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Abstract

Aims: Using Single-cell RNA sequencing (scRNA-seq), we explored the spatiotemporal heterogeneity of
pancreatic neuroendocrine tumors (pNETs) and the underlying mechanism for malignant progression.

Methods: scRNA-seq was conducted on three tumor tissues (two primary tissues from different sites, one
liver metastatic lesion), one normal liver tissue, and peripheral blood mononuclear cells from one patient with
a metastatic G2 pNET, followed by bioinformatics analysis and validation in a pNETs cohort.

Results: The transcriptome data of 24.544 cells were obtained. We identified subpopulations of functional
heterogeneity within malignant cells, immune cells, and fibroblasts. There were intra- and inter-heterogeneities
of cell subpopulations for malignant cells, macrophages, T cells, and fibroblasts among all tumor sites. Cell
trajectory analysis revealed several hallmarks of carcinogenesis, including the hypoxia pathway, metabolism
reprogramming, and aggressive proliferation, which were activated at different stages of tumor progression.
Evolutionary analysis based on mitochondrial mutations defined two dominant clones with metastatic
capacity. Finally, we developed a gene signature (PCSK1 and SMOCI) defining the metastatic potential of the
tumor and its prognostic value was validated in a cohort of thirty G1/G2 patients underwent surgical resection.

Conclusions: Our scRNA-seq analysis revealed intra- and intertumor heterogeneities in cell populations,
transcriptional states, and intercellular communications among primary and metastatic lesions of pNETs. The
single-cell level characterization of the spatiotemporal dynamics of malignant cell progression provided new
insights into the search for potential novel prognostic biomarkers of pNETSs.
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Introduction

Pancreatic neuroendocrine tumors (pNETs) area  tract and 1-2% of all pancreatic tumors.! Although
group of heterogeneous tumors accounting for  functional pNETs make up a dozen distinct subtypes
approximately 12% of primary NETs in the digestive  (insulinoma, gastrinoma, glucagonoma, etc.), the
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non-functional pNETs have a wide spectrum of
behavior ranging from indolent to highly malignant.
The main prognostic factor for pNETs is the World
Health Organization histological grade, which
classifies pNETs as a G1, G2, or G3 tumor, or a G3
carcinoma based on the Ki-67 index, mitotic counts,
and differentiation. Due to limited knowledge on the
molecular mechanisms of pNET progression,
treatment decisions are currently based on only the
grade and stage of disease, and there are many
unanswered  controversies  regarding  optimal
treatment modalities, particularly for G2 cases.
Therefore, better understanding of the molecular
mechanisms underlying pNET progression will
inform clinical decision-making.

Genomic and transcriptomic studies have
described landscapes of genetic mutations and
aberrant signaling pathways in pNETs,>* which have
significantly improved our understanding of the
molecular features of pNETs. However, mechanisms
underlying the development and progression pNETs
is still not well understood compared to that of
pancreatic ductal adenocarcinoma — therefore effica-
cious therapeutic approaches for patients remain
elusive. Several challenges may underlie this lack of
knowledge.  Although pNETs are essential
malignances, they often exhibit indolent biological
behavior characterized by prolonged survival,
especially in patients with low-grade lesions.> The low
incidence rate and relative indolence are challenging
to both clinical study and basic translational research.
In addition, pNETs have high intra- and intertumor
heterogeneity, not only across patients, but also in
different lesions of a single patient and have a
complex tumor microenvironment (TME).6 Although
studies based on bulk-sequencing have facilitated
understanding of the molecular nature of pNETs, it is
challenging to explore a heterogenous disease based
on bulk mRNA sequencing.

Recently, single-cell RNA sequencing (scRNA-
seq) has provided a powerful tool to characterize
heterogenous cell types and has been applied to
multiple cancer types.”® scRNA-seq of PDAC
specimens revealed evolutionary mechanisms during
malignant transformation of ductal epithelium and
highlighted intratumoral heterogeneity in PDAC,10
but an scRNA-seq study in pNETs is still lacking.
Thus, in this study, we employed scRNA-seq to
delineate the transcriptional features of cells from
both the primary lesion and the liver metastasis in a
patient with a metastatic G2 pNET. We identified
cell-specific transcriptional features, which enabled us
to study the spatiotemporal distribution and dynamic
process of each cell population within the pNET, and
thereby enhanced our wunderstanding of the

mechanisms of pNET progression, which may
improve clinical treatment strategies.

Materials and Methods

Human sample collection

A female patient with a sporadic G2 pNET was
enrolled in this study. This patient had a clear history,
where the pNET lesion originated at the pancreatic
head, expanded to the pancreatic body, and
metastasized to the liver. The patient received a
pancreaticoduodenectomy and partial hepatectomy
without any anticancer therapeutic prior to operation.
A tumor tissue at the site of pancreatic head (T1), a
tumor tissue at the distal site of pancreatic body (T2),
and a pair of adjacent liver tissues (metastatic [H5]
and normal [NH]) were obtained immediately after
surgical removal of the specimens under the
supervision of a pathologist. Fifteen ml of peripheral
venous blood was collected on the same day of, but
prior to, the operation. This study was approved by
the Ethics Committee of Guangdong Provincial
People's Hospital (IRB number KY2020-359-01).

A Complete description of methods was
attached in Supplementary Methods.
Results
Sample acquisition and cell lineage
determination

To explore the transcriptomic states of

individual cells in both primary and metastatic lesions
of pNETs, we isolated cells from the primary tumor,
metastatic liver tumor, normal liver, and peripheral
blood from a treatment-naive patient with metastatic
PNETs and performed scRNA-seq (Figure 1A). Data
originating from 24,544 cells were retained for
downstream bioinformatics analysis (Supplementary
Table S1). Cell lineage determination was done using
a PCA. We employed tSNE and UMAP to reduce the
dimensionality of this data and allow the
visualization of cell-type clusters defined by their
transcriptional profiles. As a result, a total of nine
main cell clusters were identified, including epithelia,
endothelia, fibroblast, B cell, monocytic cell,
macrophage, mast cell, NK cell, and T cell (Figure 1B,
1C). We then generated cluster-specific marker genes
by performing differential gene expression analysis,
which identified mutually exclusive gene sets
including established markers of particular cell types
(Figure 1D, E). Pie charts indicated the percentage of
each cellular components in each sample (Figure 1F).
Notably, the cell composition from different sources
showed variability, even in tumor tissues.
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Figure 1. A. Scheme of the overall study design. Single-cell RNA sequencing was applied to cells derived from a total of four samples (PBMC 1, primary tumor 2, metastasis |,
and normal liver tissue 1), and the output data were used for bioinformatic analyses and verification in tissue. B. The tSNE projection of 24,544 cells from 4 samples, showing the
formation of 10 main clusters. Each dot corresponds to one single cell, colored according to cell cluster. C. Cell number and percentage of assigned cell types are summarized.
D. Dot plot demonstrates the normalized mean expression of specific markers in each cell cluster. E. Expression levels of the indicated marker genes are projected onto the tSNE
map. F. Pie charts represent the proportions of cell types in each sample source. pct.exp, percentage of cells with expression; avg.exp, average expression level.
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Characterizing the heterogeneity in malignant
cells

To investigate the heterogeneity in malignant
cells, we first calculated large-scale chromosomal
copy number variation (CNV) in each cell in order to
define malignant cells (Figure 2A) (Supplementary
Table S2). A total of 3,746 malignant cells were
retained. To reveal the functional subtypes, the
malignant cells were subclustered by PCA and
visualized by UMAP projection. A total of 7 stable
clusters emerged (Figure 2B, 2C), named from
subtype 0 to subtype 6. Sub-cluster-specific markers
for each subtype were shown in the heatmap (Figure
2D). We also identified multiple markers to
distinguish different malignant subtypes (Figure 2E).
Significant heterogeneity in the composition of the 7
subtypes was found between the primary and
metastatic tumor. The primary tumors comprised
predominantly two subtypes, 0 and 3. Subtype 3
seemed to be a malignant population that was
dominant in primary sites. Compared with primary
lesions, a higher diversity was found in the metastatic
tumor, which contained all subtypes except subtype 3.

The finding that each subtype expresses a
specific gene set that can be used for distinguishing
these subgroups indicated there were different
biological characteristics in different subtypes of
malignant cells. To characterize the relative activation
of primary cellular functions, we performed QuSAGE
analysis to determine the enrichment level of
well-known gene sets for each subtype and found that
each subtype had unique functions (Figure 3A, 3B)
(Supplementary Table S3). Notably, the significantly
enriched cellular functions in subtype 6 were related
to biosynthesis, mitosis, cell cycle, and cell
proliferation, which was further supported by the
enriched expression of CDK and CDKN1 family genes.
In addition, enrichment of gene sets related with
angiogenesis and stemness were observed exclusively
in subtype 3. Subtype 4 was enriched for
immune-checkpoint inhibition. In contrast, genes in
subtype 1 were enriched for immune-checkpoint
activation, suggesting a possible association with
immune response in these two subtypes.
Additionally, enriched gene sets specific for subtypes
2 and 5 were mainly related to GABA signaling and
cell-cell communications via hormones.

To reveal the driving mechanisms for the
functional divergence in each subtype, we performed
SCENIC (Single cell regulatory network inference and
clustering) analysis to delineate transcriptional
dynamics of the malignant cells and to reveal
potential transcription factors underlying the
regulation across subtypes at single-cell level
(Supplementary Table S4). Hierarchical clustering of

the activity of transcriptional factors by SCENIC
across the 7 subtypes is shown in a heatmap (Figure
3C). In particular, subtype 6 showed significantly
increased expression of three E2F family members
(E2F1, E2F2, and E2F3), EZH2, and SP3, which all
were well-known oncogenes participating in cell
proliferation, differentiation, and invasion (Figure 3D,
3E).1-14 On the other side, although curative resection
is the primary treatment choice for pNETs,
antineoplastic agents are essential for the treatment of
most pNETs. Therefore, we analyzed the expression
of genes involved in drug resistance and drug
metabolism (Figure 3F-3I). As shown in the heatmaps,
the expression of DHFR, BAX, and TOP2A in subtype
6 were significantly different from the other subtypes.
Violin plots show the exclusive expression of DHFR,
BCL2, and TOP2A in subtype 6, as well as significantly
increased BAX expression. DHFR, TOP2A, and BCL2
were unfavorable biomarkers that predict
chemoresistance to temozolomide,’>” an alkylating
agent, used as a chemotherapy agent in patients with
pNETs.1819 Additionally, inhibition of BCL2 seemed a
way to enhance the response to everolimus,? a mTOR
inhibitor showed effect in pNETs. Interestingly, Bax
expression was correlated with sensitivity to
capecitabine,?! an agent used as a monotherapy or
usually combined with other chemotherapy agents.?
These findings showed the acquisition of
heterogeneity and diversity in drug-resistance/
sensitivity during the evolution of pNETs, and
subtype 6 was a malignant subpopulation with high
proliferation activity and drug-resistant ability.

Compared with other subtypes, the subtype 3
seemed a malignant population that was dominant in
primary sites. In the above QuSAGE functional
annotation analysis, we have observed the gene sets
related with angiogenesis and stemness, two
important hallmarks in carcinogenesis, were enriched
in subtype 3. To better understand the heterogeneity
of pNETs, we further investigated the characteristics
of subtype 3. Additional QuSAGE analysis was
performed by using a customized gene set including
immune-, cytokine- and neurobiology-related terms.?
As shown in Supplementary Figure S1A, the gene
signature of “neuroendocrine” was specifically
enriched in subtype 3. Neuroendocrine tumors
(NETs) are malignant growths originating from
neuroendocrine cells, therefore, the enrichment of
neuroendocrine gene signature suggested that the
subtype 3 displayed more genes characteristic of the
cell of origin in comparison with other subtypes. The
trajectory analysis using all malignant cells further
revealed that the subtype 3 was a subpopulation at
the initial phase of malignant evolution
(Supplementary Figure S1B).
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Figure 2. A. Quadrant plots showing the selection of malignant cells were displayed in the upper panels. The y-axis represents the CNV signal and the x-axis represents the CNV
correlation. Each dot represents a single cell. The cell population in the upper right quadrant was defined as the putative malignant cell population (CNYV signal above 0.05 and
CNV correlation above 0.5). Heatmaps of large-scale CNV events in individual cells for each sample are shown in the lower panels, in which the y-axis represents each cell, and
the x-axis is the genomic position of CNV events. Red: amplifications; blue: deletions. B. UMAP representation of malignant cells following graph-based clustering colored in seven
subclusters. The inset in the black box is a UMAP picture colored by the source of cells. C. Cell numbers of each subcluster are summarized. D. Heatmap showing expression
levels of specific markers in each cell type. E. Expression levels of the indicated marker genes projected onto UMAP plots.
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Gene set enrichment analysis (GSEA) also
showed significant enrichment of genes related to
neuroendocrine cell differentiation in subtype 3
(Supplementary Figure S1C), but the difference in the
enrichment of signature genes related with
neuroendocrine neoplasm was not significant
between subtype 3 and other malignant subtypes,
which further supported that, among all malignant
cells, the subtype 3 was an initial subpopulation with
most features of the neuroendocrine cells from which
they are derived. In terms of transcriptional
regulation, the SCENIC analysis on all malignant
subtypes showed specific enhanced activity of TCF4
(transcription factor 4) in the subtype 3
(Supplementary Figure S1D). It is well known that
TCF4 is a gene which was found to be abundantly
expressed during neural development,? and TCF4
was also involved in neuroendocrine differentiation
of tumor cells,?> which was consistent with the above
findings about the prominent feature of
neuroendocrine in subtype 3. Additionally, TCF4 has
been found to be associated with tumorigenesis in a
variety of tumors and was a potential molecular target
against kinds of cancer,”” suggesting that TCF4 may
be an intervention target for the subgroup 3.

The other two functional characters of angioge-
nesis and stemness revealed by functional annotation
analysis in subtype 3 were subsequently investigated.
As mentioned in the supplementary method, a
systematic search of electronic databases for the
cancer stem cell markers of neuroendocrine tumors
was performed, a total of fifteen markers were found
to have been reported previously (Supplementary
Table S5), in which we found four markers were
reported in more than one study, including ALDH1,
CD133, CD44, and SOX9. Consequently, expression
levels of the classical neural stem cell marker Nestin
(NES),%0 as well as the above four markers were
evaluated across all malignant subtypes. As shown in
Supplementary Figure S1E, NES was expressed in
both two subtypes of primary tumor where subtype 3
predominate, which could be explained, at least in
part, that subtype 0 and subtype 3 were two
subpopulations located at the early phage of tumor
evolution and they may share some gene features
with the neural stem cell which they may be derived
from. In addition, the expression of ALDH1, CD133,
CD44 and SOX9 was heterogeneous among the seven
subtypes. Co-expression of ALDH1 and CD133 was
found in the subtype 3, but the expression of CD44
and SOX9 was low in subtype 3. None of the subtypes
showed uniformly high expression of all cancer stem
cell markers, revealing probable heterogeneity in the
expression of cancer stem cell markers at single-cell
level. Moreover, GSEA showed significant enrichment

3765
of angiogenesis-related gene sets in cluster 3 in
comparison with other malignant subtypes

(Supplementary Figure S1F); additionally, as shown
in the dot plot of Supplementary Figure S1G, subtype
3 showed increased expression of angiogenic TGFB1,
VEGFA, and VEGEFC than other subtypes. Therefore,
the cells of subtype 3 may play a significant role in
angiogenesis through releasing angiogenic factors.

Intra- and intertumoral heterogeneities of
immune cells and fibroblasts

We performed the subclustering of myeloid cells
to help understand the relationships between
subpopulations and their functions, and we detected
11 subsets Supplementary Figure S2A, B). Monocytes,
macrophages, and dendritic cells were defined by
well-known markers (Supplementary Figure S2C),
and we found 5 subsets of macrophages (Supplemen-
tary Figure S2A-C). The macrophage-1 subset was
located predominantly in primary tumors, while
macrophage-2 and macrophage-5 subsets existed
exclusively in liver metastasis. Different expression of
markers for macrophage subtypes, including M1,
M2a, M2b, M2c, and TAM,3! are displayed in a dot plot
(Supplementary Figure S2D). The expression of
M1/M2 signatures in the five macrophage subsets we
observed did not fall in line with either the canonical
M1 or M2 classifications. Clusters also showed
differential enrichment of hallmark gene-set activity,
confirming their distinct transcriptional programs
(Supplementary Figure S2E, S2F), in which we found
the macrophage-1 showed abnormal activation of
most M2 macrophage-related pathways. Specifically,
macrophage-1 was the subset closest to M2
phenotype, but this subset still expressed some
signature genes of the M1 phenotype. In contrast, the
liver metastasis-specific macrophage-2 showed more
M1 characteristics. Since macrophages mainly affect
tumor cells by paracrine chemokines and cytokines,
we further analyzed the expression of cytokines and
chemokines across both macrophage-1 and
macrophage-2 subsets (Supplementary Figure S2G).
We found that CCL2, the dominant chemokine for the
migration of tumor-promoting MDSC and regulatory
T cells,> was expressed in macrophage-1 and
macrophage-2 subsets. Additionally, CCL3 and CCL4
were also expressed mainly in macrophage-1 and
macrophage-2 subsets at similar levels. Both CCL3
and CCL4 are double-edged chemokines that exert
antitumor and protumor behaviors, which depended
on the microenvironment.?334¢ However, CCL13, a
chemokine that is a chemoattractant for eosinophils,
basophils, monocytes, macrophages, immature
dendritic cells, and T cells,?> was exclusively expres-
sed in the macrophage-1 subset (Supplementary
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Figure S2G, S2H). In addition, SPP1, of which the
product is related to a fibroblastic microenvironment
and supports monocyte/macrophage prolifera-
tion,?¢-38 was specifically expressed in macrophage-2

A

Angiogenesis
Senescence re-reforcement

['..C rlﬂlr’_n'_'\ll ,_L‘

Stemness o
Invasion and Migration ’
| Type_ll_Interferon_Response_gene

Type_|_Interferon_response_gene I
-0.5

Norepinephrine_receptor _gene

Immune-Checkpoint-Inhibition-Ligand-Gene

CellPhone_Gene_Other

CellPhone_Gene ™

CellPhone_Gene_Hormane

TAM_M2_gene

TAM_M1_gene
Chemoprotection o
Immunosuppresswe cenario
Immunosupportive Scenario
Dopamine_receptor_gene
Immune-ChReckpoinf-inhibition-Receptor-Gene
Gamma_aminobutyric_acid_GABA_receptor
Protein_Atlas_Secretion_Protein
' Immune-Checkpoint-Activation-Ligand
ImrSnune Checkpoint-Activation-Receptor

P

4 G2_M_gene

G17S gene
Proliferation
' CellPhone_Gene_Cytokine
X5 hydroxytryptamme receptor_gene
CellPhone_Gene_Growthfactor
Treg_gene

P

Cluster 0123456

ws| E2F3

——
o
i

and macrophage-5 subsets but was not found in
primary tumor subsets (Supplementary Figure S2G,
S2H).

DNA replication
Mismatch repair 05
Homologous recombination
One carbon pool by folate
Fanconi anemia pathway o
Base excision repair
Cell cycle
Folate biosynthesis
Pathogenic Escherichia coli infection
Proteasome
Glycosaminoglycan biosynthesis
Glycosaminoglycan degradation
Lysosome
Other glﬁcan degradation
Glycospl mgolnpld biosynthesis - ganglio series
Protein exg
N-Glycan biosynthesis
Protein Emcessm in endoplasmic reticulum
Vibrio cholerae infection
Oxidative phosphorylation
Glycolysis / Gluconeogenesis
1 Huntlngtnn s disease
Parkinson's disease
Alzheimer's disease
Ubiquinone and other terpenoid-quinone biosynthesis
) Glycosylphosphatidylinositol(GPIl)-anchor biosynthesis
~ Taste transduction
Endocrine and other factor
Synaptic vesicle cycle

Non-homologous end-joining I

Cluster 0123456

wf E2F1 E2F7

AucelVatue
Aicelvakie

oas

~-~Mm Attest!

[
-
]

H]
o

1t il i '

I
|| I‘ II\ IH HHI\ HI\ HI\H.

II\

Aucalvalie

ABCB1
ABCC1
ABCC2
ABCC3 | ToPzA
ABCCS
ABCG2
BAX
BCL2
BCL2L1
VP
B1 J

T

ARNT
E BLMH
CLPTMIL
EZH2 100, SP3 CYP1A1
CYP2B6
- CYP2C19
CYP2CB
aors CYP2C9
y CYP2D8
H ] CYP2EA
E Fomo CYP3A4
L os. CYP3AS
DHFR
EPHX1
GSK3A
¢ ¢
oo . )
-n i

Cluster 0

P cter

\I JIIIHHIH\H ‘It jJHH”“‘ W I

PDE|
IH |\ \ I il I‘\II [} \I\Il‘lﬂlw | | ‘ 1 i |§33p:11(62:35559we)s)
I jenes|
| ‘ I\ \ i IH.I\I | A |

WERETEET TR I I

by
w
I
]
S
]
)
2

LId | (L LA I
1l I

DHFR

||

Identity )

i

BCL2 BAX

Cluster 0

" identity

" identity
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To delineate the diversity of CD8* T cells within
the TME, we selected cells with known markers CD3
and CD8A and identified seven clusters
(Supplementary Figure S3A, S3B). Clusters 4 and 5
were the major subsets in primary tumors, and cluster
4 was almost exclusively found in primary tumors.
Notably, we found only a few CD8* T cells in liver
metastasis. To further address the features of
subclusters, the expression of markers of T cell
subtypes were explored. We examined each cluster
for the expression of effector memory markers
(FCGR3A, CX3CR1, FGFBP2, GNLY), MAIT (mucosa-
associated lymphoid tissue) markers (CD127, CD161,
SLC4A10), cytotoxic genes (GZMA, GZMB, GZMK),
and exhausted marker DUSP4 (Supplementary Figure
S3C).3940 Cluster 4 appeared to be the “exhausted T
cells”, which was also supported by the result of
functional enrichment analysis that the activity of
immunoreactive pathways was lowest in cluster 4
(Supplementary Figure S3D). However, the absence of
classical inhibitory receptors such as PDCD1 and
CTLA4 suggested there exists another immuno-
suppressive mechanism (Supplementary Figure S3E).
Using  RNA velocity, a method inferring cell
dynamics,#! we observed a clear directional flow to
cluster 4 (Supplementary Figure S3F), further
suggesting these were the exhausted T cells. Low
expression of PRF1 as well as most of the cytotoxic
genes were found in cluster 4 (Supplementary Figure
S3G). Therefore, cluster 4 seemed closer to the
exhaustion state. A previous study reported that
expression of PD-1 or PD-L1 in the small intestine or
PNET was rare and low,*? therefore it is not surprising
that we did not find typical exhausted T cell (Tex) in
the present analysis.

Cancer-associated fibroblasts (CAF) are major
players in the progression of multiple solid tumors.*
Therefore, subclustering of fibroblasts was performed
and we identified a total of 14 clusters (Supplemen-
tary Figure S4A, S4B). Overall, the TME of primary
tumors contained more heterogeneous clusters of
fibroblasts than TME of liver metastasis. Previous
studies suggested there were three kinds of CAF in
TME of pancreatic cancer: the inflammatory CAFs
(iCAF), antigen-presenting CAFs (apCAF), and
myofibroblastic CAFs (myCAF).#4> We evaluated the
expression of markers for the three kinds of CAFs at
the single-cell level across each cluster
(Supplementary Figure S4C). Based on the differences
in the expression of these markers, we found that
eight clusters were associated with enrichment of
iCAF markers, and four clusters were associated with
enrichment of myCAF markers (Supplementary
Figure 54D, S4E). Among them, the cluster 5 was
classical iCAF, and the cluster 8 was classical myCAF,

and both were located exclusively in primary sites.
Moreover, cluster 6 was defined as apCAF due to its
high expression of apCAF markers, such as CD74,
CD200, and human leucocyte antigens (MHC class 11
chains [HLA-DRA, HLA-DRB1, and HLA-DPAI1];
Supplementary Figure S4F). We identified multiple
immune-related pathways enriched in the subset 6,
including  antigen-presentation  (Supplementary
Figure S4G). We found for the first time a presence of
the apCAF signature in pNETs. The presence of MHC
class II molecules suggests that this fibroblast subset
can interact with CD4* T cells, but the high expression
of CD200, a newly identified immune checkpoint
protein, suggests that this fibroblast subset plays a
different role compared to professional antigen-
presenting cells.

Cellular senescence plays a critical role in
tumorigenesis.# As shown in the bubble plot
displaying the expression of senescence-associated
secretory phenotype (SASP) genes (Supplementary
Figure S4H), clusters 5 and 7 were senescent
fibroblasts secreting more protumorigenic SASP
factors, such as IL6, CXCL12, MMPs, and VEGFs.
However, we noticed that CCL2—the dominant
chemokine gene for the migration of MDSC—was
higher in clusters 0 and 3, while another
proinflammatory cytokine CCL5 was uniquely
expressed in cluster 13. Clusters 4 and 10 were
specifically located in the liver metastasis. Unlike in
other fibroblast clusters of the primary tumor, low
levels of most traditional protumorigenic factors were
observed in subsets 4 and 10. However, high
expression of oncogenic factors including IGFBP2,
PGF, and TGFB2 was found specifically in subset 4,
suggesting a different functional role of fibroblasts in
liver metastasis compared to the primary tumor.
Collectively, these findings suggested the
development of functional diversity during the
multidirectional differentiation of fibroblasts.

Dynamic landscape of single-cell
transcriptome

It is not yet clear how tumor cells of pNETs
evolve from the initiation, progression, to metastasis.
To investigate the evolutionary process during pNETs
progression, we performed the trajectory analysis
using malignant cells. Figure 4A visualizes the
evolutionary trajectories by reconstituting all
malignant cells. The distribution of malignant cells
along the trajectory in each sample source (Figure 4B)
was shown. Consistent with the actual situation of
tumor sites, cells from primary sites were located
mostly at the start site, and cells from the liver
metastasis rarely appeared at the start site. In
particular, cells of subtype 6 were distributed at the
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extreme end site. Given the abnormal enrichment of
pathways involved in cell cycle, cell proliferation, and
differentiation in subtype 6, it is reasonable to

speculate that the subtype 6 is a population of highly
malignant cells produced in the late stage of tumor
evolution.
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(rows) ordered by pseudo-time (columns). Color key from blue to red indicates pseudo-time from initiation to end. Five patterns of gene expression along the pseudo-time are
displayed in the left panel. The top significantly enriched biological processes were summarized at the right of the corresponding gene cluster. *, P < 0.05; **, P < 0.01; **, P <
0.001. D, E. The genes of patterns 2 and 4 mentioned in (C) were further clustered hierarchically. The more detailed subpatterns of pattern 2 (D) and 4 (E) were obtained. Similar
to (C), the subpatterns, genes ordered by pseudo-time, and the top significantly enriched biological processes are shown. F-I. The relative expression of cell-cycle related genes
in each malignant subcluster along the pseudo-time are plotted. ). Representative IHC images of HIFI A protein expression in primary site and liver metastatic site are shown. K.
The dot-line plot shows the change in the number of HIF1A positive cells per high-power field (HPF) between paired primary and liver metastatic lesions. L. Correlation between
the number of HIF1A-positive cells per HPF and Ki-67 index in seven liver metastatic lesions was estimated by Spearman’s correlation analysis.

We next focused on the gene expression patterns
along the process of malignant cell evolution. We
studied the dynamics of malignant evolution by
generating a profile of gene expression changes across
the pseudo-time trajectory. The changes followed five
patterns (Figure 4C) (Supplementary Table S6). Genes
in patterns 1 and 2 were upregulated, and functional
annotation revealed that they were correlated with
metabolism (e.g.,, Oxidative  phosphorylation,
Glycolysis/Gluconeogenesis, Carbon metabolism,
Pyruvate metabolism, and Glutathione metabolism),
biosynthesis and degradation (e.g., Biosynthesis of
amino acids, Protein processing, and Lysosome), and
cell proliferation (e.g., Cell cycle and Oocyte meiosis),
suggesting both the level of metabolic
reprogramming and the ability of cell proliferation
increased with tumor progression. Further clustering
the expression patterns of genes in patterns 2 (Figure
4D) and 4 (Figure 4E) revealed more detailed dynamic
trends. Genes in subpatterns 1 and 2 showed a
sharply increased expression level at the late stage;
most of them were associated with cell cycle, cell
division, and mitosis, indicating the gain of rapidly
proliferative capability was a sudden late event along
cell evolution (Figure 4D). The single-cell level
expression of CDK1, CDNK3, CCNB1, and AURKA,
genes involved in the cell cycle and cell proliferation,
along the pseudo-time trajectory is displayed in
Figure 4F-41. We found a sharp increase of these genes
at the end-stage of the trajectory, especially in cluster
6 of malignant cells.

Most studies tried to explore key genes involved
in tumor progression through analyzing differentially
expressed genes, largely based on the hypothesis that
tumors exhibit different malignant biological
behavior through differential gene expression.#’
Interestingly, we witnessed that some genes stayed at
similar expression levels at early and late stages, but
displayed significantly altered expression at the
intermediate stage. Functional analysis demonstrated
that genes of pattern 4, those that displayed
upregulation in cells at the intermediate stage, were
associated with blood component-related pathways,
such as platelet degranulation, cellular response to
erythropoietin, response to triglyceride, platelet
activation, and blood coagulation. Further detailed
analysis showed that the genes in the subpattern 4 of
pattern 4 were associated with proteoglycans, which
is a component of cell membrane or extracellular

matrix that participates in cell migration and invasion.
These results suggest that cells in the intermediate
stage are of peri-metastasis status. Notably, the genes
in subpattern 3 of pattern 4 represented the most
typical pattern of high-expression at the
intermediate-stage. These genes were correlated with
the HIF-signaling pathway, indicating the HIF
pathway played a more important role in the
intermediate stage that in early or late stages. We
performed immunostaining for HIF-la in paired
primary tumor (n=5) and liver metastasis (n=7), and
found increased expression of HIF-la at the liver
metastasis (Figure 4], 4K). In addition, expression of
HIF-1a was associated with Ki-67 index (Spearman’s
correlation P = 0.003, Figure 4L), suggesting HIF-1a
was involved in the proliferation of tumor cells.

Evolutionary analysis for malignant cells

It is not known which tumors cells are ready and
responsible for metastasis in the primary site.
Therefore, we sought to identify characteristics of
primary tumor cells with metastatic potential. First,
we traced the lineage origins of metastatic cells by
analyzing the mitochondrial mutations. As shown in
Figure 5A, the phylogenetic tree of malignant cells
constructed based on mitochondrial mutations
identified a dozen lineages including both primary
and metastatic cells, suggesting a single metastatic
lesion contained multiple cells of origin. Each lineage
also contained multiple malignant subclusters,
indicating a seed cell has the differentiation potential
towards different biological characteristics. We
further performed RNA velocity analysis of
malignant subsets and observed that the cells of
cluster 0 distributed as the starting point in all
metastatic-specific clusters (clusters 1, 2, 4, 5; Figure
5B), supporting the multicell origin of liver metastasis,
as well as the multidirectional differentiation
potential of metastatic primary tumor cells.

The origins of cells in several dominant lineages
were analyzed, and the proportions of cell origins in
each lineage were normalized according to the total
number of malignant cells in the corresponding
tissues (Figure 5C). We selected three nodes, node276,
node297, and nodel99, in which the numbers of
tumor cells were significantly higher than in other
nodes, as the dominant clones with metastatic
potential and proliferative advantage in the liver
metastatic niche. Accordingly, the differentially
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expressed genes between the dominant clones and
others were estimated, and their intersection with
genes in subpatterns 4 and 5 (Figure 5D), which
represented the genes that continuously increase
during cell progress from primary site to metastasis,
was obtained. Overall, we identified five differentially
expressed protein-coding genes (IGFBP3, PCSK1,
CXCL16, SMOC1, and FGF14) (Supplementary Table

S7).
Identification of markers of relapse risk

To test whether these five genes can be used as
prognostic markers in patients with pNETs, the RNA
expression levels were evaluated in a total of 46 pNET
patients (Supplementary Table S8). Among the above
five genes, survival curves showed that both PCSK1
and SMOCI expression levels have much closer
relationship with the recurrence, the expression of
PCSK1 and SMOC1 was significantly correlated with
prognosis (Supplementary Figure S5A-E). The

A

single-cell expression levels of PCSK1 and SMOCI
along cell progression are shown in Figure 6A.
Further, the protein expression levels of PCSK1 and
SMOC1 were detected by immunostaining — divided
into positive or negative expression. Representative
images of double-negative, single-positive, and
double-positive immunohistochemical staining are
shown in Figure 6B-D, respectively. Survival curves
showed that both PCSK1 and SMOCI protein
expression levels were significantly correlated with
the recurrence (Figure 6E, 6F), and double-positive
PCSK1/SMOC1 protein expression was the more
unfavorable prognostic factor (Figure 6G) than a
single marker, tumor size (Figure 6H), and tumor
grade (Figure 6I). These findings suggest that
double-positive expression of PCSK1 and SMOC1
may identify high-risk patients with postoperative
recurrence.
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Figure 5. A. Branches of the mitochondrial phylogenetic tree of malignant cells. Cell numbers in each branch, as well as the clusters information are shown. B. RNA velocities
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primary tumor 2 (T2), liver metastasis (H5)] was used as reference for normalizing the cell proportion of corresponding sites in each branch. Blue bar, primary tumor 1 (T1);
orange bar, primary tumor 2 (T2); gray bar, liver metastasis (H5). D. Venn plot showing the intersection of genes steady increase during tumor progression and genes significantly
dysregulated in dominant clones.
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Discussion

PNETs have been increasingly diagnosed and
resected during recent decades.*® However, the high
heterogeneity of pNETs leads to various biological
behaviors and clinical outcomes, which poses
tremendous challenges for the clinical management of
PNETs after surgical resection. Thus, it is highly
desirable to explore the intra- and intertumoral
heterogeneity and underlying mechanisms, to better
improve the prognosis of pNETs. Compared with the
highly aggressive G3 tumors, more treatment
modalities are used in G1/G2 pNETs. These
well-differentiated G1/G2 tumors are associated with
relatively indolent physiological behavior. For this
reason, only a few studies have investigated the
factors associated with recurrence in this group of
patients. Although there were traditional pathological
indices such as tumor size, Ki-67, mitotic count, and
lymphatic metastasis, the actual predictors of survival
and recurrence after Pan-NEN resection are still
controversial, and there is a lack of molecular markers
to guide therapeutic selection. By using the
scRNA-seq technique, we demonstrated that tumor
progression leads to a series of dramatic cellular
changes in both composition and functional state.
Specifically, we analyzed the dynamic changes in
gene profiles of malignant cells from primary state to

metastasis, and further developed a two-gene
prognostic signature.
Malignant cells identified by CNV-based

analysis were divided into several subclusters with
functional heterogeneity by comparing gene
expression levels. Differences in the composition of
malignant subclusters were observed among tumors
from different origins. Our pseudo-temporal ordering
analyses revealed the hypoxia-related mechanism and
metabolic reprogramming bridges the process of
tumor development from primary site to metastatic
lesion. Notably, a subcluster (the malignant subtype
6) with highly enhanced proliferative potential was
exclusively detected in the liver metastasis,
suggesting it may emerge along tumor progression.
Pseudo-time analysis also revealed that this cluster
was a group of highly differentiated malignant cells
appearing at the terminal stage of the tumor
evolutionary ~ process.  Interestingly,  several
drug-resistance genes were specifically expressed in
this cluster. Since the samples were from a
treatment-naive case, it is reasonable to infer that
PNETs can acquire drug-resistance without drug
selective pressures. Thus, adequate evaluation of the
drug-resistance characteristics must be performed in
both primary and metastatic lesions. In contrast to the
subtype 6, the subtype 3 seemed a subpopulation

located at the initial phase of malignant evolution,
which was supported by enrichment of gene
signatures related with neuroendocrine cells and the
marker of neuro stem cells, both were the supposed
source of neuroendocrine neoplasms. Although the
subtype 3 was present almost exclusively in the
primary tumors, functional enrichment analysis
revealed this subtype may be the predominant
angiogenesis-promoting malignant subpopulation.
These present results advance our current
understanding of the tumor cell heterogeneity of
pNETs.

The immune microenvironment was quite
different between the primary and metastatic lesions.
Some subpopulations of immune cells were
location-specific. We discovered that gene expression
profiles for TME macrophages were heterogenous
and did not fully meet the classic M1/M2 phenotypes.
The M1/M2 macrophage polarization paradigm was
introduced by Charlie Mills in 2000.#° This concept is
an in vitro construction that is built on a stimulation
of macrophages with a defined set of cytokines. It was
challenged by emerging studies for its applicability in
the TMES5  Singlecell evidence in some
malignancies have revealed that macrophages in the
TME are not confined to a binary M1/M2
designation.5253 In macrophage biology of TME, a
better understanding of the all-encompassing
spectrum bridging the two extreme phenotypes was
required. Like macrophages, the classical “exhausted
T cells” were not defined in our analysis. Low
expression of classic immune checkpoint receptors
was observed, while several other inhibitory
checkpoints, such as CD44 and SIRPA, were elevated
in some subsets of CD8* T cells. Moreover, we found
very few T cells in the liver metastatic lesion,
suggesting the cytotoxic immune microenvironment
could be different between primary and metastatic
tumors. Although our findings were in accordance
with a report that expression of PD-1 or PD-L1 in
PNETs was rare, a limitation of our analysis is that the
cells were derived from one patient. Further studies to
define the comprehensive immune checkpoint
profiles of both primary and metastatic lesions are
warranted.

In PDAC, it is well known that the TME
comprises a heterogeneous population of CAFs with
different functions,® but the CAF populations in
PNETs remains unclear. Our present study revealed
that, like other stromal cells, fibroblasts also exhibited
a wide heterogeneity in terms of functional states and
distributions. A previous study suggested two
subtypes of CAFs in PDAC: CAFs expressing high
levels of a-SMA, which we named myCAFs, and
CAFs expressing low levels of a-SMA, but high levels
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of cytokines and chemokines, which we named
iCAFs# A recent single-cell analysis of PDAC
corroborated the presence of myCAFs and iCAFs and
defined their unique gene signatures in vivo.%>
According to the signatures proposed in this study,
we identified two subclusters in which the expression
of signature genes aligns with the classic iCAFs and
myCAFs. However, most subclusters did not fully
align with the signatures. Interestingly, in two subsets
specific to liver metastasis, subsets 4 and 10, we
observed that subset 4 had higher levels of a-SMA and
cytokines compared to subset 10, which was opposite
to the iCAF/myCAFs definition. We discovered that
fibroblasts of pNETs had gene expression profiles of
other markers, especially the genes encoding
functional cytokines, and were different from that in
the PDAC, suggesting there are differences in the
subpopulations and functional roles between
fibroblasts in pNETs and in PDAC. Additionally, we
identified a subpopulation of fibroblasts expressing
specific markers of apCAF. The presence of human
leukocyte antigen on this subpopulation suggests a
potential interaction with T cells;5 however, since this
subpopulation had the highest expression of immune
checkpoint inhibitors among all subpopulations of
fibroblasts, it seems that this apCAF subpopulation
might preferentially cause immunosuppression, but
not immune activation.

Using scRNA-seq, we described the evolutionary
trajectory of malignant cells at the single-cell level.
Several key molecular events in the process of tumor
progression from primary to metastatic lesions were
identified. For example, we found the metabolic
reprogramming developed at the “mid-late” stage,
this also supports the concept that tumor metabolism
is dynamic and adaptable to the TME. Meanwhile, the
extensive proliferation capacity was suddenly
acquired along tumor evolution, which happened in
the liver metastasis. Previous studies support that
primary and metastatic pNET lesions can exhibit
pathological heterogeneity, and our study provided
further understanding regarding the molecular
biological features. We further traced the specification
trajectories of malignant cells wusing both
transcriptomic and mitochondrial information, which
resulted in the identification of dominant clones with
metastatic potential. Subsequently, we established a
two-gene signature reflecting the components of
dominant metastatic clones following the
evolutionary process from primary tumor to
metastatic lesion. Our validated the prognostic value
of this gene signature in pNET patients and found
that it could effectively predict recurrence and
survival in patients with pNETs. This is the first
prognostic molecular marker for pNETs based on

evolution analysis using single-cell data. The sample
size of survival analysis in the present study limits the
clinical significance of the two-gene gene signature,
but this work provided a new idea for further
identification of novel biomarkers. Future studies
with larger sample sizes are also needed to validate
the prognostic value of this two-gene signature.
Because of the low incidence rate and indolent
behavior, there are relatively few studies on pNETs. A
particular strength of our study was the availability of
both primary and metastatic lesions, but there were
still some limitations. First, although we acquired
high quality single-cell data of more than
twenty-thousand cells, they were from a single
patient. In terms of the prognostic gene signature
presented in this study, we consider that the
advantages offered by an enlarged sample size and
validation have compensated for this limitation.
However, the composition of subpopulations of
multiple TME cells, as well as their role in pNETs, still
need to be investigated in more cases. Second, G3
neuroendocrine carcinomas are extremely rare and
highly aggressive.>-% Therefore, findings in this study
may not apply to all G3 cases. We also found that the
prognostic value of our gene signature was
diminished in G3 cases. Third, due to the technical
limitation of scRNA-seq, only transcriptome data was
obtained in the present study. Approaches such as
single-cell ~genome analysis and single-cell
ATAC-sequencing will further advance our
understanding of this disease. Overall, these
limitations highlight the need for further work to
optimize and expand scRNA-seq datasets for pNETs.
In sum, our findings contribute to a better
understanding of the spatial and temporal
heterogeneity of pNETs through describing the
single-cell level gene expression atlas of main cell
types in primary and metastatic lesions. Future work
further exploring how these findings may be used for
prognostic purposes will benefit patients with pNETS.
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