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Figure S1. TET1s is the predominant transcript compared to TET1-FL in arterial ECs from

C57 mice. (A-C) All ECs separated from the aorta of C57mice. (A) RT-qPCR was used to test the

mRNA levels of TET1s and TET1-FL(n>6 per group). (B-C) The TET1s and TET1-FL protein

expression level was quantified by WB (n>6 per group). All data were presented as the mean = SD.
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Figure S2. The plaques in ApoE""TET1cs/cs mice was no difference compared with ApoE~"

TET1”mice fed a high-fat diet for 1 week. (A-D) ApoE”- TET17-, ApoE”- TET1¢* and ApoE""

mice (8 weeks old) were fed a high-fat diet for 1 weeks. (A) The aortic plaques of ApoE”~ TET17,

ApoE”- TET1°/*s and ApoE"- mice were tested by red oil staining and en face microscopy. (B) The

lesion areas in the whole aorta, aortic arch, thoracic aorta, and abdominal aorta sections were



analyzed (n>7 per group). (C-D) Representative photomicrographs of aortic root slice red oil
staining and quantitative analysis of atherosclerotic plaque areas in the aortic root (n>7 per group).

All data were presented as the mean + SD.
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Figure S3. Deletion of TET1s has no significant change in lipid metabolism in ApoE’~ mice.
(A-E) ApoE"TET1"-, ApoE”"TET1%®S and ApoE"~ mice fed with high-fat diet for 12 weeks. (A)
Quantitative analyze in triglyceride (TG) of ApoE”"TET1”, ApoE”"TET15®S and ApoE"~ mice fed
with high-fat diet for 12 weeks. (A-D) Quantitative analyze triglyceride (TG), total cholesterol (T-
CHO), LDL-C and HDL-C of ApoE"TET1”, ApoE”TET1®®S and ApoE’ mice (E) The
representative images with hepatic slice staining with oil red O of ApoE”"TET17-, ApoE”" TET1¢5/¢S

and ApoE~" mice. All data are presented with mean value and standard deviation (SD).
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Figure S4. OSS stimulation was decreased the expression and the nuclear/cytoplasmic ratio of
TET1s in carotid ECs in TET1°/** mice. (A-B) TET1°** mice LCA were ligated for 2 weeks. (A)
Quantitative analysis of TET1s fluorescence intensity in LCA and RCA ECs to fig.3B. (B)
Quantitative analysis of the nuclear/cytoplasmic ratio of TET1s in LCA and RCA ECs to fig.2B. All

data were presented as the mean + SD.
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Figure S5. OSS stimulation was decreased the expression and the nuclear/cytoplasmic ratio of
TET1s in aortic ECs in TET1°/** mice. (A) Immunofluorescence staining & en face for TET1s in
AA and TA ECs (n>7 per group). (B-C) Quantitative analysis of the fluorescence intensity and the
nuclear/cytoplasmic ratio of TETIs in AA and TA ECs (n>7 per group). (D-E)
Immunohistochemical staining for TET1s in AA and TA slices and quantitative analysis of the
TET1s-positive area; red arrows indicate the positive area in ECs (n>7 per group). All data were

presented as the mean + SD.
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Figure S6. OSS inhibits TET1s expression levels in primary HUVECs. (A-C) primary HUVECs
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with a parallel-plate flow chamber (PPFC) for 24 h. (A) Immunofluorescence staining for TET1s in
p-HUVEC:s. (B-C) Quantitative analysis of the fluorescence intensity and the nuclear/cytoplasmic

ratio of TET1s in p-HUVECSs (n=7 per group). All data were presented as the mean £ SD.



P<0.0001 = Monocytes
i —

c 20n WT mice c 10+ P<0.0001 SMCs

2 s — P<0.0001  ®m ECs(LSS)

g 3 8 —

=8 ‘Q P<0.0001

2 D =

z % g

5 £

= 2

a z

o =3 5\
od\e 5\1\0 5\\,65 TET1°S/es WT
\3\0(\ (,(0
C TET1+ TET165/s wT

) [ <TET1-FL

[N
e — - - - | TET1s

— -——-H‘““+GAPDH

GO RN o A SR G eI
\4\0000\1& 5\“209\\\’\“ 0(\00‘;‘ 5\\?’05\:;(\00‘;‘ 5\1\(}/0%\\,
P<0.0001 B Monocytes
—
D E P<0.0001  P=0.0005 SMIcs
2.0 WT mice 34 [ P mm ECs(LSS)
P=0.0013
—d

leve(flod)

TET1s protein expression

TET1-FL protein expression

Figure S7. Low expression levels of TET1s in vascular smooth muscle cells and macrophages.
(A-C) All ECs separated from the thoracic aorta (TA) of TET17-, TET1°/*s and WT mice. (A-B) RT-
qPCR was used to test the mRNA levels of TET1s and TET1-FL (n=4 per group). (C) The TET1s
and TET1-FL protein expression level was quantified by WB (n=4 per group). All data were

presented as the mean + SD.
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Figure S8. The carotid plaques in ApoE"TET1°/** mice with a partial carotid artery ligation
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is no difference compared with ApoE”"TET1” mice fed a high-fat diet for 1 week. (A-B) ApoE-
*TETlcs/cs, ApoE”"TET1”-and ApoE”-mice LCAs were ligated and fed a high-fat diet for 1 week;

the lesion areas in the carotid artery were tested by red oil stain & en face and were analyzed (n=8

per group). All data were presented as the mean = SD.
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Figure S9. Differential gene expression enrichment analysis shows that TET1s may regulate
endothelial barrier function. (A-B) RNA sequencing test the global RNA levels of TET1s-
overexpressing p-HUVECs and negative control p-HUVECs; the top 20 pathways of differential

gene expression GO enrichment analysis (A) and KEGG enrichment analysis (B) with RNA-



sequence data.
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Figure S10. The intima of the aortic arch of TET1°/** mice shows fewer holes compared with
TET1”mice. (A) The morphology of ECs in AA and TA ECs by scanning electron microscopy

(SEM).

APOE+TET1656S
SNt T
iy

h-3
>
o
Bk
il
R
m
-.l
-~
=

CD11b

Ly6G

ws)

B ApoETETT
IS ApoE" TET19%/CS
= ApoE”

p"FO.OQBS

Positive area/lumen area(%)

cD11b Ly6G

Figure S11. Neutrophils were significantly decreased in the plaques of ApoE“TET1°/** mice
compared with ApoE"TET1”- mice. (A-B) ApoE"TETIcs/cs, ApoE”’TET1”- and ApoE” mice
were fed a high-fat diet for 4 weeks. The aortic roots were harvested and subjected to further
experiments. Representative immunohistochemical staining for Neutrophil-specific antigens

CD11b and Ly6G in aortic roots and were analyzed (n=6 per group). All data are presented as the



mean + SD.
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Figure S12. The endothelial CX40 expression level in TET1”- and TET1°/* mice. (A) TET1",
TET1¢es and WT mice LCAs were ligated for 1 week. Immunofluorescence staining for CX40 in
RCA and LCA (n=3 per group). (B-C) All ECs separated from the aortic arch (AA) and thoracic

aorta (TA) of TET17-, TET1°/*s and WT mice. (B) RT-qPCR was used to test the mRNA levels of
CX40 (n=5 per group). (C-D) The CX40 protein expression level was quantified by WB (n=4 per

group). All data were presented as the mean + SD.
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Figure S13. TET1s overexpression did not cause a global difference in SmC levels in p-
HUVECsS. (A-F) p-HUVECs were transfected with TET 1s-overexpressing adenovirus and negative
control adenovirus and further tested after 48 h. (A-B) Dot blot assay was used to analyze the global
5SmC levels of p-HUVECSs (n=6 per group). (C-D) Dot blot assay was used to analyze the global
ShmC levels of p-HUVECs (n=6 per group). (E-F) Pyrosequencing assay analyzed the local ShmC
levels in the CX40 promoter 6 CG sites (S1-S6 indicates site 1-site 6; TS indicates transcriptional

start; n=3 per group). All data were presented as the mean + SD.



Table S1. The primers for gene-test of knockout mice.

primers (name)

sequence(5’-37)

GT-apoE-OF GCCTAGCCGAGGGAGAGCCG
GT-apoE-IR TGTGACTTGGGAGCTCTGCAGC
GT-apoE-OR GCCGCCCCGACTGCATCT
GT-TET1-F AACTGATTCCCTTCGTGCAG
GT-TET1-R TTAAAGCATGGGTGGGAGTC

GT-TET1CS-OF

ATCTGGGCAATGTTGTGACTC

GT-TET1CS-IR

CATTGTAAACCCGTTGCAAGT

GT-TET1CS-OR

TTCTTTCCCTTCCACTATGCA

Table S2. The primers for RT-qPCR.

primers (name)

sequence(5’-37)

H-GAPDH-F GGAGCGAGATCCCTCCAAAAT
H-GAPDH-R GGCTGTTGTCATACTTCTCATGG
H-TETI1FL-F GCGCGAGTTGGAAAGTTTG
H-TET1FL-R GCTCAGTCACACAAGGTTTTGG
H-TET1s-F CAAGCAAGATGGCTACCTCGT
H-TET1s-R GGGGCCTCTTGTTTTCCTTTA
H-CX40-F GCTGCCAGAATGTCTGCTAC
H-CX40-R GGTACTCGTAAGAGCCAGAGC
H-TMEM129-F GAGGTGACCTTCACTCTCGC
H-TMEMI129-R GCCCACATAGTAGCCGAGC
H-TGFA-F AGGTCCGAAAACACTGTGAGT
H-TGFA-R AGCAAGCGGTTCTTCCCTTC
H-IGF1-F GCTCTTCAGTTCGTGTGTGGA




H-IGF1-R

GCCTCCTTAGATCACAGCTCC

H-APLNR-F CCTGCATCAGCTACGTCAACA
H-APLNR-R GGGATGGATTTCTCGTGCATCT
H-PIEZO2-F ATGGCCTCAGAAGTGGTGTG
H-PIEZO2-F ATGTCCTTGCATCGTCGTTTT
H-KLF2-F CTACACCAAGAGTTCGCATCTG
H-KLF2-R CCGTGTGCTTTCGGTAGTG

H-KLF4-F CAGCTTCACCTATCCGATCCG
H-KLF4-R GACTCCCTGCCATAGAGGAGG
M-TETIFL-R TACTGCAAGAATCGAAAGAACAGCCA
M-TETIFL-R CGGAAGGTGTGTGTCAGTGGGT
M-TETIs-F TAAGACAGACTTTTAGGGGGAAAG
M-TETIs-R GTGTGTGTCAGTGGGTAAACAGT
M-GAPDLLF TGACCTCAACTACATGGTCTACA
M-GAPDHLR CTTCCCATTCTCGGCCTTG

M-CX40-F GGTCCACAAGCACTCCACAG
M-CX40-R CTGAATGGTATCGCACCGGAA

Table S3. The primers for CHIP- qPCR.

primers (name)

sequence(5’-37)

P1-F TCCTGTCACTGAGGAAATTCCTGTTC
PI-R TGCTGTCTGAGATGGCTCTTAATGAG
P2-F TCATTAAGAGCCATCTCAGACAGCAG
P2-R AATCTCTGATGCTGGCCTTGC

P3-F AAGGCAAGGCCAGCATCAG

P3-R TCCTGTGCATGACTTTCTGGAATG
P4-F CTCATTCCAGAAAGTCATGCACAGG
P4-R GCCTGAAGTCAAGCTTGTCTGG

P5-F CCAGACAAGCTTGACTTCAGGC




P5-R

GAGATCTTGTCCTGAGAGCATTATGCTC

Table S4. The primers for pyrosequencing assays.

primers (name)

sequence(5’-37)

1.GJAS-1F(230bp)

TTTGGGTGAAAGTTTTATTTGGATATG

1.GJAS-1R

TCCCAACTTTAATCTACTCCTATCACT

1.GJAS-1S

CTCAAAAACATTTAACTTCC

2.GJA5-2F(72bp)

TGGTTTTTTGGGTGAAAGTTT

2.GJAS-2R

AAACCATCTCAAACAACAAATATCTATTAA

2.GJAS-2S

TTTTGGGTGAAAGTTTTATT

3.GJAS5-3F(224bp)

AGAGGATTAGAAAAGGTAAGGTTAGTAT

3.GJAS5-3R

CCTCTTTAAAACCTAAAATCAAACTTATCT

3.GJAS-3S

AGAGGTTTTTAAGTAAATAGTG

4.GJAS5-2F(221bp)

AAGGAGATTTTGTTTTGAGAGTATTATG

4.GJA5-4R

AACAATACTACCCATCCTTTCAACTACCC

4.GJAS5-4S

ATTAAAAAGGAAGTTAGATTGT

5.GJA5-5F(140bp)

TGATTTTAGGTTTTAAAGAGGAAGTTAATG

5.GJAS-5R

ACTCAACCCTTCCCTAAC

5.GJAS-58

ACCCTTCCCTAACTC




