the process of apoptosis. For kidney cancer, 
miR-30a, miR-204, and miR-429 can regulate the 
cancer cell proliferative potential by acting directly/ 
indirectly with autophagy, while miR-143 and 
miR-335-mediated autophagy are believed to 
contribute to tumor growth by affecting the cell-cycle. 
For bladder cancer, miR-24-3p and miR-139-5p- 
associated autophagy influence tumor development 
mostly by regulating migration and apoptosis, while 
miR-221 has been reported to be related to invasion 
and migration and miR-222 may correlate to the 
variations of the proliferative potential of the cancer 
cells. However, several inherent limitations should be 
acknowledged when interpreting this comprehensive 
review. First, the diagnostic, therapeutic, and 
prognostic value of the coefficient of miRNA and 
autophagy in urologic cancers still need to be further 
investigated due to limited clinical studies. Second, 
the molecular mechanisms of miRNA-mediated 
autophagy and urologic tumorigenesis must be 
further clarified and explored. In addition to the 
targeting genes and the corresponding signaling 
pathways, some other contributors, such as tumor 
microenvironment and tumor immunity, might also 
play roles in the pathomechanism and development 
of urologic oncologies. Third, we should note that 
autophagy plays dual roles in cancer, acting not only 
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as a tumor suppressor but also promoting 
tumorigenesis in specific urologic oncologies. Once 
such pathogenesis is addressed, it is conducive to the 
discovery of some valuable diagnostic and prognostic 
biomarkers and innovative therapeutic alternatives in 
urologic malignancies. MiRNA-mediated autophagy 
plays an important role in tumorigenesis, progression, 
and resistance to anticancer therapies. Given that, 
targeting the aforementioned miRNA for autophagy 
modulation may present as the reliable diagnostic and 
prognostic biomarkers or promising therapeutic 
strategies in urologic oncologies. 

Conclusion 
Based on this review, miRNA-associated 

autophagy could be a critical molecular mechanism in 
the initiation and progression of urologic oncologies, 
such as PCa, bladder cancers, and kidney cancers. 
Upregulation or downregulation of miRNAs could 
activate or inhibit autophagy in these cancers. MiRNA 
targeted genes and the different signaling pathways 
constitute a complex network that orchestrates 
autophagy regulation, militating the oncogenic and 
tumor-suppressive effects in urologic malignancies. 
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