1 RhoJ facilitates angiogenesis in glioblastoma via JNK/VEGFR2 mediated

### 2 activation of PAK and ERK signaling pathways

3

### 4 Supplementary Materials and methods

### 5 Enzyme-Linked ImmunoSorbent Assay (ELISA)

6 ELISA MAX<sup>™</sup> Deluxe Set Human VEGF kit (Biolegend, 446504) was used. We

7 collected the supernatant culture medium from U87-shNC and U87-shRhoJ or

8 U87-con and U87-RhoJ-oe cells 24h after seeding. One day prior to the experiment,

9 coated 96-well plate with 100  $\mu$ L diluted capture Antibody, then the plate was

10 incubated overnight at 4  $\,^{\circ}$ C. On the second day, we brought all the reagents to room

11 temperature (RT), washed the plate 4 times, added 200 µL 1× Blocking Buffer A,

12 incubated 1 h with shaking at RT. Washed 4 times, added 50 µL Assay Diluent D to

13 the standard and sample wells. We added 50  $\mu$ L diluted standards to the standard wells,

14 added 50 µL samples to the sample wells, incubated 2 h at RT with shaking. We

15 washed 4 times. Added 100 µL diluted Detection Antibody, then incubated 1 h at RT

16 with shaking. Washed and added 100  $\mu$ L/well of diluted Avidin-HRP solution, sealed

17 plate and incubated at RT for 30 minutes with shaking. Washed and added 100

18 µL/well Substrate Solution D and incubated in the dark for 10 minutes. Positive wells

19 should turn blue in color. We stopped the reaction by adding 100  $\mu$ L/well of Stop

20 Solution. Positive wells should change from blue to yellow in color. Read absorbance

at 570 nm within 15 minutes.

22

# 23 Supplementary figure legends

| 24 | <b>Fig. S1 Knockdown of RhoJ inhibits the secretion of VEGF in GBM cells.</b> (A)          |
|----|--------------------------------------------------------------------------------------------|
| 25 | Transwell assay in HUVECs treated by the conditioned medium from U87 cells with            |
| 26 | shNC or shRhoJ. The results showed the medium from U87-shRhoJ cells significantly          |
| 27 | inhibited the migration of HUVECs compared with shNC group. All scale bars,                |
| 28 | 100 $\mu$ m. (B) Quantitative analysis of migrated cells in (A). (C) Tube formation assay  |
| 29 | detected the formed tubes of HUVECs treated with conditioned medium from                   |
| 30 | U87-shNC or U87-shRhoJ. Scale bars, 100 $\mu$ m. (D) The number of tubes formed was        |
| 31 | calculated to quantify the ability of tube formation. (E) knockdown of RhoJ                |
| 32 | significantly decreased the VEGF secretion in U87 cells. (F) knockdown of RhoJ also        |
| 33 | significantly decreased the VEGF secretion in HUVEC cells. Data are shown as the           |
| 34 | mean $\pm$ SEM. All experiments were performed independently three times. *p<0.05;         |
| 35 | **p<0.01; ***p<0.001.                                                                      |
| 36 | Fig. S2 BEV affects RhoJ function on HUVEC migration and tube formation. (A)               |
| 37 | Transwell assay in HUVECs-con or HUVECs-RhoJ-oe treated by vehicle or                      |
| 38 | Bevacizumab (BEV, $5\mu g/ml$ ). All scale bars, 100 $\mu$ m. (B) Quantitative analysis of |
| 39 | migrated cells in (A). (C) Tube formation assay detected the formed tubes of               |
| 40 | HUVECs-con or RhoJ-oe treated with vehicle or BEV (5 $\mu$ g/ml). Scale bars, 100 $\mu$ m. |
| 41 | (D) The number of tubes formed was calculated to quantify the ability of tube              |
| 42 | formation (con- vehicle group vs RhoJ-oe- vehicle group; RhoJ-oe- vehicle group vs         |
| 43 | RhoJ-oe+BEV group). Data are shown as the mean $\pm$ SEM. All experiments were             |
| 44 | independently performed three times. *p<0.05; **p<0.01; ***p<0.001.                        |
|    |                                                                                            |

## 46 Supplementary figures

## 47 FigS1



55 FigS2





| 66     | Table S1. Primer sequences used in RT-qPCR analysis. |                         |  |
|--------|------------------------------------------------------|-------------------------|--|
| Target | Forward primer (5'-3')                               | Reverse primer (5'-3')  |  |
| RhoJ   | CCTGAGTGACAGAGAAAGAACC                               | GGAGTGTGTGCGTATGAAAGA   |  |
| NOD2   | CCCTGCAGCTGGACTACAACT                                | AGATGCCTCGGTCTGAGATATTG |  |
| TRAF1  | GGAGGCCCAACTGCAATAA                                  | GTCAGCCGTGGGAACAATAA    |  |
| TNF    | GATCCCTGACATCTGGAATCTG                               | GAAACATCTGGAGAGAGGAAGG  |  |
| VEGFA  | CAGGACATTGCTGTGCTTTG                                 | CTCAGAAGCAGGTGAGAGTAAG  |  |
| NFkBIA | CATCCTGAAGGCTACCAACTAC                               | GGCTCCTGAGCATTGACAT     |  |
| Moesin | GTCAAGTGTGGAGTAGGTTG                                 | CATTCCCTAGACCGCATAAC    |  |
| GAPDH  | CTCCACTCACGGCAAATTCA                                 | GCCTCACCCCATTTGATGTT    |  |