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Abstract 

Cardiovascular diseases (CVDs) caused by arteriosclerosis are the leading cause of death and disability 
worldwide. In the late stages of atherosclerosis, the atherosclerotic plaque gradually expands in the blood 
vessels, resulting in vascular stenosis. When the unstable plaque ruptures and falls off, it blocks the vessel 
causing vascular thrombosis, leading to strokes, myocardial infarctions, and a series of other serious 
diseases that endanger people's lives. Therefore, regulating plaque stability is the main means used to 
address the high mortality associated with CVDs. The progression of the atherosclerotic plaque is a 
complex integration of vascular cell apoptosis, lipid metabolism disorders, inflammatory cell infiltration, 
vascular smooth muscle cell migration, and neovascular infiltration. More recently, emerging evidence has 
demonstrated that non-coding RNAs (ncRNAs) play a significant role in regulating the pathophysiological 
process of atherosclerotic plaque formation by affecting the biological functions of the vasculature and its 
associated cells. The purpose of this paper is to comprehensively review the regulatory mechanisms 
involved in the susceptibility of atherosclerotic plaque rupture, discuss the limitations of current 
approaches to treat plaque instability, and highlight the potential clinical value of ncRNAs as novel 
diagnostic biomarkers and potential therapeutic strategies to improve plaque stability and reduce the risk 
of major cardiovascular events. 
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Introduction 
Atherosclerosis (AS) is a chronic and complex 

pathological process that is the major cause of 
cardiovascular diseases. Genetic susceptibility and 
environmental factors (e.g. smoking, hypertension, 
hyperlipidemia, diabetes, family history, and obesity) 
are the main factors that influence AS, with plaque 
accumulation in the arterial wall being one of the most 
prominent features [1]. A stable plaque becomes 
unstable and vulnerable to rupture as AS progresses. 
Factors that negatively affect plaque stability include 
necrosis in the plaque core, the presence of 

inflammatory cells, and thinning of the fibrous cap 
structure [2, 3]. Moreover, neovascularization in 
unstable plaques is more likely to exacerbate the 
rupture process compared to that in stable plaques [4]. 
While an increase in vessel permeability is conducive 
to the infiltration of inflammatory cells, the increase in 
vessel fragility results in easy bleeding and the 
formation of hematomas in plaques. In the late stages 
of atherosclerosis, the thin and fragile fiber cap with a 
large necrotic core, a large number of infiltrated 
inflammatory cells, intra plaque hematomas, and 
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secondary thrombosis all aggravate the development 
of AS resulting in serious cardiovascular diseases 
such as coronary artery disease (CAD), acute coronary 
syndrome (ACS), myocardial infarction, and stroke [1, 
5, 6]. Therefore, maintaining plaque stability and 
preventing plaque rupture are widely considered 
to be the principle goals in the clinical treatment 
of patients with cardiovascular diseases [7]. 

As discussed above, atherosclerotic plaques are 
divided into stable plaques and unstable plaques. A 
stable plaque is characterized by a small swollen and 
a thick fibrous cap [8]; there is also an absence of 
clinical symptoms. Conversely, the characteristics of 
the rupture-prone plaques are (a) a thin fibrous cap 
with a large lipid core; (b) infiltration of monocytes 
and macrophages; (c) aggregation of endothelial 
exfoliation and the presence of surface platelets; (d) 
deposition of extracellular dense lipid droplets and 
formation of large lipid droplets around the nucleus; 
and (e) fibrous connective tissue that forms part of the 
plaque [9]. The formation of ulcers or fissures in 
unstable plaques can release or activate transmitters, 
such as thrombin, adenosine diphosphate (ADP), 
platelet activating factor (PAF), tissue factor, and 
oxygen free radicals, which promote platelet 
aggregation and aggravate arterial mechanical 
obstruction. Plaque instability is therefore an 
important factor affecting the occurrence and 
development of AS, but the mechanisms leading to 
the instability of atherosclerotic plaques remain to be 
determined. 

Recent studies have shown that non-coding 
RNAs (ncRNAs) are critically involved in the 
regulation of plaque instability [10-12]. NcRNAs can 
not only participate in regulating the expression of 
lipoproteins and impact the proliferation and 
differentiation of vascular smooth muscle cells 
(VSMCs) to affect plaque stability but also regulate 
the phenotypic transition of immune cells to affect the 
development of inflammation around plaques. 
Encouragingly, several microRNAs (miRNAs), long 
non-coding RNAs (lncRNAs) and small interfering 
RNAs (siRNAs) have been found to be differentially 
expressed in the serum from patients with AS and 
have shown remarkable capabilities in regulating 
plaque stability, indicating their potential to be used 
as diagnostic biomarkers or as therapeutic targets 
[13-18]. 

Studies examining the relationship between 
plaque stability and extracellular vesicles and 
exosomes have also made great progress. For 
example, it has been shown that the accumulation of 
extracellular vesicles can aggravate plaque 
calcification and promote a vasoactive response [19, 
20]; changes in calcification morphology and collagen 

content in plaques are also associated with exosomes 
[21]. Furthermore, exosomes are thought to be 
promising carriers for nuclear drugs [22]. Several 
studies have also presented evidence that exosome 
delivery systems can control plaque instability [23]. 

In this review, we introduce the cellular and 
molecular mechanisms of atherosclerotic plaque 
stability and highlight the role of ncRNAs in plaque 
vulnerability. We also summarize new progress in the 
use of exosomes to treat plaque instability. Finally, we 
discuss the limitations of the current studies and 
provide emerging insights into the role of ncRNAs in 
the regulation of atherosclerotic plaque stability and 
their potential as targets for novel therapeutic 
paradigms. 

Cells involved in the regulation of plaque 
instability 
Endothelial cells 

The endothelium plays a pivotal role in the 
progression of AS and its complications, and 
endothelial dysfunction is widely recognized as one 
of the early alterations in the vessel wall preceding the 
development of plaques [24, 25]. Emerging evidence 
has shown that the degree of endothelial cell (EC) 
apoptosis may be a key factor in the transition of a 
plaque from a stable state to a fragile state [26, 27]. The 
glycolytic enzyme 6-phosphofructo-2-kinase/ 
fructose-2,6-biphosphatase (PFKFB3) is highly 
expressed in the ECs present in vulnerable human 
carotid atherosclerotic plaques, and inhibition of 
PFKFB3 activity reduces cell apoptosis in plaques and 
promotes plaque stability [28]. Knockout of the 
Dickkopf1 (DKK1) gene in apolipoprotein E-deficient 
(ApoE-/-) mice inhibits the classical Wingless-Related 
Integration Site (WNT) signal by activating the JNK1 
signal transduction pathway and reduces the 
vulnerability for apoptosis in human umbilical vein 
endothelial cell (HUVEC) in the presence of oxidized 
low density lipoprotein (ox-LDL) during the AS 
process [29]. Moreover, the apoptosis of ECs also 
leads to local lipid deposition in blood vessels 
[30], aggravates plaque rupture, and may 
predispose individuals to arterial thrombosis. In 
addition, the migration of ECs and the increase in 
vascular permeability are closely related to the 
progression and instability of atherosclerotic plaques. 
Vascular endothelial growth factor receptor 2 
(VEGFR2) can induce the expression of disintegrin 
and metalloprotease 10 (ADAM10) in ECs, and the 
combination of VEGFR2 and ADAM10 can promote 
the migration of ECs and accelerate the progression of 
atherosclerotic plaques [31]. Furthermore, the 
endothelial to mesenchymal transition (EndMT) plays 
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a key role in cardiovascular disease and the rupture 
of unstable plaques because EndMT-derived cells 
are found in oxidative stress and hypoxia-induced 
atherosclerotic plaques [32]. Chen et al. found that in 
25-week-old ApoE-/- mice fed a standard diet, an 
EC-specific nucleotide P2Y2 receptor (P2Y2R) 
deficiency prevented vascular adhesion molecule-1 
(VCAM-1) in ECs from participating in vascular 
inflammation and reduced nitric oxide (NO) synthase 
and matrix metalloproteinase-2 (MMP-2) activity 
owing to a decrease in macrophage infiltration [33]. A 
recent intriguing finding has described the protective 
effect of oleic acid on cardiovascular cells through an 
inhibition of tumor necrosis factor-α (TNF-α) and a 
decrease in the expression levels of monocyte 
chemoattractant protein-1 (MCP-1) and ICAM-1, 
thereby improving endothelial dysfunction [34, 35]. In 
general, the key factor affecting the stability of 
atherosclerotic plaques is endothelial dysfunction, 
which is mainly manifested by impaired endothelial 
barrier function, increased vascular permeability, and 
EC apoptosis (Fig. 2). 

Vascular smooth muscle cells 
The majority of VSMCs in plaques are derived 

from the medial layer of the blood vessel. The 
plasticity of VSMCs play an important role in the 
occurrence and development of AS and can protect 
the fibrous cap from rupture and participate in the 
synthesis of extracellular matrix components [36]. 
VSMC phenotypic remodeling plays an important 
role in the early stage of AS [37, 38]. Under 
pathological inflammatory conditions, VSMCs 
initially with a stable and normal vasoconstriction 
phenotype undergo remodeling to a synthetic 
phenotype. In this latter state, VSMCs express 
immunoregulatory cytokines, such as IL-6 and CC 
chemokine ligand (CCL)2, and secrete chemokines to 
activate the inflammatory state of macrophages, 
thereby affecting the local stability of the plaques [39, 
40]. Serum response factor (SRF), as a key regulator of 
vascular inflammation, is an important player that 
regulates the phenotype of VSMCs. Increased 
expression of SRF reduced the accumulation of 
macrophages in ApoE-/- mice and inhibited VSMC 
phenotype changes and the activation of 
inflammation, thereby enhancing plaque stability [41, 
42]. Conditional knockout of the KLF4 gene has been 
shown to reduce the number of VSMC-derived 
macrophages and mesenchymal stem cells, resulting 
in an increase in fibrous cap thickness and a decrease 
in lesion size [43]. Therefore, VSMC contributes to the 
stability of atherosclerotic plaques through a KLF4- 
dependent phenotypic transformation mechanism. In 
keeping with this, it has also been shown that deletion 

of AMPKα2 promotes the phenotypic conversion of 
contractile VSMCs to synthetic VSMCs by increasing 
KLF4 expression [44]. VSMCs are the main source of 
collagen in the fiber cap (FC) which is responsible for 
its tensile strength. A reduction in the number of 
VSMCs due to the death of initiating cells leads to FC 
thinning, necrotic nucleus formation, and calcification 
[1]. Additionally, the Fas receptor/Fas ligand 
pathway is involved in ox-LDL-induced apoptosis of 
VSMCs. Interestingly, the activation of p53 makes the 
VSMCs more sensitive to Fas-mediated apoptosis by 
transiently increasing Fas expression and 
translocation from the Golgi [45, 46]. In addition, 
DNA damage in VSMCs has been shown to be 
involved in human atherosclerotic plaques both in 
vitro and in vivo [47, 48], which are manifested by 
double strand breaks (DSBs) and the increased 
expression of multiple DNA damage response 
proteins. Among these, the nuclear deacetylase 
sirtuin6 (SIRT6) has been reported to participate in the 
DNA damage response. The overexpression of SIRT6 
in VSMCs reduced the activity of nuclear factor-kappa 
B (NF-κB)-dependent inflammatory factors, inhibited 
cell senescence, and protected atherosclerotic plaques 
in ApoE-/- mice [49]. Therefore, inhibiting DNA 
damage in VSMCs by reducing the relative FC area of 
late-stage plaques could be a promising target for 
creating clinically stable plaques [50]. The decreased 
activity of MMP-2, and the increased migration ability 
of VSMCs, can increase plaque stability [51]. Early 
aging of VSMCs and an increased sensitivity to 
apoptosis in atherosclerotic plaques reduces the 
ability to repair vulnerable plaques. In addition, the 
abnormal proliferation of VSMCs after phenotypic 
transformation also accelerates the process of plaque 
rupture. Therefore, identifying the factors and 
mechanisms that can promote the phenotypic 
transformation of VSMCs and improve plaque 
stability is an important goal to prevent plaque 
rupture in the future (Fig. 3). 

Immune cells 
In the development of AS, phenotypic changes 

and cytokines secreted by immune cells such as 
monocytes, macrophages, dendritic cells, and mast 
cells can stimulate inflammation and affect the 
stability of plaques. Therefore, understanding the 
mechanisms by which immune cells promote 
inflammation and how changes in cell function arise 
owing to alterations in immune cell surface receptors 
is likely to be very important in learning how to 
stabilize plaques and ameliorate the progression of 
AS. 
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Monocytes and Macrophages 
Chemokines mobilize monocytes to migrate and 

adhere to ECs, which is a key process in macrophage 
aggregation [52]. Interestingly, the Src 
family-associated kinases HCK and FGR, mediate the 
interaction between EC adhesion molecules and β-2 
integrins and participate in a series of AS-related 
processes through activation of Rac/Cdc42, Syk, and 
Pyk7 effectors. They also lead to dynamic instability 
of the extracellular matrix by causing an imbalance in 
monocyte subsets, making the plaque more prone to 
rupture [53]. Monocyte to macrophage differentiation 
plays an important role in the early stages of AS [54], 
and the accumulation of macrophage-derived foam 
cells in the arterial wall promotes monocyte adhesion 
and infiltration [55, 56]. Ma et al. found that 
formononetin can inhibit monocyte adhesion and 
enhance plaque stability by reducing the expression of 
SRA in monocytes [57]. Insulin-like growth factor-1 
(IGF-1) is highly expressed in monocytes/ 
macrophages in ApoE-/- mice. IGF1R-deficient 
macrophages inhibit the expression of ABCA1 and 
ABCG1 and reduce lipid efflux and plaque 
vulnerability [58]. Interestingly, the activation of 
MC1-R can not only prevent macrophages from 
accumulating lipid but also promote the reverse 
transport of cholesterol by up-regulating the levels of 
ABCA1 and ABCG1 and reducing the expression of 
CD36 on the cell surface [59, 60]. Li et al. found that 
overexpression of C1q/TNF-related protein 9 
(CTRP9) can reduce the levels of pro-inflammatory 
factors such as TNF-α and MCP-1 in macrophages 
[61]. Wen et al. showed that the levels of 
phosphorylated ERK-MAPK, p38-MAPK, and 
JNK-MAPK were significantly reduced by pigment 
epithelium-derived factor (PEDF) through the 
regulation of the PPAR-γ and downstream MAPK 
inflammatory pathways, so as to reduce macrophage 
inflammation and increase plaque stability [62]. 
Additionally, several studies have shown that late 
plaques contain more apoptotic cells than early 
plaques [58, 63], and the occurrence of modified LDL 
in the process of early plaque efferocytosis can induce 
macrophage apoptosis. However, defects will occur 
with the further development of plaque efferocytosis, 
resulting in plaque rupture and remodeling of the 
plaque structure [64]. Therefore, macrophage 
apoptosis is another key factor in plaque instability 
(Fig. 4). 

Dendritic cells 
The high cholesterol environment in patients 

with atherosclerosis leads to a decrease in the 
migration of DCs because of the engulfment of the 
walls of blood vessels with their own antigens, such 

as ox-LDL. The number of tolerogenic DCs increased 
when ox-LDL -induced apoptotic DCs (apopox-DCs) 
were injected intravenously into LDL-/- mice. 
Interestingly, the collagen levels in mice treated with 
apopox-DCs were increased by 45% compared with 
untreated apoptotic dendritic cells, significantly 
reducing the progression of lesions, which is 
suggestive of increased plaque stability [65]. In 
vulnerable plaques, the number of mature DCs is 
significantly increased and these mature DCs play an 
important role in the inflammatory processes in 
atherosclerotic lesions by stimulating effector T cells. 
Because of the interaction between DCs and 
regulatory T cells (Treg), there is a direct inhibition of 
DC migration and adhesion to ECs, leading to the 
development of plaque instability [66]. In 
atherosclerotic tissues, the myeloid cell receptor 
referred to as triggering receptor in myeloid cells 
(TREM)-1, is a key factor in inflammation, and that 
the number of DCs increases gradually with the 
progression of the disease. The expression of TREM-1 
in DCs is significantly increased in plaques of patients 
with symptomatic carotid stenosis, indicating that 
both DCs and TREM-1 may play an important role in 
plaque stability [67]. 

Mast cells 
Mast cells are a type of multifunctional white 

blood cells, which are mainly found in mucosal 
tissues and connective tissues. An abnormal increase 
in mast cell number is often accompanied by the 
occurrence of cardiovascular disease. It is thought that 
several mast cells and their resultant activation affects 
the stability of plaques. To further understand the role 
of the vascular network as a transport channel for 
several angiogenic and plaque forming factors, Joosp 
et al. Used indocyanine green video angiography 
(ICG-VA) during a carotid endarterectomy (CEA) to 
investigate the correlation between the change in state 
of the carotid artery and the vulnerability of a carotid 
plaque and showed that mast cells stained with 
CD117 were more frequently found in unstable 
plaques than in stable ones [68]. Mast cells are 
activated by the binding and cross-linking of antigens 
to IgE which is itself bound to the Fcε-receptor (FcεR). 
This results in the release of cytoplasmic granules 
which contain proinflammatory factors, histamine, 
and several neutral proteinases. Kritikou et al. used 
improved flow cytometry to identify specific mast 
cells that expressed both CD117 and FcεR at the same 
time and observed that the activation of mast cells in 
most plaques depends on the expression of the CD63 
protein and the presence of IgE fragments on their 
surfaces [69]. This strongly suggests that the 
development of AS is related to the number of mast 
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cells and the activation of their surface receptors and, 
therefore, provides a new strategy for the clinical 
treatment of AS. 

Lymphocytes 
At present, while there is no direct research that 

supports the involvement of lymphocytes in the 
formation and development of plaques, the possibility 
has been suggested. For example, Tsaousi et al. 
suggested that knockout of the T-bet gene inhibits Th1 
lymphocyte differentiation to reduce the expression of 
the M1 macrophage marker NOS-2 and, 
consequently, the size of atherosclerotic plaques [70]. 
These phenomena suggest that lymphocytes may be 
associated with plaque instability, but this needs to be 
further explored. 

Mechanisms by which plaque instability 
is regulated 
Inflammation 

Inflammation is widely considered to play a 
critical role in the formation of atherosclerotic plaques 
and plaque rupture [71-74]. Histopathology of 
lateSvulnerable plaques has shown that there are 
obvious signs of inflammation. In addition, the action 
of excessive proteolytic enzymes, which stimulate 
macrophages to participate in the immune response, 
inhibits the formation of the fibrous cap and degrades 
the fiber composition of the cap [5]. The accumulation 
of activated macrophages, T cells, and necrotic core 
lipids in vulnerable plaques triggers a self-persistent, 
vicious cycle of inflammatory responses [75, 76]. In 
patients with AS, activated NLRP3 inflammasomes 
produce IL-1β and IL-18 [77, 78], which up-regulate 
VCAM to induce T-cell differentiation and promote a 
downstream inflammatory response, thus leading to 
plaque progression [79, 80]. Interferon-γ, a 
pro-inflammatory cytokine produced by Th1 T cells 
and natural killer (NK) cells, makes plaques more 
vulnerable by inhibiting smooth muscle cell 
differentiation [81] and interstitial collagen gene 
expression [82]. Likewise, the production of TGF-β 
can inhibit the activity of Th1 cells and macrophages 
and reduce plaque inflammation [25, 83]. The 
cytokine IL-17A alleviates the deleterious mechanical 
effects of hemodynamics on plaques by promoting 
collagen gene expression [84, 85]. In addition, the 
plaque expression levels of the pro-inflammatory 
factor leukotriene B (LTB) (4) are up-regulated by the 
BLT1 receptor, which could be a target for treating 
plaque instability [86]. Leukotriene receptors and 
their important cofactor 5-lipoxygenase-activating 
protein (FLAP) are highly expressed in atherosclerotic 
plaques and promote the production of LTB4 [87]. The 

levels of the formyl peptide receptor (FPR) subtype 
FPR2/ALX are significantly increased in 
atherosclerotic lesions. FPR2/ALX has 
pro-inflammatory and plaque destabilizing effects on 
myeloid-derived cells but has the opposite effect on 
VSMCs [88]. The tyrosine kinase inhibitor AG1296 
which inhibits the inflammatory response by blocking 
the platelet-derived growth factor/platelet-derived 
growth factor receptor (PDGF/PDGFR) signaling 
pathway can reduce the expression levels of MMP-2 
and MMP-9 to enhance plaque stability [88, 89]. In 
recent years, the Colchicine Cardiovascular Outcomes 
(COLCOT) and the Canakinumab Anti-inflammatory 
Thrombosis Outcomes Study (CANTOS) trials 
targeting NLRP3/IL-1β pathway have provided 
potential evidence to treat AS [90], but it is still 
unknown whether promoting the immune response 
in patients with AS affects the normal immune 
homeostasis. Therefore, how to specifically identify 
vulnerable plaques and target the immune response 
in the lesions of patients with AS is the next problem 
that has to be solved (Fig. 4). 

Lipid metabolism 
Another main reason for the development of AS 

is the elevated levels of LDL, leading to cholesterol 
accumulation in the intima, which eventually attracts 
monocytes. Macrophage phagocytosis of ox-LDL 
resulting in the creation of foam cells can accelerate 
the progression of AS [91]. Rinne et al. found that 
activation of MC1-R in macrophages in atherosclerotic 
ApoE-/- mice increased the outflow of cholesterol to 
that of ApoA1 and high-density lipoprotein (HDL), 
because of the increased reverse transport of 
cholesterol mediated by ATP-binding cassette 
transporters ABCA1 and ABCG1 to make the plaque 
stability signs more obvious [92]. There is evidence 
that there is an increase in protein deacetylation in 
macrophages from ApoE-/- mice treated with 
hydrogen sulfide (H2S), leading to increased 
deacetylation of several proteins including p53, p65, 
and sterol response element binding protein. As a 
result, there is an inhibition of both the synthesis of 
liver cholesterol and the uptake of cholesterol by 
macrophages, thereby increasing plaque stability and 
reducing plaque formation [93]. ApoA-I is the main 
structural protein component of HDL particles and 
has been shown to play a key role in reverse 
cholesterol transport (RCT) [94]; thus, stimulating an 
increase in endogenous ApoA-I synthesis may be a 
promising treatment for plaque instability. 

Oxidative stress 
The excessive production of reactive oxygen 

species (ROS) is another reason for the development 
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of AS and the formation of unstable plaques. Evidence 
supports that a dysfunction in endothelial NO 
synthase (NOS) and an up-regulation of vascular 
NADPH oxidase in AS are closely related to plaque 
instability [95]. Ox-LDL activates NOS1 and leads to 
the expression of CD40 ligand in macrophages. 
Inhibition of NOS1-derived NO may therefore be an 
effective strategy to reduce foam cell formation and 
limit the extent of atherosclerotic plaque expansion 
[96]. There is evidence that NOX2, a specific inhibitor 
of NADPH oxidase, can inhibit superoxide dismutase 
and significantly reduce the expression of 
hypoxia-inducible factor-1 α, MMP-9, endothelin, and 
vascular endothelial growth factor in a ApoE-/- mouse 
model fed a high-fat diet. Therefore, NOX2 can 
stabilize atherosclerotic plaques and reverse 
atherosclerotic vascular lesions [97]. In addition, the 
loss of the transcriptional activator Arnt-like protein-1 
(BMAL1) in human aortic endothelium inhibits the 
intracellular ROS accumulation induced by ox-LDL 
through BMP-mediated signal transduction, which 
further aggravates EndMT and negatively affects 
plaque stability [98]. Deletion of the transcription 
factor NF-E2 related factor 2 (Nrf2) reduced the extent 
of atherosclerotic lesion formation in LDLR-/- mice but 
also led to an increase in the plaque instability index 
by increasing plaque calcification and oxidative stress 
in 12-month-old LDLR-/-ApoB100/100 female mice 
[99-101]. It has further been confirmed that Nrf2 plays 
a completely different role in different animal models 
as well as in early and late plaques. In addition, in 

mouse models of AS, it is clear that there is gender 
dimorphism in the development of AS. These findings 
have provided us with new ideas for development of 
drugs to treat plaque instability in the future. 

Exercise training 
In patients with stable coronary heart disease 

(CHD), high degrees of physical activity are 
associated with low mortality [102, 103]. Additionally, 
exercise training has been shown to prevent AS and 
angiotensin (Ang)-induced vulnerable plaque 
formation in ApoE-/- mice by reducing systemic 
inflammation [104]. Moderate aerobic exercise can 
convert calcium deposits in blood vessels into a more 
stable form [105] and also stabilize plaques by 
increasing their collagen content [106, 107]. More 
interestingly, recent studies have shown that exercise 
may reduce macrophage activity by down-regulating 
neuropeptide Y (NPY) receptor expression in ApoE-/- 
mice and increase plaque collagen levels and smooth 
muscle cell numbers that play a stabilizing role in 
plaques [108]. 

Vital roles of ncRNAs in plaque 
instability 

Ample studies are available demonstrating the 
association between ncRNAs and plaque stability, 
which provide a rationale for the development of 
ncRNA-targeted therapeutic strategies in AS 
(Table 1). 

 

Table 1. Regulation of ncRNAs in the stability of atherosclerotic plaques 

NcRNAs Expression  Phenotype Effect on plaque stability Reference 
LncR- TCONS_00024652  up regulation  promotes ECs proliferation and angiogenesis increase [118] 
LncR-LINC00657  up regulation  promotes ECs angiogenesis decrease [163] 
LncR-UC.98 down regulation promotes ECs proliferation and adhesion increase [115] 
miR-21 up regulation  regulates macrophage migration and adhesion decrease [164-166] 
miR-200C up regulation  induces ECs dysfunction to produce ROS increase [167] 
miR-23a-5p up regulation  cholesterol efflux reduces the formation of foam cells decrease [114] 
miR-124-3p down regulation inhibits VSMCs collagen synthesis decrease [121, 168] 
miR-10b up regulation  induces apoptosis of macrophages decrease [127] 
miR-124 up regulation  collagen synthesis disorder decrease [169] 
miR-150 down regulation increases VSMCs and collagen content, reduce macrophage 

infiltration and lipid accumulation 
increase [128] 

miR-19b up regulation  inhibits STAT3 transcriptional activity affects ECs proliferation, 
migration and angiogenesis 

increase [170] 

miR-195 up regulation  inhibits the TLR2 inflammatory pathway increase [129] 
miR-495 down regulation increases of neovascularization after ischemia increase [171] 
miR-455-3p up regulation  regulates eNOS protein stability and NO production decrease [112] 
miR-133a up regulation  targets LDLRAP1 reduces lipid accumulation in VSMCs increase [119] 
miR-210 up regulation  targets tumor suppressor gene APC regulation of VSMCs survival increase [122] 
miR-181b down regulation regulates tissue inhibitor of metalloproteinase-3 expression  increase [172] 
miR-27b down regulation targets Naa15 regulates the activity of CCL20/CCR6 axis regulates 

ECs angiogenesis 
increase [116] 

miR-494 down regulation cholesterol levels and very low-density lipoprotein (VLDL) 
components fell 

increase [171, 173] 

miR-24 down regulation increases the expression of MMP-14 in macrophages increase  [130] 
miR-145 up regulation  adjusts the plasticity of VSMCs increase  [120] 
miR-33 down regulation promotes the expression of ABCA1 and the clearance of cholesterol increase  [174] 
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ncRNAs in ECs 
The effects of endothelial dysfunction, 

inflammation, ROS, and NO production on plaque 
stability are obvious. The blood flow in atherosclerotic 
lesions is characterized by turbulent dynamics, and 
these hemodynamics have a far-reaching impact on 
the expression of miRNAs, with differentially 
regulated miRNAs modulating shear stress-mediated 
transcriptional procedures [109-111]. It has been 
found that the levels of miR-200C are significantly 
higher in unstable plaques than in stable plaques. 
There is also a positive correlation between miR-200C 
levels and markers of plaque instability. Surprisingly, 
blood miR-200C expression levels decreased in 
patients with stable plaques one month after CEA. In 
addition, it has been found that H2S regulates the 
stability of NO synthase in ECs by up-regulating 
miR-455-3p to promote the migration of HUVECs. 
These data suggest that miR-455-3p is closely related 
to plaque instability and atherosclerotic progression 
[112]. Recent studies have shown that 
hsa_circ_0030042 can ameliorated plaque stability and 
regulates abnormal autophagy by targeting 
eukaryotic initiation factor 4A-III (eIF4A3) [113]. The 
overexpression of miR-19b can inhibit the 
transcriptional activity of the transcriptional activator 
3 (STAT3) [114]. Another study has shown that 
decreased lncRNAUC.98 expression can stabilize the 
progression of atherosclerotic plaque by inhibiting the 
proliferation and migration of ECs [115]. A reduction 
in miRNA-27b levels has been shown to regulate the 
activity of the chemokine (C-C motif) ligand 20/C-C 
chemokine receptor type 6 (CCL20/CCR6) axis by 
targeting N-alpha-acetyltransferase 15 (Naa15) to 
promote the stability of atherosclerotic plaques [116]. 
LncRNA AK136714 silencing inhibits endothelial cell 
inflammation and protects plaque stability [117]. The 
lncRNA TCONS_00024652 acts as miR-21 sponge to 
regulate vascular endothelial cell proliferation and 
angiogenesis and may be used as a potential method 
to reduce vascular endothelial dysfunction and treat 
plaque instability [118]. 

ncRNAs in VSMCs 
The increase in plaque size and decrease in 

plaque stability caused by the transformation of 
VSMCs into foam cells is a key step in the formation 
of AS plaques [43]. Gabunia K et al. reported that 
interleukin-19 (IL-19), a new type of anti- 
inflammatory cytokine, has been shown to reduce 
lipid accumulation in VSMCs. MiR-133a can target 
and decrease the mRNA levels, stability, and protein 
expression levels of the LDL receptor adapter protein 
1 (LDLRAP1). Mutations in miR-133a lead to LDL 

receptor dysfunction resulting in human autosomal 
recessive hypercholesterolemia (ARH). Therefore, 
miR-133a is a new target to reduce plaque size and 
rupture vulnerability by reducing Ox-LDL uptake in 
VSMCs [119]. High expression levels of miR-145 in 
VSMCs have recently been found to regulate AS and 
plaque stability. Targeting miR-145 in VSMCs has 
been shown to increase the area of the fiber cap, 
collagen content, and plaque stability [120]. Contrary 
to the effects of miR-145, miR-124-3p inhibits VSMC 
collagen synthesis by directly targeting prolyl 
4-hydroxylase subunit alpha-1 (P4HA1), resulting in 
atherosclerotic plaque instability [121]. MiR-210 
enhances the stability of the fibrous cap in advanced 
atherosclerotic lesions by targeting the tumor 
suppressor gene adenomatous polyposis coli (APC), 
thereby affecting WNT signal transduction, regulating 
VSMC apoptosis, and preventing plaque rupture 
[122]. On the one hand, miR-21 can affect the 
formation of foam cells and the development of local 
lipid cores by regulating the activity of the NF-κB 
signal pathway. On the other hand, miR-21 can inhibit 
VSMC apoptosis by increasing the rate of 
proliferation of VSMCs in mouse carotid arteries and 
jointly protecting fibrous cap stability in 
atherosclerotic plaques [123]. It has been shown that 
hyperglycemia and streptozotocin-induced type 1 
diabetes can reduce the synthesis of collagen and lead 
to the formation of unstable atherosclerotic plaques in 
ApoE-/- mice [124]. Metformin can increase the level 
of activator protein 2 alpha (AP-2α) in carotid 
atherosclerotic plaques in diabetic ApoE-/- mice, 
decrease the expression levels of miR-124, and 
increase the levels of prolyl-4-hydroxylase alpha 1 
(P4Hα1) and collagen in VSMCs. Therefore, targeting 
miR-124 can increase plaque stability by regulating 
the activity of the AMPKα/AP-2α/miRNA-124/ 
P4Hα1 axis, which provides a new idea for the clinical 
treatment of AS [125]. 

ncRNAs in macrophages/monocytes 
NcRNAs are critically involved in macrophage 

apoptosis, inflammation, and the phenotypic 
transformation leading to plaque instability. It has 
been shown that the serum levels of miR-23a-5p in 
patients with AS as well as in macrophages in 
atherosclerotic mice are both significantly increased. 
A miR-23a-5p inhibitor has been shown to increase 
cholesterol efflux and reduce the formation of foam 
cells by up-regulating the expression of ABCA1/G1. 
A miR-23a-5p anticoagulant therapy has been shown 
to significantly slow the progression of AS probably 
by inhibiting an ATP-binding cassette transporter in 
macrophages that promotes the progression and 
vulnerability of atherosclerotic plaques [114]. 
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Analogously, the expression levels of miR-10b are 
increased in the arteries of late atherosclerotic plaques 
in ApoE-/-mice [126]. In addition, free cholesterol- 
induced macrophage apoptosis (FC-AM) has been 
shown to promote the expression of miR-10b in 
resident peritoneal macrophages (RPM) by up- 
regulating Mer receptor tyrosine kinase-dependent 
Twist1/2 [127]. It has been shown that miR-150 
significantly enhances the inflammatory response by 
up-regulating the proliferation, migration, and 
vascular homeostasis of ECs. It can also reduce 
infiltration and lipid accumulation in macrophages to 
promote plaque stabilization [128]. Some studies have 
found that miR-195 participates in the polarization of 
macrophages and inhibits mediators of the Toll-like 
receptor 2 (TLR2) inflammatory pathway. In addition, 
miR-195 weakens the effect of macrophages on the 
recruitment and migration of VSMCs [129]. Recent 
studies have suggested that membrane-1 MMP-14, a 
selective marker of a subset of invasive macrophages, 
has been shown to be associated with atherosclerotic 

plaque progression. The levels of miR-24 in stable 
plaques are higher than in unstable plaques, and the 
downregulation of miR-24 promotes the formation of 
the subset of invasive macrophages, suggesting a new 
regulatory role for MMP-14 proteolytic activity in 
plaque stability [130] (Fig. 1). 

Clinical applications 
The rupture of unstable atherosclerotic plaques 

and thrombosis are the most important pathological 
basis of AS which seriously threatens the life of 
patients. Therefore, early diagnosis and the 
identification of unstable plaques are of great value to 
patients with coronary heart disease [131-134]. 

Clinically, intravascular ultrasound (IVUS) and 
optical coherence tomography (OCT) can provide the 
morphological characteristics of coronary 
atherosclerotic plaques, which is very helpful for the 
assessment of plaque stability [135-137]. However, 
these tools are too invasive and expensive to be 
widely used in the screening of unstable plaques. 

Strategies targeting circulating 
biomarkers, such as ncRNAs, could 
provide a more convenient method 
to evaluate plaque stability in 
patients with coronary heart disease 
[15, 138, 139]. There are several 
advantages for ncRNA application in 
clinical trials. RNA therapy can 
specially mediate target genes. 
NcRNAs are associated with 
complex biological processes such as 
immune cell development and 
functions [140-142]. The preclinical 
development of ncRNA drugs is 
simpleness in design through gene 
sequencing. Moreover, the treatment 
of small nucleic acid drugs at the 
post-transcriptional level can 
suppress the activity of special 
targets whose proteins are difficult to 
be effective. Besides, RNA therapy 
can also mediate multiple targets at 
the same time [143]. For example, a 
biomimetic exocrine nanocomplex 
for accurate delivery of miRNA has 
been developed, which shows 
excellent targeted delivery and 
therapeutic effect in mouse 
myocardial infarction model, which 
provides a novel idea for the design 
and development of nucleic acid 
drug carriers, realizes the accurate 
delivery of gene drug and 
microRNA-mediated myocardial 

 

 
Figure 1. Non-coding nucleic acids participate the regulation of unstable plaques via mediating 
functions of endothelial cells, vascular smooth muscle cells and macrophages. As shown, there is a 
thin fibrous cap in the unstable plaque, and the vulnerable sites are rich in lipid cores, including a large number of 
apoptotic cells, cholesterol crystals, lipid-rich foam cells, and so on. Among them, in endothelial cells, miR-200C, 
miR-455-3p, miR-10b and miR-21 were significantly up-regulated, while miR-2b and LncRNA-UC.98 were 
down-regulated. miR-124-3p was increased and miR-133a, miR-145, miR-210, miR-21, miR-145 were significantly 
decreased in VSMCs. In addition, miR-23a-5p and miR-10b were up-regulated in macrophages, while miR-150, 
miR-196 and miR-24 were obviously down-regulated. 
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repair, and provides a theoretical basis for nucleic 
acid therapy [144]. Therefore, targeting ncRNAs 
would be a very promising strategy for the treatment 
of diseases in future. Panz et al. sequenced the 
transcripts of blood samples from three patients with 
stable plaques and three patients with unstable 
plaques by RNA sequencing, and found 62 species of 
lncRNAs were differentially expressed in unstable 
plaques. In particular, lncRNA-snhg7-003 was found 
to be significantly down-regulated in blood samples 
from patients with unstable plaques [145]. A 
microarray analysis of plasma from five patients with 
AS showed that the expression levels of miR-23a-5p, 
miR-2110, and miR-320a were all up-regulated 
compared with those in plasma from healthy controls. 
In parallel, the levels of miR-4439 and miR-8084 were 
down-regulated in plasma from patients with 
vulnerable plaques [114]. The miRNA expression 
profile of human atherosclerotic plaques has been 
analyzed using a miRNA chip. It has been found that 
the expression levels of miR-21, miR-22, miR-210, 
miR-34a, miR-146a/b, miR-19b, and miR-143 were all 
clearly up-regulated [146, 147]. Moreover, miR-99b, 
miR-152, and miR-422a have also been shown to be 
highly expressed in atherosclerotic plaques but not in 
healthy blood vessels [148]. Li et al. identified 
miR-27b as having the higher expression levels in 

atherosclerotic plaques from high-fat diet-fed 
ApoE-/-mice [116]. In addition, miR-145 has been 
shown to be overexpressed in plaques in patients with 
hypertension [149]. High levels of miR-100 have been 
shown to be associated with coronary plaques [150], 
and carotid plaque rupture is accompanied by an 
increase in the serum circR-284/miR-221 ratio [151]. 
Therefore, ncRNAs may represent potential 
diagnostic markers to regulate plaque stability. In the 
context of human atherosclerotic diseases, the 
precedent of targeted miRNA therapy has been 
confirmed. So far, it has been shown that knocking 
down the expression of miR-27b, miR-210, 
miR-520c-3p, and lncR-ccl2 protects plaque stability in 
ApoE-/- mice [116, 122, 152, 153]; therefore, these 
attractive targets have a huge potential to regulate 
plaque stability. Regarding plaque stability, the 
plaques in the widely used ApoE-/- or LDLR-/- mice 
are usually less prone to rupture as compared to 
atherosclerotic plaques in humans. Over the past 
decade, ncRNAs have become the main 
pathophysiological regulators of atherosclerosis, but 
most of these studies are based on mice, and 
conducting extensive studies in humans is an urgent 
problem yet to be solved. It is worth noting that our 
candidate target gene has a well-documented role in 
the regulation of plaque stability (Table 2). 

 

 
Figure 2. Regulatory mechanism of endothelial cells in unstable plaques. Inhibition of endothelial cell apoptosis induced by ox-LDL was mainly through WNT/JNK 
pathway after Dickkopf1 (DKK1) silencing. The combination of vascular endothelial growth factor receptor 2 (VEGFR2) and its ligand metalloprotease 10 (ADAM10) induces the 
phosphorylation of ERK1/2 through PLCγ/PI3K signal transduction and promotes the migration of ECs. Oxidative stress and hypoxia induce transforming growth factor-β 
(TGF-β) to stimulate the phosphorylation of SNAI2 and SMAD3, resulting in endothelial to mesenchymal transition (EndMT). P2Y2 receptor (P2Y2R) deletion can promote the 
expression of vascular adhesion molecule-1 (VCAM-1) and endothelial nitric oxide synthase (eNOS) in ECs, thus promote the activity of nitric oxide (NO) and matrix 
metalloproteinase-2 (MMP-2), then increase endothelial inflammation. Oleic acid suppresses cell apoptosis by inhibiting Toll-like receptor-activated JNK/NF-κB/IκBα pathway and 
the expression of TNF-α, MCP-1 and ICAM-1. 
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Figure 3. Regulatory mechanism of VSMC in unstable plaques. Serum response factor (SRF) blocks the inflammatory pathway by inhibiting ERK/JNK/C-Jun pathway and 
the expression of IL-1β, IL-6 and CCL2. ROS activates the phosphorylation of AMPK and induces phenotypic transformation of VSMCs through the klf4-dependent IκBα/NF-κB 
p65 pathway. Sirtuin6 (SIRT6) promotes the increase of IL-1β and IL-18 and induces VSMCs senescence by activating the phosphorylated p38/JNK/ERK1-Beat 2 pathway. 

 
Figure 4. Regulatory mechanism of macrophages in unstable plaques. Insulin-like growth factor-1 receptor (IGF-1R) deletion inhibits cholesterol outflow by 
suppressing the expression of TNF-α, MCP-1 and IL-6 through ABCA1/ABCG1 pathway. In contrast, C1q/tumor necrosis factor-related protein-3 (CTRP3) promotes 
cholesterol outflow through PPAR-γ. The high expression of CTRP3 and CTRP9 can inhibit the macrophage inflammation through NFκB pathway. Pigment epithelium-derived 
factor (PEDF) can activate ERK, p38 and JNK phosphorylation to inhibit macrophage inflammation. NLRP3 inflammasomes induces inflammation by activating IL-1β and IL-18. 
Interferon-γ produced by Th1 T cells and natural killer (NK) cells activates the phosphorylation of JAK and STAT to promote inflammation. Leukotriene receptors (LTs-R) and 
its cofactor FLAP target FLAP/5-LO/Leukotriene pathway to inhibit inflammation. The tyrosine kinase inhibitor AG1296 suppresses inflammation by reducing the expression of 
MMP-2 and MMP-9 via PDGF/PDGFR pathway. 

 

Conclusion and outlook 
The transition of an atherosclerotic plaque from 

stable to unstable is a multi-step process involving 
multiple cells. The purpose of this study was to 
investigate the regulatory effect of ncRNAs targeting 
endothelial cells, vascular smooth muscle cells, and 

immune cells on plaque stability. Inflammation, lipid 
metabolism, and oxidative stress pathway are also 
closely related to plaque stability. NcRNAs can stably 
exist in the plasma and other body fluids, and the use 
of ncRNA-targeted therapies has been widely 
recognized. The identification of unstable plaques at 
an early stage will be helpful for effective intervention 



Int. J. Biol. Sci. 2021, Vol. 17 
 

 
http://www.ijbs.com 

3423 

in patients with CAD and significantly improve their 
prognosis [154]. LncRNAs are potential regulators of 
the inflammatory response [155] and can regulate 
gene expression through epigenetic regulation, 
transcriptional regulation, post-transcriptional 
regulation, molecular sponge effects, and as 
molecular chaperones, thus playing a key role in the 
regulation of plaque stability[145, 156]. MiRNAs are 
expressed in the vascular system, participate in 
vascular inflammation and smooth muscle cell 
proliferation, and are now recognized as main 
regulators in the signaling pathways leading to 
plaque instability [147, 157]. 

 

Table 2. The biomarkers of ncRNAs of the stability plaques 
detected in human serum of atherosclerosis 

ncRNA Expression Fold change (FC) Sample Reference 
miR-2110 up regulation  2 blood samples [114] 
miR-4439 down 

regulation 
1.4 blood samples [114] 

miR-8084 down 
regulation 

1.4 blood samples [114] 

miR-23a-5p up regulation 4 blood samples [114] 
miR-320a up regulation 4.2 blood samples [114, 175] 
miR-200C up regulation  2 tissue sample [167] 
miR-210 up regulation 3.12 blood samples [146, 147] 
miR-21 up regulation 5.3 blood samples [146, 147, 

164, 175] 
miR-34a up regulation 2 tissue sample [146, 147, 

176] 
miR-146a/b up regulation 4.15 blood samples [146] 
miR-19b up regulation 4 blood samples [147] 
miR-22 up regulation - blood samples [147] 
miR-143 up regulation 5 blood samples [147] 
miR-99b up regulation - blood samples [177] 
miR-152 up regulation 4 blood samples [177] 
miR-422a up regulation 3.8 blood samples [177] 
miR-145 up regulation 2.2 tissue sample [148] 
miR-100 up regulation 1.8 tissue sample [148] 
circR-284 up regulation 3 blood samples [151] 

 
 
Although lncRNAs transcripts are more 

numerous than protein-coding genes, their 
expression, function, and mechanism of action in the 
relevant cell types during development of the 
atherosclerotic plaque are unclear. Stable miRNAs in 
circulating blood can be used as endogenous disease 
biomarkers [158, 159]. However, there are still some 
studies on how the release of miRNAs in the plasma 
reflects the dynamics and regulates the instability of 
carotid plaque. Some tools such as Tissue Atlas [157] 
and IMOTA (https://ccb-web.cs.uni-saarland.de/ 
imota/) provide powerful means for the subsequent 
detection of the expression of miRNAs and their 
target genes in specific tissues. Some studies have 
demonstrated that lncRNAs combined with miRNAs 
play an important role in plaque stability, but whether 
this mechanism is universal has not been confirmed, 
and the relationship between lncRNAs and miRNAs 

remains to be further studied. To date, most studies 
have been carried out only in vitro; therefore, the role 
of ncRNAs and their targets needs to be further 
studied in vivo. In recent years, exosomes have been 
widely reported as a medium for extracellular 
transport. Some studies have shown that ncRNAs can 
be detected in extracellular transport vesicles in 
exosomes carrying biological media; therefore, it is 
thought that ncRNAs secreted to extracellular bodies 
are loaded by exosomes, and the special structure of 
the exosome’s bilayer lipid membranes protect them 
from degradation, but the specific loading mechanism 
is not clear [160, 161]. Whether exocrine ncRNAs can 
enter the cell cycle and play a role in regulating 
plaque stability still needs to be further explored. In 
addition, the development of methods for efficiently 
producing batches of exosomes and ncRNAs that can 
act on host cells remains a difficult problem. 
Importantly, discovering ncRNAs from scratch is very 
costly and often requires many sequencing efforts, 
without established standards for data analysis 
methods. In addition, ncRNAs undergo some 
modifications in vivo, such as methylation and 
splicing, making it more difficult to study the 
mechanism of plaque stability. With continuous 
improvements in RNA sequencing technology, more 
efficient RNA analysis methods can be applied to a 
small number of blood samples from specific patients 
[162]. We believe that great progress will be made in 
exploring the utility of ncRNAs in the treatment of 
plaques in the future. Although our knowledge of the 
role of ncRNAs in plaque stability remains 
preliminary, this field is worthy of deeper exploration 
and greater research efforts. 
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