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Abstract 

Aims: Using Single-cell RNA sequencing (scRNA-seq), we explored the spatiotemporal heterogeneity of 
pancreatic neuroendocrine tumors (pNETs) and the underlying mechanism for malignant progression. 
Methods: scRNA-seq was conducted on three tumor tissues (two primary tissues from different sites, one 
liver metastatic lesion), one normal liver tissue, and peripheral blood mononuclear cells from one patient with 
a metastatic G2 pNET, followed by bioinformatics analysis and validation in a pNETs cohort. 
Results: The transcriptome data of 24.544 cells were obtained. We identified subpopulations of functional 
heterogeneity within malignant cells, immune cells, and fibroblasts. There were intra- and inter-heterogeneities 
of cell subpopulations for malignant cells, macrophages, T cells, and fibroblasts among all tumor sites. Cell 
trajectory analysis revealed several hallmarks of carcinogenesis, including the hypoxia pathway, metabolism 
reprogramming, and aggressive proliferation, which were activated at different stages of tumor progression. 
Evolutionary analysis based on mitochondrial mutations defined two dominant clones with metastatic 
capacity. Finally, we developed a gene signature (PCSK1 and SMOC1) defining the metastatic potential of the 
tumor and its prognostic value was validated in a cohort of thirty G1/G2 patients underwent surgical resection. 
Conclusions: Our scRNA-seq analysis revealed intra- and intertumor heterogeneities in cell populations, 
transcriptional states, and intercellular communications among primary and metastatic lesions of pNETs. The 
single-cell level characterization of the spatiotemporal dynamics of malignant cell progression provided new 
insights into the search for potential novel prognostic biomarkers of pNETs. 
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Introduction 
Pancreatic neuroendocrine tumors (pNETs) are a 

group of heterogeneous tumors accounting for 
approximately 12% of primary NETs in the digestive 

tract and 1-2% of all pancreatic tumors.1 Although 
functional pNETs make up a dozen distinct subtypes 
(insulinoma, gastrinoma, glucagonoma, etc.), the 

 
Ivyspring  

International Publisher 



Int. J. Biol. Sci. 2021, Vol. 17 
 

 
http://www.ijbs.com 

3761 

non-functional pNETs have a wide spectrum of 
behavior ranging from indolent to highly malignant. 
The main prognostic factor for pNETs is the World 
Health Organization histological grade, which 
classifies pNETs as a G1, G2, or G3 tumor, or a G3 
carcinoma based on the Ki-67 index, mitotic counts, 
and differentiation. Due to limited knowledge on the 
molecular mechanisms of pNET progression, 
treatment decisions are currently based on only the 
grade and stage of disease, and there are many 
unanswered controversies regarding optimal 
treatment modalities, particularly for G2 cases. 
Therefore, better understanding of the molecular 
mechanisms underlying pNET progression will 
inform clinical decision-making. 

Genomic and transcriptomic studies have 
described landscapes of genetic mutations and 
aberrant signaling pathways in pNETs,2-4 which have 
significantly improved our understanding of the 
molecular features of pNETs. However, mechanisms 
underlying the development and progression pNETs 
is still not well understood compared to that of 
pancreatic ductal adenocarcinoma—therefore effica-
cious therapeutic approaches for patients remain 
elusive. Several challenges may underlie this lack of 
knowledge. Although pNETs are essential 
malignances, they often exhibit indolent biological 
behavior characterized by prolonged survival, 
especially in patients with low-grade lesions.5 The low 
incidence rate and relative indolence are challenging 
to both clinical study and basic translational research. 
In addition, pNETs have high intra- and intertumor 
heterogeneity, not only across patients, but also in 
different lesions of a single patient and have a 
complex tumor microenvironment (TME).6 Although 
studies based on bulk-sequencing have facilitated 
understanding of the molecular nature of pNETs, it is 
challenging to explore a heterogenous disease based 
on bulk mRNA sequencing. 

Recently, single-cell RNA sequencing (scRNA- 
seq) has provided a powerful tool to characterize 
heterogenous cell types and has been applied to 
multiple cancer types.7,8 scRNA-seq of PDAC 
specimens revealed evolutionary mechanisms during 
malignant transformation of ductal epithelium and 
highlighted intratumoral heterogeneity in PDAC,9,10 
but an scRNA-seq study in pNETs is still lacking. 
Thus, in this study, we employed scRNA-seq to 
delineate the transcriptional features of cells from 
both the primary lesion and the liver metastasis in a 
patient with a metastatic G2 pNET. We identified 
cell-specific transcriptional features, which enabled us 
to study the spatiotemporal distribution and dynamic 
process of each cell population within the pNET, and 
thereby enhanced our understanding of the 

mechanisms of pNET progression, which may 
improve clinical treatment strategies. 

Materials and Methods 
Human sample collection 

A female patient with a sporadic G2 pNET was 
enrolled in this study. This patient had a clear history, 
where the pNET lesion originated at the pancreatic 
head, expanded to the pancreatic body, and 
metastasized to the liver. The patient received a 
pancreaticoduodenectomy and partial hepatectomy 
without any anticancer therapeutic prior to operation. 
A tumor tissue at the site of pancreatic head (T1), a 
tumor tissue at the distal site of pancreatic body (T2), 
and a pair of adjacent liver tissues (metastatic [H5] 
and normal [NH]) were obtained immediately after 
surgical removal of the specimens under the 
supervision of a pathologist. Fifteen ml of peripheral 
venous blood was collected on the same day of, but 
prior to, the operation. This study was approved by 
the Ethics Committee of Guangdong Provincial 
People's Hospital (IRB number KY2020-359-01). 

A Complete description of methods was 
attached in Supplementary Methods. 

Results 
Sample acquisition and cell lineage 
determination 

To explore the transcriptomic states of 
individual cells in both primary and metastatic lesions 
of pNETs, we isolated cells from the primary tumor, 
metastatic liver tumor, normal liver, and peripheral 
blood from a treatment-naïve patient with metastatic 
pNETs and performed scRNA-seq (Figure 1A). Data 
originating from 24,544 cells were retained for 
downstream bioinformatics analysis (Supplementary 
Table S1). Cell lineage determination was done using 
a PCA. We employed tSNE and UMAP to reduce the 
dimensionality of this data and allow the 
visualization of cell-type clusters defined by their 
transcriptional profiles. As a result, a total of nine 
main cell clusters were identified, including epithelia, 
endothelia, fibroblast, B cell, monocytic cell, 
macrophage, mast cell, NK cell, and T cell (Figure 1B, 
1C). We then generated cluster-specific marker genes 
by performing differential gene expression analysis, 
which identified mutually exclusive gene sets 
including established markers of particular cell types 
(Figure 1D, E). Pie charts indicated the percentage of 
each cellular components in each sample (Figure 1F). 
Notably, the cell composition from different sources 
showed variability, even in tumor tissues. 
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Figure 1. A. Scheme of the overall study design. Single-cell RNA sequencing was applied to cells derived from a total of four samples (PBMC 1, primary tumor 2, metastasis 1, 
and normal liver tissue 1), and the output data were used for bioinformatic analyses and verification in tissue. B. The tSNE projection of 24,544 cells from 4 samples, showing the 
formation of 10 main clusters. Each dot corresponds to one single cell, colored according to cell cluster. C. Cell number and percentage of assigned cell types are summarized. 
D. Dot plot demonstrates the normalized mean expression of specific markers in each cell cluster. E. Expression levels of the indicated marker genes are projected onto the tSNE 
map. F. Pie charts represent the proportions of cell types in each sample source. pct.exp, percentage of cells with expression; avg.exp, average expression level. 
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Characterizing the heterogeneity in malignant 
cells 

To investigate the heterogeneity in malignant 
cells, we first calculated large-scale chromosomal 
copy number variation (CNV) in each cell in order to 
define malignant cells (Figure 2A) (Supplementary 
Table S2). A total of 3,746 malignant cells were 
retained. To reveal the functional subtypes, the 
malignant cells were subclustered by PCA and 
visualized by UMAP projection. A total of 7 stable 
clusters emerged (Figure 2B, 2C), named from 
subtype 0 to subtype 6. Sub-cluster–specific markers 
for each subtype were shown in the heatmap (Figure 
2D). We also identified multiple markers to 
distinguish different malignant subtypes (Figure 2E). 
Significant heterogeneity in the composition of the 7 
subtypes was found between the primary and 
metastatic tumor. The primary tumors comprised 
predominantly two subtypes, 0 and 3. Subtype 3 
seemed to be a malignant population that was 
dominant in primary sites. Compared with primary 
lesions, a higher diversity was found in the metastatic 
tumor, which contained all subtypes except subtype 3. 

The finding that each subtype expresses a 
specific gene set that can be used for distinguishing 
these subgroups indicated there were different 
biological characteristics in different subtypes of 
malignant cells. To characterize the relative activation 
of primary cellular functions, we performed QuSAGE 
analysis to determine the enrichment level of 
well-known gene sets for each subtype and found that 
each subtype had unique functions (Figure 3A, 3B) 
(Supplementary Table S3). Notably, the significantly 
enriched cellular functions in subtype 6 were related 
to biosynthesis, mitosis, cell cycle, and cell 
proliferation, which was further supported by the 
enriched expression of CDK and CDKN1 family genes. 
In addition, enrichment of gene sets related with 
angiogenesis and stemness were observed exclusively 
in subtype 3. Subtype 4 was enriched for 
immune-checkpoint inhibition. In contrast, genes in 
subtype 1 were enriched for immune-checkpoint 
activation, suggesting a possible association with 
immune response in these two subtypes. 
Additionally, enriched gene sets specific for subtypes 
2 and 5 were mainly related to GABA signaling and 
cell–cell communications via hormones. 

To reveal the driving mechanisms for the 
functional divergence in each subtype, we performed 
SCENIC (Single cell regulatory network inference and 
clustering) analysis to delineate transcriptional 
dynamics of the malignant cells and to reveal 
potential transcription factors underlying the 
regulation across subtypes at single-cell level 
(Supplementary Table S4). Hierarchical clustering of 

the activity of transcriptional factors by SCENIC 
across the 7 subtypes is shown in a heatmap (Figure 
3C). In particular, subtype 6 showed significantly 
increased expression of three E2F family members 
(E2F1, E2F2, and E2F3), EZH2, and SP3, which all 
were well-known oncogenes participating in cell 
proliferation, differentiation, and invasion (Figure 3D, 
3E).11-14 On the other side, although curative resection 
is the primary treatment choice for pNETs, 
antineoplastic agents are essential for the treatment of 
most pNETs. Therefore, we analyzed the expression 
of genes involved in drug resistance and drug 
metabolism (Figure 3F-3I). As shown in the heatmaps, 
the expression of DHFR, BAX, and TOP2A in subtype 
6 were significantly different from the other subtypes. 
Violin plots show the exclusive expression of DHFR, 
BCL2, and TOP2A in subtype 6, as well as significantly 
increased BAX expression. DHFR, TOP2A, and BCL2 
were unfavorable biomarkers that predict 
chemoresistance to temozolomide,15-17 an alkylating 
agent, used as a chemotherapy agent in patients with 
pNETs.18,19 Additionally, inhibition of BCL2 seemed a 
way to enhance the response to everolimus,20 a mTOR 
inhibitor showed effect in pNETs. Interestingly, Bax 
expression was correlated with sensitivity to 
capecitabine,21 an agent used as a monotherapy or 
usually combined with other chemotherapy agents.22 
These findings showed the acquisition of 
heterogeneity and diversity in drug-resistance/ 
sensitivity during the evolution of pNETs, and 
subtype 6 was a malignant subpopulation with high 
proliferation activity and drug-resistant ability. 

Compared with other subtypes, the subtype 3 
seemed a malignant population that was dominant in 
primary sites. In the above QuSAGE functional 
annotation analysis, we have observed the gene sets 
related with angiogenesis and stemness, two 
important hallmarks in carcinogenesis, were enriched 
in subtype 3. To better understand the heterogeneity 
of pNETs, we further investigated the characteristics 
of subtype 3. Additional QuSAGE analysis was 
performed by using a customized gene set including 
immune-, cytokine- and neurobiology-related terms.23 
As shown in Supplementary Figure S1A, the gene 
signature of “neuroendocrine” was specifically 
enriched in subtype 3. Neuroendocrine tumors 
(NETs) are malignant growths originating from 
neuroendocrine cells, therefore, the enrichment of 
neuroendocrine gene signature suggested that the 
subtype 3 displayed more genes characteristic of the 
cell of origin in comparison with other subtypes. The 
trajectory analysis using all malignant cells further 
revealed that the subtype 3 was a subpopulation at 
the initial phase of malignant evolution 
(Supplementary Figure S1B).  
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Figure 2. A. Quadrant plots showing the selection of malignant cells were displayed in the upper panels. The y-axis represents the CNV signal and the x-axis represents the CNV 
correlation. Each dot represents a single cell. The cell population in the upper right quadrant was defined as the putative malignant cell population (CNV signal above 0.05 and 
CNV correlation above 0.5). Heatmaps of large-scale CNV events in individual cells for each sample are shown in the lower panels, in which the y-axis represents each cell, and 
the x-axis is the genomic position of CNV events. Red: amplifications; blue: deletions. B. UMAP representation of malignant cells following graph-based clustering colored in seven 
subclusters. The inset in the black box is a UMAP picture colored by the source of cells. C. Cell numbers of each subcluster are summarized. D. Heatmap showing expression 
levels of specific markers in each cell type. E. Expression levels of the indicated marker genes projected onto UMAP plots. 
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Gene set enrichment analysis (GSEA) also 
showed significant enrichment of genes related to 
neuroendocrine cell differentiation in subtype 3 
(Supplementary Figure S1C), but the difference in the 
enrichment of signature genes related with 
neuroendocrine neoplasm was not significant 
between subtype 3 and other malignant subtypes, 
which further supported that, among all malignant 
cells, the subtype 3 was an initial subpopulation with 
most features of the neuroendocrine cells from which 
they are derived. In terms of transcriptional 
regulation, the SCENIC analysis on all malignant 
subtypes showed specific enhanced activity of TCF4 
(transcription factor 4) in the subtype 3 
(Supplementary Figure S1D). It is well known that 
TCF4 is a gene which was found to be abundantly 
expressed during neural development,24 and TCF4 
was also involved in neuroendocrine differentiation 
of tumor cells,25 which was consistent with the above 
findings about the prominent feature of 
neuroendocrine in subtype 3. Additionally, TCF4 has 
been found to be associated with tumorigenesis in a 
variety of tumors and was a potential molecular target 
against kinds of cancer,26-29 suggesting that TCF4 may 
be an intervention target for the subgroup 3. 

The other two functional characters of angioge-
nesis and stemness revealed by functional annotation 
analysis in subtype 3 were subsequently investigated. 
As mentioned in the supplementary method, a 
systematic search of electronic databases for the 
cancer stem cell markers of neuroendocrine tumors 
was performed, a total of fifteen markers were found 
to have been reported previously (Supplementary 
Table S5), in which we found four markers were 
reported in more than one study, including ALDH1, 
CD133, CD44, and SOX9. Consequently, expression 
levels of the classical neural stem cell marker Nestin 
(NES),30 as well as the above four markers were 
evaluated across all malignant subtypes. As shown in 
Supplementary Figure S1E, NES was expressed in 
both two subtypes of primary tumor where subtype 3 
predominate, which could be explained, at least in 
part, that subtype 0 and subtype 3 were two 
subpopulations located at the early phage of tumor 
evolution and they may share some gene features 
with the neural stem cell which they may be derived 
from. In addition, the expression of ALDH1, CD133, 
CD44 and SOX9 was heterogeneous among the seven 
subtypes. Co-expression of ALDH1 and CD133 was 
found in the subtype 3, but the expression of CD44 
and SOX9 was low in subtype 3. None of the subtypes 
showed uniformly high expression of all cancer stem 
cell markers, revealing probable heterogeneity in the 
expression of cancer stem cell markers at single-cell 
level. Moreover, GSEA showed significant enrichment 

of angiogenesis-related gene sets in cluster 3 in 
comparison with other malignant subtypes 
(Supplementary Figure S1F); additionally, as shown 
in the dot plot of Supplementary Figure S1G, subtype 
3 showed increased expression of angiogenic TGFB1, 
VEGFA, and VEGFC than other subtypes. Therefore, 
the cells of subtype 3 may play a significant role in 
angiogenesis through releasing angiogenic factors. 

Intra- and intertumoral heterogeneities of 
immune cells and fibroblasts 

We performed the subclustering of myeloid cells 
to help understand the relationships between 
subpopulations and their functions, and we detected 
11 subsets Supplementary Figure S2A, B). Monocytes, 
macrophages, and dendritic cells were defined by 
well-known markers (Supplementary Figure S2C), 
and we found 5 subsets of macrophages (Supplemen-
tary Figure S2A-C). The macrophage-1 subset was 
located predominantly in primary tumors, while 
macrophage-2 and macrophage-5 subsets existed 
exclusively in liver metastasis. Different expression of 
markers for macrophage subtypes, including M1, 
M2a, M2b, M2c, and TAM,31 are displayed in a dot plot 
(Supplementary Figure S2D). The expression of 
M1/M2 signatures in the five macrophage subsets we 
observed did not fall in line with either the canonical 
M1 or M2 classifications. Clusters also showed 
differential enrichment of hallmark gene-set activity, 
confirming their distinct transcriptional programs 
(Supplementary Figure S2E, S2F), in which we found 
the macrophage-1 showed abnormal activation of 
most M2 macrophage–related pathways. Specifically, 
macrophage-1 was the subset closest to M2 
phenotype, but this subset still expressed some 
signature genes of the M1 phenotype. In contrast, the 
liver metastasis–specific macrophage-2 showed more 
M1 characteristics. Since macrophages mainly affect 
tumor cells by paracrine chemokines and cytokines, 
we further analyzed the expression of cytokines and 
chemokines across both macrophage-1 and 
macrophage-2 subsets (Supplementary Figure S2G). 
We found that CCL2, the dominant chemokine for the 
migration of tumor-promoting MDSC and regulatory 
T cells,32 was expressed in macrophage-1 and 
macrophage-2 subsets. Additionally, CCL3 and CCL4 
were also expressed mainly in macrophage-1 and 
macrophage-2 subsets at similar levels. Both CCL3 
and CCL4 are double-edged chemokines that exert 
antitumor and protumor behaviors, which depended 
on the microenvironment.33,34 However, CCL13, a 
chemokine that is a chemoattractant for eosinophils, 
basophils, monocytes, macrophages, immature 
dendritic cells, and T cells,35 was exclusively expres-
sed in the macrophage-1 subset (Supplementary 
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Figure S2G, S2H). In addition, SPP1, of which the 
product is related to a fibroblastic microenvironment 
and supports monocyte/macrophage prolifera-
tion,36-38 was specifically expressed in macrophage-2 

and macrophage-5 subsets but was not found in 
primary tumor subsets (Supplementary Figure S2G, 
S2H). 

 

 
Figure 3. A, B. QuSAGE Gene Enrichment Analysis revealed enriched biological processes (A) and KEGG pathways (B) for specific genes of each malignant subcluster. C. 
Heatmap of SCENIC analysis, showing the relative activity of transcription factors in each malignant subcluster at single-cell level. The blue box highlights the prominent 
transcription factors with high activity specific to subcluster 6. D. Violin plots displaying the expression of E2F3, E2F1, and E2F7 across the seven malignant subclusters. E. Violin 
plots displaying the expression of EZH2 and SP3 across the seven malignant subclusters. F. Heatmap showing the expression levels of drug-metabolism genes in each malignant 
subcluster. G. A violin plot showing the expression of DHFR in each malignant subcluster. H. Heatmap showing the expression levels of drug-resistance genes in each malignant 
subclusters. I. Violin plots showing the expression of TOP2A, BCL2, and BAX in each malignant subcluster. 
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To delineate the diversity of CD8+ T cells within 
the TME, we selected cells with known markers CD3 
and CD8A and identified seven clusters 
(Supplementary Figure S3A, S3B). Clusters 4 and 5 
were the major subsets in primary tumors, and cluster 
4 was almost exclusively found in primary tumors. 
Notably, we found only a few CD8+ T cells in liver 
metastasis. To further address the features of 
subclusters, the expression of markers of T cell 
subtypes were explored. We examined each cluster 
for the expression of effector memory markers 
(FCGR3A, CX3CR1, FGFBP2, GNLY), MAIT (mucosa- 
associated lymphoid tissue) markers (CD127, CD161, 
SLC4A10), cytotoxic genes (GZMA, GZMB, GZMK), 
and exhausted marker DUSP4 (Supplementary Figure 
S3C).39,40 Cluster 4 appeared to be the “exhausted T 
cells”, which was also supported by the result of 
functional enrichment analysis that the activity of 
immunoreactive pathways was lowest in cluster 4 
(Supplementary Figure S3D). However, the absence of 
classical inhibitory receptors such as PDCD1 and 
CTLA4 suggested there exists another immuno-
suppressive mechanism (Supplementary Figure S3E). 
Using RNA velocity, a method inferring cell 
dynamics,41 we observed a clear directional flow to 
cluster 4 (Supplementary Figure S3F), further 
suggesting these were the exhausted T cells. Low 
expression of PRF1 as well as most of the cytotoxic 
genes were found in cluster 4 (Supplementary Figure 
S3G). Therefore, cluster 4 seemed closer to the 
exhaustion state. A previous study reported that 
expression of PD-1 or PD-L1 in the small intestine or 
pNET was rare and low,42 therefore it is not surprising 
that we did not find typical exhausted T cell (Tex) in 
the present analysis. 

Cancer-associated fibroblasts (CAF) are major 
players in the progression of multiple solid tumors.43 
Therefore, subclustering of fibroblasts was performed 
and we identified a total of 14 clusters (Supplemen-
tary Figure S4A, S4B). Overall, the TME of primary 
tumors contained more heterogeneous clusters of 
fibroblasts than TME of liver metastasis. Previous 
studies suggested there were three kinds of CAF in 
TME of pancreatic cancer: the inflammatory CAFs 
(iCAF), antigen-presenting CAFs (apCAF), and 
myofibroblastic CAFs (myCAF).44,45 We evaluated the 
expression of markers for the three kinds of CAFs at 
the single-cell level across each cluster 
(Supplementary Figure S4C). Based on the differences 
in the expression of these markers, we found that 
eight clusters were associated with enrichment of 
iCAF markers, and four clusters were associated with 
enrichment of myCAF markers (Supplementary 
Figure S4D, S4E). Among them, the cluster 5 was 
classical iCAF, and the cluster 8 was classical myCAF, 

and both were located exclusively in primary sites. 
Moreover, cluster 6 was defined as apCAF due to its 
high expression of apCAF markers, such as CD74, 
CD200, and human leucocyte antigens (MHC class II 
chains [HLA-DRA, HLA-DRB1, and HLA-DPA1]; 
Supplementary Figure S4F). We identified multiple 
immune-related pathways enriched in the subset 6, 
including antigen-presentation (Supplementary 
Figure S4G). We found for the first time a presence of 
the apCAF signature in pNETs. The presence of MHC 
class II molecules suggests that this fibroblast subset 
can interact with CD4+ T cells, but the high expression 
of CD200, a newly identified immune checkpoint 
protein, suggests that this fibroblast subset plays a 
different role compared to professional antigen- 
presenting cells. 

Cellular senescence plays a critical role in 
tumorigenesis.46 As shown in the bubble plot 
displaying the expression of senescence-associated 
secretory phenotype (SASP) genes (Supplementary 
Figure S4H), clusters 5 and 7 were senescent 
fibroblasts secreting more protumorigenic SASP 
factors, such as IL6, CXCL12, MMPs, and VEGFs. 
However, we noticed that CCL2—the dominant 
chemokine gene for the migration of MDSC—was 
higher in clusters 0 and 3, while another 
proinflammatory cytokine CCL5 was uniquely 
expressed in cluster 13. Clusters 4 and 10 were 
specifically located in the liver metastasis. Unlike in 
other fibroblast clusters of the primary tumor, low 
levels of most traditional protumorigenic factors were 
observed in subsets 4 and 10. However, high 
expression of oncogenic factors including IGFBP2, 
PGF, and TGFB2 was found specifically in subset 4, 
suggesting a different functional role of fibroblasts in 
liver metastasis compared to the primary tumor. 
Collectively, these findings suggested the 
development of functional diversity during the 
multidirectional differentiation of fibroblasts.  

Dynamic landscape of single-cell 
transcriptome 

It is not yet clear how tumor cells of pNETs 
evolve from the initiation, progression, to metastasis. 
To investigate the evolutionary process during pNETs 
progression, we performed the trajectory analysis 
using malignant cells. Figure 4A visualizes the 
evolutionary trajectories by reconstituting all 
malignant cells. The distribution of malignant cells 
along the trajectory in each sample source (Figure 4B) 
was shown. Consistent with the actual situation of 
tumor sites, cells from primary sites were located 
mostly at the start site, and cells from the liver 
metastasis rarely appeared at the start site. In 
particular, cells of subtype 6 were distributed at the 
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extreme end site. Given the abnormal enrichment of 
pathways involved in cell cycle, cell proliferation, and 
differentiation in subtype 6, it is reasonable to 

speculate that the subtype 6 is a population of highly 
malignant cells produced in the late stage of tumor 
evolution. 

 

 
Figure 4. A. Prediction of malignant developmental trajectory with subcluster and pseudo-time information mapped on, and each point corresponds to a single cell. B. Malignant 
developmental trajectories of single malignant cells for each tumor sample. Subcluster information is also shown. C. Heatmap showing expression of differentially expressed genes 
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(rows) ordered by pseudo-time (columns). Color key from blue to red indicates pseudo-time from initiation to end. Five patterns of gene expression along the pseudo-time are 
displayed in the left panel. The top significantly enriched biological processes were summarized at the right of the corresponding gene cluster. *, P < 0.05; **, P < 0.01; ***, P < 
0.001. D, E. The genes of patterns 2 and 4 mentioned in (C) were further clustered hierarchically. The more detailed subpatterns of pattern 2 (D) and 4 (E) were obtained. Similar 
to (C), the subpatterns, genes ordered by pseudo-time, and the top significantly enriched biological processes are shown. F-I. The relative expression of cell-cycle related genes 
in each malignant subcluster along the pseudo-time are plotted. J. Representative IHC images of HIF1A protein expression in primary site and liver metastatic site are shown. K. 
The dot-line plot shows the change in the number of HIF1A positive cells per high-power field (HPF) between paired primary and liver metastatic lesions. L. Correlation between 
the number of HIF1A-positive cells per HPF and Ki-67 index in seven liver metastatic lesions was estimated by Spearman’s correlation analysis. 

 
We next focused on the gene expression patterns 

along the process of malignant cell evolution. We 
studied the dynamics of malignant evolution by 
generating a profile of gene expression changes across 
the pseudo-time trajectory. The changes followed five 
patterns (Figure 4C) (Supplementary Table S6). Genes 
in patterns 1 and 2 were upregulated, and functional 
annotation revealed that they were correlated with 
metabolism (e.g., Oxidative phosphorylation, 
Glycolysis/Gluconeogenesis, Carbon metabolism, 
Pyruvate metabolism, and Glutathione metabolism), 
biosynthesis and degradation (e.g., Biosynthesis of 
amino acids, Protein processing, and Lysosome), and 
cell proliferation (e.g., Cell cycle and Oocyte meiosis), 
suggesting both the level of metabolic 
reprogramming and the ability of cell proliferation 
increased with tumor progression. Further clustering 
the expression patterns of genes in patterns 2 (Figure 
4D) and 4 (Figure 4E) revealed more detailed dynamic 
trends. Genes in subpatterns 1 and 2 showed a 
sharply increased expression level at the late stage; 
most of them were associated with cell cycle, cell 
division, and mitosis, indicating the gain of rapidly 
proliferative capability was a sudden late event along 
cell evolution (Figure 4D). The single-cell level 
expression of CDK1, CDNK3, CCNB1, and AURKA, 
genes involved in the cell cycle and cell proliferation, 
along the pseudo-time trajectory is displayed in 
Figure 4F-4I. We found a sharp increase of these genes 
at the end-stage of the trajectory, especially in cluster 
6 of malignant cells. 

Most studies tried to explore key genes involved 
in tumor progression through analyzing differentially 
expressed genes, largely based on the hypothesis that 
tumors exhibit different malignant biological 
behavior through differential gene expression.47 
Interestingly, we witnessed that some genes stayed at 
similar expression levels at early and late stages, but 
displayed significantly altered expression at the 
intermediate stage. Functional analysis demonstrated 
that genes of pattern 4, those that displayed 
upregulation in cells at the intermediate stage, were 
associated with blood component–related pathways, 
such as platelet degranulation, cellular response to 
erythropoietin, response to triglyceride, platelet 
activation, and blood coagulation. Further detailed 
analysis showed that the genes in the subpattern 4 of 
pattern 4 were associated with proteoglycans, which 
is a component of cell membrane or extracellular 

matrix that participates in cell migration and invasion. 
These results suggest that cells in the intermediate 
stage are of peri-metastasis status. Notably, the genes 
in subpattern 3 of pattern 4 represented the most 
typical pattern of high-expression at the 
intermediate-stage. These genes were correlated with 
the HIF-signaling pathway, indicating the HIF 
pathway played a more important role in the 
intermediate stage that in early or late stages. We 
performed immunostaining for HIF-1α in paired 
primary tumor (n=5) and liver metastasis (n=7), and 
found increased expression of HIF-1α at the liver 
metastasis (Figure 4J, 4K). In addition, expression of 
HIF-1α was associated with Ki-67 index (Spearman’s 
correlation P = 0.003, Figure 4L), suggesting HIF-1α 
was involved in the proliferation of tumor cells. 

Evolutionary analysis for malignant cells 
It is not known which tumors cells are ready and 

responsible for metastasis in the primary site. 
Therefore, we sought to identify characteristics of 
primary tumor cells with metastatic potential. First, 
we traced the lineage origins of metastatic cells by 
analyzing the mitochondrial mutations. As shown in 
Figure 5A, the phylogenetic tree of malignant cells 
constructed based on mitochondrial mutations 
identified a dozen lineages including both primary 
and metastatic cells, suggesting a single metastatic 
lesion contained multiple cells of origin. Each lineage 
also contained multiple malignant subclusters, 
indicating a seed cell has the differentiation potential 
towards different biological characteristics. We 
further performed RNA velocity analysis of 
malignant subsets and observed that the cells of 
cluster 0 distributed as the starting point in all 
metastatic-specific clusters (clusters 1, 2, 4, 5; Figure 
5B), supporting the multicell origin of liver metastasis, 
as well as the multidirectional differentiation 
potential of metastatic primary tumor cells. 

The origins of cells in several dominant lineages 
were analyzed, and the proportions of cell origins in 
each lineage were normalized according to the total 
number of malignant cells in the corresponding 
tissues (Figure 5C). We selected three nodes, node276, 
node297, and node199, in which the numbers of 
tumor cells were significantly higher than in other 
nodes, as the dominant clones with metastatic 
potential and proliferative advantage in the liver 
metastatic niche. Accordingly, the differentially 
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expressed genes between the dominant clones and 
others were estimated, and their intersection with 
genes in subpatterns 4 and 5 (Figure 5D), which 
represented the genes that continuously increase 
during cell progress from primary site to metastasis, 
was obtained. Overall, we identified five differentially 
expressed protein-coding genes (IGFBP3, PCSK1, 
CXCL16, SMOC1, and FGF14) (Supplementary Table 
S7). 

Identification of markers of relapse risk 
To test whether these five genes can be used as 

prognostic markers in patients with pNETs, the RNA 
expression levels were evaluated in a total of 46 pNET 
patients (Supplementary Table S8). Among the above 
five genes, survival curves showed that both PCSK1 
and SMOC1 expression levels have much closer 
relationship with the recurrence, the expression of 
PCSK1 and SMOC1 was significantly correlated with 
prognosis (Supplementary Figure S5A-E). The 

single-cell expression levels of PCSK1 and SMOC1 
along cell progression are shown in Figure 6A. 
Further, the protein expression levels of PCSK1 and 
SMOC1 were detected by immunostaining—divided 
into positive or negative expression. Representative 
images of double-negative, single-positive, and 
double-positive immunohistochemical staining are 
shown in Figure 6B-D, respectively. Survival curves 
showed that both PCSK1 and SMOC1 protein 
expression levels were significantly correlated with 
the recurrence (Figure 6E, 6F), and double-positive 
PCSK1/SMOC1 protein expression was the more 
unfavorable prognostic factor (Figure 6G) than a 
single marker, tumor size (Figure 6H), and tumor 
grade (Figure 6I). These findings suggest that 
double-positive expression of PCSK1 and SMOC1 
may identify high-risk patients with postoperative 
recurrence. 

 

 
Figure 5. A. Branches of the mitochondrial phylogenetic tree of malignant cells. Cell numbers in each branch, as well as the clusters information are shown. B. RNA velocities 
are visualized on the UMAP projection with clusters information of malignant cells. The inset plot (in the black box): CytoTRACE results were visualized on the UMAP projection, 
showing the predicted developmental order of cells; color key from blue to red indicates pseudo-time from initiation to end. Blue arrows highlighted the distributed cells of 
cluster 0. C. Components of cell source in main branches were estimated and summarized in the bar chart. Total number of malignant cells in each site [primary tumor 1 (T1), 
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primary tumor 2 (T2), liver metastasis (H5)] was used as reference for normalizing the cell proportion of corresponding sites in each branch. Blue bar, primary tumor 1 (T1); 
orange bar, primary tumor 2 (T2); gray bar, liver metastasis (H5). D. Venn plot showing the intersection of genes steady increase during tumor progression and genes significantly 
dysregulated in dominant clones.  

 
Figure 6. A. The relative expression of SMOC1 and PCSK1 in malignant cells along the pseudo-time are plotted. Each dot corresponds to one single cell, colored according to 
cluster of malignant cells. B-D. Immunohistochemical analysis for SMOC1 and PCSK1 was carried out using continuous paraffin sections. Representative results of 
double-negative (B), single-positive (C), and double-positive (D) are shown. E, F. Kaplan-Meier curves with log-rank tests for the disease-free survival of the 46 patients with low 
vs. high immunohistochemical protein expression of PCSK1 (E) and SMOC1 (F). G. The Kaplan-Meier curves with log-rank tests for the disease-free survival of the 46 patients 
with double positive for PCSK1 and SMOC1 vs. others. H, I. Patients were stratified by tumor size (H) or WHO grade (I), and the disease-free survival between groups was 
estimated by Kaplan-Meier curves with log-rank tests. 
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Discussion 
pNETs have been increasingly diagnosed and 

resected during recent decades.48 However, the high 
heterogeneity of pNETs leads to various biological 
behaviors and clinical outcomes, which poses 
tremendous challenges for the clinical management of 
pNETs after surgical resection. Thus, it is highly 
desirable to explore the intra- and intertumoral 
heterogeneity and underlying mechanisms, to better 
improve the prognosis of pNETs. Compared with the 
highly aggressive G3 tumors, more treatment 
modalities are used in G1/G2 pNETs. These 
well-differentiated G1/G2 tumors are associated with 
relatively indolent physiological behavior. For this 
reason, only a few studies have investigated the 
factors associated with recurrence in this group of 
patients. Although there were traditional pathological 
indices such as tumor size, Ki-67, mitotic count, and 
lymphatic metastasis, the actual predictors of survival 
and recurrence after Pan-NEN resection are still 
controversial, and there is a lack of molecular markers 
to guide therapeutic selection. By using the 
scRNA-seq technique, we demonstrated that tumor 
progression leads to a series of dramatic cellular 
changes in both composition and functional state. 
Specifically, we analyzed the dynamic changes in 
gene profiles of malignant cells from primary state to 
metastasis, and further developed a two-gene 
prognostic signature. 

Malignant cells identified by CNV-based 
analysis were divided into several subclusters with 
functional heterogeneity by comparing gene 
expression levels. Differences in the composition of 
malignant subclusters were observed among tumors 
from different origins. Our pseudo-temporal ordering 
analyses revealed the hypoxia-related mechanism and 
metabolic reprogramming bridges the process of 
tumor development from primary site to metastatic 
lesion. Notably, a subcluster (the malignant subtype 
6) with highly enhanced proliferative potential was 
exclusively detected in the liver metastasis, 
suggesting it may emerge along tumor progression. 
Pseudo-time analysis also revealed that this cluster 
was a group of highly differentiated malignant cells 
appearing at the terminal stage of the tumor 
evolutionary process. Interestingly, several 
drug-resistance genes were specifically expressed in 
this cluster. Since the samples were from a 
treatment-naïve case, it is reasonable to infer that 
pNETs can acquire drug-resistance without drug 
selective pressures. Thus, adequate evaluation of the 
drug-resistance characteristics must be performed in 
both primary and metastatic lesions. In contrast to the 
subtype 6, the subtype 3 seemed a subpopulation 

located at the initial phase of malignant evolution, 
which was supported by enrichment of gene 
signatures related with neuroendocrine cells and the 
marker of neuro stem cells, both were the supposed 
source of neuroendocrine neoplasms. Although the 
subtype 3 was present almost exclusively in the 
primary tumors, functional enrichment analysis 
revealed this subtype may be the predominant 
angiogenesis-promoting malignant subpopulation. 
These present results advance our current 
understanding of the tumor cell heterogeneity of 
pNETs. 

The immune microenvironment was quite 
different between the primary and metastatic lesions. 
Some subpopulations of immune cells were 
location-specific. We discovered that gene expression 
profiles for TME macrophages were heterogenous 
and did not fully meet the classic M1/M2 phenotypes. 
The M1/M2 macrophage polarization paradigm was 
introduced by Charlie Mills in 2000.49 This concept is 
an in vitro construction that is built on a stimulation 
of macrophages with a defined set of cytokines. It was 
challenged by emerging studies for its applicability in 
the TME.50,51 Single-cell evidence in some 
malignancies have revealed that macrophages in the 
TME are not confined to a binary M1/M2 
designation.52,53 In macrophage biology of TME, a 
better understanding of the all-encompassing 
spectrum bridging the two extreme phenotypes was 
required. Like macrophages, the classical “exhausted 
T cells” were not defined in our analysis. Low 
expression of classic immune checkpoint receptors 
was observed, while several other inhibitory 
checkpoints, such as CD44 and SIRPA, were elevated 
in some subsets of CD8+ T cells. Moreover, we found 
very few T cells in the liver metastatic lesion, 
suggesting the cytotoxic immune microenvironment 
could be different between primary and metastatic 
tumors. Although our findings were in accordance 
with a report that expression of PD-1 or PD-L1 in 
pNETs was rare, a limitation of our analysis is that the 
cells were derived from one patient. Further studies to 
define the comprehensive immune checkpoint 
profiles of both primary and metastatic lesions are 
warranted. 

In PDAC, it is well known that the TME 
comprises a heterogeneous population of CAFs with 
different functions,54 but the CAF populations in 
pNETs remains unclear. Our present study revealed 
that, like other stromal cells, fibroblasts also exhibited 
a wide heterogeneity in terms of functional states and 
distributions. A previous study suggested two 
subtypes of CAFs in PDAC: CAFs expressing high 
levels of α-SMA, which we named myCAFs, and 
CAFs expressing low levels of α-SMA, but high levels 
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of cytokines and chemokines, which we named 
iCAFs.44 A recent single-cell analysis of PDAC 
corroborated the presence of myCAFs and iCAFs and 
defined their unique gene signatures in vivo.45 
According to the signatures proposed in this study, 
we identified two subclusters in which the expression 
of signature genes aligns with the classic iCAFs and 
myCAFs. However, most subclusters did not fully 
align with the signatures. Interestingly, in two subsets 
specific to liver metastasis, subsets 4 and 10, we 
observed that subset 4 had higher levels of α-SMA and 
cytokines compared to subset 10, which was opposite 
to the iCAF/myCAFs definition. We discovered that 
fibroblasts of pNETs had gene expression profiles of 
other markers, especially the genes encoding 
functional cytokines, and were different from that in 
the PDAC, suggesting there are differences in the 
subpopulations and functional roles between 
fibroblasts in pNETs and in PDAC. Additionally, we 
identified a subpopulation of fibroblasts expressing 
specific markers of apCAF. The presence of human 
leukocyte antigen on this subpopulation suggests a 
potential interaction with T cells;55 however, since this 
subpopulation had the highest expression of immune 
checkpoint inhibitors among all subpopulations of 
fibroblasts, it seems that this apCAF subpopulation 
might preferentially cause immunosuppression, but 
not immune activation. 

Using scRNA-seq, we described the evolutionary 
trajectory of malignant cells at the single-cell level. 
Several key molecular events in the process of tumor 
progression from primary to metastatic lesions were 
identified. For example, we found the metabolic 
reprogramming developed at the “mid-late” stage, 
this also supports the concept that tumor metabolism 
is dynamic and adaptable to the TME. Meanwhile, the 
extensive proliferation capacity was suddenly 
acquired along tumor evolution, which happened in 
the liver metastasis. Previous studies support that 
primary and metastatic pNET lesions can exhibit 
pathological heterogeneity, and our study provided 
further understanding regarding the molecular 
biological features. We further traced the specification 
trajectories of malignant cells using both 
transcriptomic and mitochondrial information, which 
resulted in the identification of dominant clones with 
metastatic potential. Subsequently, we established a 
two-gene signature reflecting the components of 
dominant metastatic clones following the 
evolutionary process from primary tumor to 
metastatic lesion. Our validated the prognostic value 
of this gene signature in pNET patients and found 
that it could effectively predict recurrence and 
survival in patients with pNETs. This is the first 
prognostic molecular marker for pNETs based on 

evolution analysis using single-cell data. The sample 
size of survival analysis in the present study limits the 
clinical significance of the two-gene gene signature, 
but this work provided a new idea for further 
identification of novel biomarkers. Future studies 
with larger sample sizes are also needed to validate 
the prognostic value of this two-gene signature. 

Because of the low incidence rate and indolent 
behavior, there are relatively few studies on pNETs. A 
particular strength of our study was the availability of 
both primary and metastatic lesions, but there were 
still some limitations. First, although we acquired 
high quality single-cell data of more than 
twenty-thousand cells, they were from a single 
patient. In terms of the prognostic gene signature 
presented in this study, we consider that the 
advantages offered by an enlarged sample size and 
validation have compensated for this limitation. 
However, the composition of subpopulations of 
multiple TME cells, as well as their role in pNETs, still 
need to be investigated in more cases. Second, G3 
neuroendocrine carcinomas are extremely rare and 
highly aggressive.56-58 Therefore, findings in this study 
may not apply to all G3 cases. We also found that the 
prognostic value of our gene signature was 
diminished in G3 cases. Third, due to the technical 
limitation of scRNA-seq, only transcriptome data was 
obtained in the present study. Approaches such as 
single-cell genome analysis and single-cell 
ATAC-sequencing will further advance our 
understanding of this disease. Overall, these 
limitations highlight the need for further work to 
optimize and expand scRNA-seq datasets for pNETs. 

In sum, our findings contribute to a better 
understanding of the spatial and temporal 
heterogeneity of pNETs through describing the 
single-cell level gene expression atlas of main cell 
types in primary and metastatic lesions. Future work 
further exploring how these findings may be used for 
prognostic purposes will benefit patients with pNETS. 
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