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Abstract 

Renal inflammation and fibrosis are key pathological features of acute kidney injury (AKI) and chronic 
kidney disease (CKD). Smad3 is a critical mediator of TGF-β signaling and plays a pathogenic role in both 
renal inflammation and fibrosis. Smad3 can be activated not only by TGF-β1 but also by many stress 
molecules including angiotensin II (Ang II), advanced end products (AGEs), and C-reactive protein (CRP) 
under disease conditions. In addition, Smad3 can interact with other signaling pathways, such as the 
ERK/p38 MAPK and NF-κB pathways, to mediate renal inflammation and fibrosis. Mechanistically, Smad3 
transcriptionally regulates many downstream target genes including microRNAs and long non-coding 
RNAs to cause cell death, inflammation, and fibrosis. Thus, targeting Smad3 or its downstream genes 
specifically related to renal inflammation and fibrosis should provide a novel therapeutic strategy to 
combat kidney diseases. 
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Introduction 
Kidney disease has become a major public health 

problem worldwide. Chronic kidney disease (CKD) 
affects more than 10% of the population worldwide 
[1]. Renal inflammation is a common manifestation of 
acute kidney injury (AKI) and CKD [2, 3] and may be 
a driving force from AKI to CKD progression. Fibrosis 
is a common pathway of progressive CKD that finally 
leads to the end-stage renal disease. Thus, renal 
fibrosis accompanied by active inflammation is a 
major pathological feature in progressive kidney 
disease [3]. Like Chinese Yin and Yang, transforming 
growth factor-β1 (TGF-β1) signaling plays a diverse 
role in renal inflammation and fibrosis [4-7]. It is well 
documented that TGF-β is a potent anti-inflammatory 
cytokine and immune regulator that play a protective 
role in renal inflammation. In the other hand, TGF-β 
also exerts its pathogenic role in renal fibrosis [4-7]. 

Upon TGF-β binds to its receptors, it triggers 
activation of downstream signaling pathways 
including Smad and non-Smad-dependent pathways. 
Of them, the canonical Smad pathway is a key 
regulatory pathway in the pathogenesis of renal 
inflammation and fibrosis. Of the Smad signaling 
molecules, Smad3, together with Smad2, is the major 
receptor-associated Smads. Smad3 has a highly 
conserved region at the N-terminal and C-terminal, 
termed mad-homology domain1 (MH1) region and 
MH2 region. MH1 is mainly associated with DNA 
binding, while the MH2 region has phosphorylation 
sites activated by TGF-β1 and has specific sequences 
that determine their binding to TGF-β1 signal 
receptors [8, 9]. 

Smad3 is confirmed to be a major downstream 
signaling molecule of TGF-β1 in mediating organ 
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inflammation and fibrosis [4]. Smad3 can be activated 
by many other stress molecules including angiotensin 
II (Ang II), advanced end products (AGE), and 
C-reactive protein (CRP). In this review, we focus on 
the molecular mechanisms of Smad3 in regulating 
renal inflammation and fibrosis. We also describe the 
downstream Smad3 signature genes including 
Smad3-dependent microRNAs and long non-coding 
RNAs, which regulate renal inflammation and 
fibrosis. In addition, the new therapeutic approaches 
for kidney disease by targeting Smad3 signaling, as 
well as Smad3-dependent microRNAs and lncRNAs 
are also described. 

Regulatory role and mechanisms of 
Smad3 in renal fibrosis 

TGF-β1 has long been known as a key mediator 
in the pathogenesis of renal fibrosis by activating the 
downstream Smad proteins, especially Smad3. Once 
Smad3 becomes activated in response to TGF-β1 and 
other stress molecules such as Ang II, AGEs, and CRP, 
it can translocate to the nucleus to directly bind to 
DNA sequences and regulate the target genes (Figure 
1). It is known that many fibrogenic genes responsible 
for the fibrogenesis including collagen synthesis and 
epithelial-mesenchymal transition (EMT) are Smad3- 
dependent [10, 11]. Thus, Smad3 plays a critical role in 
the development of renal fibrosis in many kidney 
diseases. An essential role for Smad3 in fibrogenesis is 
confirmed by the findings that deletion of Smad3 
from mice can suppress renal fibrosis in a number of 
rodent models, including diabetic nephropathy [12], 
obstructive kidney diseases [13], hypertensive 
nephropathy [14], and drug-associated nephropathy 
[15]. 

Smad3 can also regulate Smad7 to play a role in 
renal fibrosis. It is well established that Smad7 is an 
inhibitory Smad that is induced by Smad3 
transcriptionally but exerts its negative feedback 
mechanism to maintain the homeostasis of TGF-β/ 
Smad signaling [5, 16-19]. In normal situations, renal 
Smad7 is abundant and exerts its negative feedback 
mechanism by causing degradation of Type I TGF-β 
receptor (TβRI) via an ubiquitin proteasome 
degradation mechanism, thereby preventing the 
recruitment and phosphorylation of Smad3 [4]. Under 
disease conditions, Smad3 is overreactive and can also 
induce a number of E3 ubiquitin ligases such as the 
Smad ubiquitination regulatory factor 1 (Smurf1), 
Smad ubiquitination regulatory factor2 (Smurf2), and 
arkadia, which physically interact with Smad7 and 
cause an ubiquitin-dependent degradation of renal 
Smad7 protein [20, 21], resulting in enhanced TGF-β/ 
Smad3 signaling and progressive renal fibrosis [20]. 
This is further supported by the findings that mice 

lacking Smad7 largely promote activation of Smad3 
signaling and progressive renal fibrosis in both 
obstructive nephropathy and diabetic kidney disease 
[22, 23]. 

Renal fibrosis is characterized by a loss of renal 
tubules and the accumulation of extracellular matrix 
(ECM). Myofibroblasts are an active form of 
fibroblasts that are generally considered to be the 
main source of ECM production during renal fibrosis 
[24, 25]. Many studies show that Smad3 has an 
important role in the transformation of bone 
marrow-derived fibroblasts in the kidney as genetic 
disruption of Smad3 inhibits the activation of bone 
marrow-derived fibroblasts in the kidney in response 
to obstructive kidney injury in vivo and suppresses 
monocyte-to-fibroblast transition in vitro [26]. 
Excitingly, our recent studies have also demonstrated 
that macrophage-myofibroblast transition (MMT) is a 
major source of myofibroblast origin (> 60%) that 
occurs locally within the fibrosing kidney and is 
regulated by Smad3 [27-29]. Smad3 is required for the 
efficient transition of recruited macrophages to 
become collagen I-producing α-SMA+ myofibroblasts 
within the injured kidney. In addition, the protection 
from obstructive kidney fibrosis seen in Smad3−/− 
chimeric mice provides further evidence that bone 
marrow-derived macrophages make a substantial 
contribution to the development of renal fibrosis via 
the Smad3-dependent MMT process [28, 30]. Indeed, 
bone marrow-derived M2-type pro-fibrotic 
macrophages are highly proliferative and contribute 
to renal fibrosis in the UUO kidney [31]. It is proposed 
that bone marrow-derived M2 macrophages can enter 
the injured kidney and then transdifferentiate into 
collagen-producing α-SMA+ myofibroblasts which is 
under tight control of TGF-β/Smad3 signaling [32]. 
By using single cell RNA sequence analysis, we reveal 
that TGF-β1 induces MMT in bone marrow-derive 
macrophages via the Smad3-Src-POU4F1 pathway as 
Smad3 can bind Src and POU4F1 promoters to induce 
MMT and targeting this pathway can block MMT and 
renal fibrosis in vitro and in vivo [30, 33]. 

Ang II and AGEs are also able to induce renal 
fibrosis by activating Smad3 signaling via TGF-β- 
dependent and-independent pathways (Figure 1). 
Ang II is able to induce TGF-β1 expression and then 
activate TGF-β1/Smad3 signaling, which can lead to 
fibrosis. In addition, a significant finding shows that 
Ang II can also directly activate Smad3 to induce 
expression of connective tissue growth factor (CTGF) 
and collagen I through the AT1-ERK/p38 MAPK 
crosstalk pathway [34]. This is supported by the 
findings that addition of Ang II is able to induce 
Smad3 phosphorylation in tubular epithelial cells 
(TECs) lacking the TGF-β1 gene, and that blockade of 
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the AT1 receptor, ERK1/2, and p38, is capable of 
inhibiting Ang II-induced activation of Smad3 and 
CTGF [34]. This notion is further supported by 
evidence of knockdown Smad3 to block Ang 
II-mediated EMT [34]. Ang II-induced overactivation 
of TGF-β1/Smad3 signaling is also associated with 
the loss of renal Smad7, which is mediated by a 
Smurf2-dependent ubiquitin degradation mechanism 
[35]. 

It is now well accepted that AGEs are key 
mediators in diabetic nephropathy. Accumulation of 
AGEs closely correlates to CTGF expression and EMT. 
Indeed, the Smad-binding elements are found in the 
CTGF promoters [36], suggesting that Smad3 may 
mediate fibrosis by inducing CTGF expression. 
Because AGEs are able to activate Smad3 via TGF-β1- 
dependent and independent mechanisms [4, 5] 
(Figure 1), it is generally believable that AGE-induced 

CTGF expression via the TGF-β1-independent Smad3 
signaling pathway as addition of AGEs is able to 
stimulate a rapid phosphorylation of Smad2/3, 
ERK1/2, and p38 and CTGF expression in TECs 
lacking TGF-β1 gene [37, 38]. 

C-reactive protein (CRP) acts as one of the most 
essential inflammatory marker and mediator in 
various chronic diseases [39, 40] (Figure 1). It 
mediates renal fibrosis by inducing the early (15 mins) 
and the late phase (24 hrs) of phosphorylation of 
Smad3 in HK-2 cells [41, 42]. CRP can activate Smad3 
to mediate renal fibrosis directly via the CD32b-ERK/ 
p38 MAP kinase-crosstalk pathway and indirectly 
through the TGF-β1-dependent mechanism [41]. This 
is also confirmed by deleting Smad3 to inhibit UUO- 
induced renal fibrosis in CRP transgenic mice [43]. 

 

 
Figure 1. Smad3 signaling and crosstalk pathways in renal fibrosis. After binding to TβRII, TGF-β1 activates the TβRI-kinase which phosphorylates Smad3. The 
phosphorylated Smad3 translocates into the nucleus and regulates the target gene transcription. Smad7 is an inhibitory Smad that functions to block Smad3 activation by 
degrading the TβRI and preventing phosphorylation of Smad3.Ang II, AGEs and CRP can activate TGF-β1-independent signaling via the ERK/p38/ MAPK crosstalk pathway. Red 
arrows/ symbols represent pathogenic or positive regulation pathway, while blue lines/ symbols indicate protective or negative regulation pathways in fibrosis. 
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Smad3 is also activated by other molecules 
(Figure 1). Of them, cyclin dependent kinases (CDKs), 
such as CDK9, can promote Smad3-regulating 
collagen I promoter activity [44]. Ski-related novel 
protein (SnoN) is a nuclear protein that functions as a 
negative regulator of TGF-β1/Smad3 signaling [45]. 
Activation of Smad3 can up-regulate Smurf2 and thus 
enhances the ubiquitin degradation of SnoN to exert 
the fibrogenic effects of TGF-β1/Smad3 signaling. 
Further study shows that Smad3 can repress SnoN 
transcription by binding to SIE sequences (triple 
CGACGG box) in the SnoN promoter [46, 47]. 
β-catenin acts as a co-factor for Smad3 transcriptional 
activity. Targeted degradation of cytosolic β-catenin 
or inhibition of β-catenin binding to Smad3 blocks 
TGF-β1-induced EMT in murine renal tubular 
epithelial cells [48]. Sirt1 belongs to a highly 
conserved family of NAD+‐dependent deacetylase 
and has been reported to deacetylate the lysine 
residues of a number of nuclear proteins. It has been 
reported that Sirt1 can bind to Smad3 to reduce the 
acetylation levels of Smad3 and inhibits renal fibrosis 
[49]. It is also reported that the methyltransferase 
SET9 (also known as SETD7) can interact with the 
Smad3 N-terminal MH1 domain to increase Smad3 
activity and upregulate α-SMA expression during 
renal fibrosis [50]. CREB binding protein (CBP) is also 
a Smad3 coactivators, it can bind to the Smad 
complexes to transcriptionally regulate the 
downstream genes [51]. CREB can competitively 
inhibit the binding of CBP to Smad3 [52]. Glycogen 
synthase kinase 3β (GSK3β) is a serine/threonine- 
protein kinase that inhibits the CREB activities while 
promoting CBP binding to Smad3 to facilitate renal 
fibrosis. In TGF-β1-treated renal TECs, the inhibition 
of GSK3β can enhance the activity of CBP recruitment 
to CREB and thus ameliorates renal fibrosis [52]. 

Regulatory role and mechanisms of 
Smad3 in renal inflammation 

Infiltration of immune cells into tissues is a key 
pathogenetic event in many inflammatory diseases 
which can be diversely regulated by Smad3. As 
shown in Figure 2, activation of Smad3 plays a diverse 
role in immune cell activation and differentiation 
during renal inflammatory responses. Smad3 is a 
critical effector molecule of TGF-β1-mediated 
inhibition of macrophage activation as Smad3 is 
capable of inhibiting the promoter activities of iNOS 
and MMP-12 on macrophages [53]. In addition, 
Smad3 also mediates the TGF-β-dependent inhibition 
of CD4 T-cell proliferation. Smad3 phosphorylation 
decreases T-cell receptor (TCR) activation, as well as 
impeding the effects of CD28 co-stimulation [54]. It is 

now well defined that Smad3 is a downstream key 
regulator of TGF-β signaling in T cell immunity 
[55-57]. It is well documented that Smad3 can bind 
and regulate expression of Foxp3 to promote Treg cell 
differentiation and functions in many 
immunologically-mediated kidney diseases including 
crescentic glomerulonephritis [58, 59]. In addition, 
Smad3 is found to be part of a protein complex with 
RORt, leading to the inhibition of RORt 
transcriptional activity and then decline Th17 cell 
generation [60]. Thus, activation of TGF-β/Smad3 
signaling exerts its inhibitory effect of on 
immunologically-mediated diseases by promoting 
Treg while inhibiting Th17 responses. However, 
together with IL-6, activation of TGF-β/Smad3 plays 
an important role in the generation of Th17 cells [61]. 
Thus, Smad3 is an important regulator in maintaining 
the balance between Treg and Th17 immune 
responses, which is supported by the findings that 
Smad3 deficiency resulted in defective Foxp3 
induction but enhanced Th17 cell generation in vitro 
and in vivo [60]. 

On the other hand, activation of TGF-β/Smad3 
signaling may also promote renal inflammation. 
There are two possible mechanisms responsible for 
this pro-inflammatory effect of TGF-β/Smad3 
signaling. First, Smad3 may exert its chemotactic 
effect on the macrophage recruitment during renal 
inflammation as Smad3 can interact with macrophage 
chemotactic protein-1 (MCP-1) to promote 
macrophage-dependent renal inflammation [62]. This 
is supported by the findings that mice lacking Smad3 
remarkably suppress renal inflammation by reducing 
F4/80+ macrophages, together with CD4 and CD8 T 
cells in the diseased kidneys of obstructive 
nephropathy [26, 28, 30, 63], Ang II-induced 
hypertensive nephropathy [14], and ischemic- 
reperfusion AKI [64]. Interestingly, recent studies also 
show that deletion of Smad3 from db/db and human 
CRP transgenic mice can inhibit renal inflammation 
by blocking MCP-1-dependent macrophage 
infiltration [65]. Furthermore, deficiency of Smad3 
shows to exert its inhibitory effect on NF-κB-driven 
renal inflammation as seen in many mouse models of 
kidney disorders [41, 43]. It is likely that deletion of 
Smad3 may suppress expression of E3 ubiquitin- 
protein ligases such as Smurf1/Smurf2 that target 
Smad2, Smad7, and TβRI for degradation. Thus, 
protection of renal Smad7 from the E3-ligase- 
dependent ubiquitin degradation in Smad3 KO mice 
may result in upregulation of IκBα, an inhibitor of 
NF-κB signaling, thereby inhibiting NF-κB-driven 
renal inflammation [66, 67]. 
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Figure 2. Smad3 signaling and crosstalk pathways in renal inflammation. Smad3 is a key regulator that diversely regulates renal inflammation by either inhibiting or 
promoting macrophage and T cell. Red arrows/symbols represent pathogenic or positive regulation pathway, while blue lines/symbols indicate protective or negative regulation 
pathways. 

 

Regulatory role and mechanisms of 
Smad3 in cell death during acute kidney 
injury 

Increasing evidence shows that AKI is a major 
cause of CKD. Smad3 also plays a driving role in AKI 
by triggering the cell death pathways (Figure 3). 
Recent studies identified that Smad3 can bind and 
induce expression of cyclin-dependent kinase 
inhibitors (CDKIs) including p21/p27 to cause 
tubular epithelial cell death via the G1 cell-cycle arrest 
mechanism [68, 69]. It has been reported that CRP can 
induce the early activation of Smad3 signaling via the 
CD32-ERK1/2 and p38-dependent mechanism [41]. 
Thus, mice overexpressing the human CRP develop 
more severe AKI by activating Smad3-dependent cell 
death pathway [68, 70], which is reversed by targeting 
this pathway with a pharmacological Smad3 inhibitor 
[68]. In addition, activation of TGF-β/Smad3 

signaling also plays a key role in the cell senescence 
during the development of aging kidney, which is 
mediated via the p16/p21-dependent mechanism 
[71]. In podocyte-specific TGF-β overexpressing mice, 
over-activation of TGF-β/Smad3 signaling is involved 
in the cell senescence via p16 translocation and p21 
induction [72]. All these studies suggest that 
activation of TGF-β/Smad3-p16/p21pathway may 
not only cause cell death in AKI and but also involves 
in renal aging and fibrosis in CKD. 

Necroptosis is another cell death pathway 
leading to AKI [73]. Necroptotic cells can release the 
components such as high mobility group protein to 
induce severe necroinflammation [74]. Emerging 
evidence shows that RIPK1, RIPK3, and MLKL are 
central regulators in the necroptotic pathway [75, 76]. 
It has been shown that Smad3 can interact with RIPK 
and thus loss of Smad3 significantly blocks RIPK- 
mediated programmed cell death and inflammation 
[77]. 
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Figure 3. Smad3 triggers the cell death pathways in acute kidney injury. Smad3 can bind and activate the p21/p27 to cause tubular epithelial cell death via the G1 
cell-cycle arrest mechanism in response to TGF-β1 and CRP under various kidney disease conditions. Red arrows/symbols represent pathogenic or positive regulation pathway, 
while blue lines/symbols indicate protective or negative regulation pathways. 

 
AKI is also a common clinical feature in critically 

ill patients with COVID-19, particularly in those with 
inflammatory stress and underlying disease 
conditions [78]. Strikingly, our most recent study 
discovered that among SARS-CoV-2 proteins, 
SARS-CoV-2 N protein is pathogenic for AKI as 
kidney-specifically overexpressing SARS-CoV-2 N 
protein can directly induce AKI and promote severe 
AKI under ischemic conditions [79]. Mechanically, we 
uncover that SARS-CoV-2 N protein can bind and 
activate Smad3 signaling to trigger the p21-dependent 
cell death pathway via the G1 cell cycle arrest 
mechanism [79, 80]. Thus, targeting Smad3 by genic 
deletion of Smad3 or pharmacological inhibition of 
Smad3 signaling can protect against SARS-CoV-2 
N-induced AKI [79]. As Smad3 is a key mediator of 
renal fibrosis [51], it is highly possible that after 
SARS-CoV-2 infection, intracellular release of 
SARS-CoV-2 N protein can bind and activate TGF-β/ 
Smad3 signaling to induce the cell death pathway to 
trigger renal inflammation and “cytokine storm”, 
resulting in AKI. It is also possible that activation of 

renal TGF-β/Smad3 signaling results in COVID-19 
associated fibrosis including lung and renal fibrosis 
[81]. Thus, targeting Smad3 may represent as a novel 
and promising therapeutic strategy for critically ill 
COVID-19 patients. 

Regulation of Smad3-dependent 
microRNAs and lncRNA in renal 
inflammation and fibrosis 

Noncoding RNAs, including miRNAs, siRNAs, 
piwi-interacting RNAs, and various types of 
lncRNAs, are involved in the progression of kidney 
diseases. MiRNAs are small noncoding RNAs of 
approximately 22 nucleotides in length, and they bind 
to the 30-untranslated region of target genes to 
regulate gene expression by translational repression 
or induction of mRNA degradation. MiRNAs are 
important regulators of cell proliferation, 
differentiation, and apoptosis [82, 83]. 

It has been well documented that TGF-β/Smad 
signaling plays a critical regulatory role in renal 
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inflammation and fibrosis by regulating a number of 
miRNAs [6, 84] (Figure 4). TGF-β1/Smad3 signaling is 
capable of inducing miR-21 [85], miR-192 [86] and 
miR-377 [87], but it reduces the expression of miR-200 
[88] and miR-29 families [89]. MiR-21 is reported to 
play a role in the inflammatory response, immuno-
modulation and fibrotic disorders [83]. MiR-21 is 
upregulated in animal models with progressive renal 
fibrosis and inhibition of miR-21 ameliorates fibrosis 
in obstructive and diabetic kidney diseases [90-92]. 
Mechanistically, Smad3 can directly interact with 
miR-21 and induce the expression of miR-21 in 
response to TGF-β1 and AGEs [85, 93]. MiR-192 is 
also a downstream mediator of TGF-β/Smad3 in 
renal fibrosis. Smad3 could physically interact with 
the promoter region of miR-192 to induce its 
expression [94]. Thus, TGF-β-induced tubular 
miR-192 expression is Smad3-dependent because 
knockdown of Smad3 can block TGF-β1-induced 
tubular miR-192 expression and renal fibrosis [94]. 
This observation is further confirmed in Smad3 KO 
MEF cells and in the UUO kidney in which deletion of 
Smad3 inhibits renal miR-192 and progressive renal 
fibrosis [94]. MiR-433 also acts as a downstream 
mediator of TGF-β/Smad3-driven renal fibrosis by 
targeting the antizyme inhibitor Azin1 as silencing 

miR-433 upregulates Azin1 and inhibits renal fibrosis 
in a mouse model of UUO [95]. In contrast, miR-29 is 
protective in renal fibrosis and is negatively regulated 
by TGF-β via Smad3 as the promoter region of miR-29 
contains at least two conserved Smad3 binding-sites 
and Smad3 could physically interact with the 
promoter region of miR-29 [89].Thus, Smad3 acts as a 
suppressor to negatively regulate miR-29 expression 
during TGF-β-mediated fibrosis, and deletion of 
Smad3 enhances miR-29b expression, thereby 
inhibiting collagen matrix expression under high 
TGF-β1 and diabetic conditions [89, 96, 97]. 

Increasing evidence shows that renal 
inflammation and fibrosis are also tightly regulated 
by a few Smad3-dependent long noncoding RNAs 
(lncRNAs) [98] (Figure 4). Indeed, research into the 
lncRNAs is more promising for a better 
understanding of the pathogenic mechanisms of 
kidney diseases. Compared to miRNAs, lncRNAs are 
transcripts with lengths exceeding 200 nucleotides 
without protein-coding functions. LncRNA regulates 
both target DNAs/RNAs and proteins 
transcriptionally or post-transcriptionally [99]. By 
using the high-throughput RNA sequencing, we 
identify that 413 lncRNAs (plus or minus two-fold to 
ninefold) are differentially expressed in WT and 

Smad3 KO kidneys of anti-glomerular 
basement membranous glomerulonephritis 
(anti-GBM GN), of them, 21 Smad3-dependent 
common lncRNAs are altered in both UUO and 
anti-GBM GN models [100]. Erbb4-IR is a novel 
Smad3-dependent lncRNA and is highly 
upregulated in the UUO and diabetic kidneys 
with progressive renal fibrosis [101, 102]. The 
functional role of Erbb4-IR in renal fibrosis is 
demonstrated by silencing this lncRNA to 
protect kidneys from both UUO and diabetic 
injury [101, 102]. Mechanistically, Erbb4-IR 
mediates renal fibrosis in the UUO kidney and 
diabetic nephropathy by targeting renal Smad7 
and miR-29b [101, 102]. The Arid2-IR is also 
another novel Smad3-related lncRNA. Arid2-IR 
is one of the most highly upregulated lncRNAs 
in the UUO kidney with progressive renal 
inflammation and fibrosis. The promoter region 
of Arid2-IR contains a Smad3 binding site and 
thus deletion of Smad3 gene completely 
blocked upregulation of Arid2-IR in the UUO 
kidney, suggesting a positive regulatory role for 
Smad3 in Arid2-IR expression during renal 
inflammation. Further study reveals that 
Arid2-IR mediates renal inflammation via the 
NF-κB-dependent mechanism and thus 
Arid2-IR may be a downstream mediator of 
Smad3 and functions to promote NF-κB-driven 

 

 
Figure 4. Smad3-dependent miRNAs and lncRNAs related to renal fibrosis and 
inflammation and Smad3 targeting therapy for renal fibrosis and inflammation. 
Smad3 positively regulate pro-fibrogenic or pro-inflammatory miRNAs and lncRNAs, but 
negatively regulate those to mediate renal fibrosis and inflammation. Specifically targeting Smad3 
directly with inhibitors or Smad7 agonists or indirectly to its downstream non-coding RNAs may 
be the potential therapeutic strategies for renal fibrosis and inflammation. Red arrows/symbols 
represent pathogenic or positive regulation pathway, while blue lines/symbols indicate protective 
or negative regulation pathways. 
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renal inflammation without effect on TGF-β/Smad3- 
mediated renal fibrosis in a mouse model of 
obstructive nephropathy and in vitro [103]. LRNA9884 
has been shown to play a proinflammatory role and 
mediates renal inflammation in db/db mice via a 
MCP-1-dependent mechanism [104]. Further study 
also shows that LRNA9884 can induce renal 
inflammation in AKI mouse model by upregulating 
macrophage migration inhibitory factor via the 
NF-κB-dependent mechanism [104, 105]. Lnc-TSI is a 
lncRNA which is specifically expressed in the fibrotic 
kidney and negatively correlated with the severity of 
renal fibrosis. Interestingly, repeated renal biopsy 
reveals that the lower expression levels of renal 
Lnc-TSI at the initial kidney biopsy is associated with 
a more pronounced decline in renal function and 
fibrosis 4 years later, suggesting that kidney-enriched 
Lnc-TSI may protect against renal fibrogenesis [106]. 
It is possible that Lnc-TSI may function as a negative 
regulator of TGF-β1/Smad3 signaling as 
overexpression of Lnc-TSI can block Smad3 activation 
and interaction with TβRI by binding with the MH2 
domain of Smad3 [106]. Thus, Smad3 suppresses 
Lnc-TSI expression through binding with the 
promoter of Lnc-TSI under TGF-β1 stimulation [106]. 
GAS5 is also an anti-fibrotic lncRNA and is highly 
expressed in normal renal tubular epithelial cells but 
lost in the fibrotic kidney at 7 days after UUO surgery 
[107]. GAS5 is tightly regulated by Smad3 and thus 
deletion of Smad3 dramatically inhibits GAS5 in the 
kidneys of UUO mice in vivo and in TGF-β-stimulated 
MEFs in vitro [107]. In addition, TCONS_00088786 and 
TCONS_01496394 are TGF-β/Smad3-associated 
lncRNAs as they contain potential binding sites for 
Smad3 and silencing TCONS_00088786 inhibits renal 
interstitial fibrosis in UUO rat model [108]. 

Therapeutic potential for renal 
inflammation and fibrosis by targeting 
Smad3 signaling 

Although TGF-β/Smad3 has been considered as 
a major pathway for fibrogenesis, the diverse roles of 
this pathway in renal inflammation and fibrosis have 
hampered the development of anti-TGF-β treatment 
in general [4-7]. The failure of anti-TGF-β antibodies- 
based therapy in recent clinical trials has proved that 
treatment by targeting upstream TGF-β signaling may 
not be a good strategy for the treatment of kidney 
diseases [109, 110]. Disappointingly, treatment with a 
humanized monoclonal neutralizing antibody against 
TGF-β1 (LY2382770) for patients with diabetic 
nephropathy shows no efficacy on the improvements 
of renal dysfunction including serum creatinine, 
estimated GFR (eGFR), and proteinuria [109]. 

Similarly, the use of Fresolimumab (another 
humanized monoclonal antibody) that inhibits all 
three isoforms of TGF-β also fails to achieve the 
endpoints of proteinuria reduction in patients with 
FSGS [110]. It is highly possible that blockade of the 
entire TGF-β1 signaling may also promote 
inflammation as TGF-β1 is a potent anti-inflammatory 
cytokine [4, 111-113]. Thus, targeting the downstream 
TGF-β signaling molecules specifically related to 
fibrosis or inflammation could be a better therapeutic 
approach. Many studies have reported that Smad3 
can directly bind to the DNA sequences to regulate 
expression of several fibrogenic genes and the process 
of EMT and MMT [51, 84, 114]. Thus, treatment 
should aim to specifically target Smad3, and its 
dependent genes directly related to fibrogenesis or 
inflammation, rather than the entire TGF-β signaling 
(Figure 4). SIS3 is a small molecule capable of directly 
suppressing Smad3-mediated expression of collagens 
matrix [115] and inhibiting the accumulation of 
α-SMA+ myofibroblasts in the fibrotic kidney by 
blocking Smad3-dependent myofibroblasts 
transdifferentiation including MMT [28, 31, 32]. 
Treatment with SIS3 may also block Smad3- 
dependent auto-induction of TGF-β1 via a positive 
feedback loop of TGF-β1/Smad3 signaling [116]. 
Furthermore, SIS3 can ameliorate renal inflammation 
and tubular apoptosis in both AKI and UUO kidneys 
[116, 117]. Excitingly, our recent study also discovered 
the therapeutic effect of SIS3 on SARS-CoV-2 
N-induced AKI by inhibiting Smad3-dependent p21- 
mediated cell death pathway [79]. Thus, specifically 
targeting Smad3 may be a novel therapeutic approach 
for kidney diseases. 

In the fibrotic and inflammatory kidney, 
overactive Smad3 signaling is associated with the loss 
of renal Smad7 [20, 21, 114]. Thus rebalancing 
Smad3/Smad7 signaling by either inhibiting Smad3 
and/or activating Smad7 may be a better approach 
for the development of effective and specific therapy 
for kidney diseases [7]. This is supported by many 
studies in which overexpressing renal Smad7 can 
block TGF-β/Smad3-mediated renal fibrosis and 
NF-κB-driven renal inflammation in diabetic kidney 
disease [22, 118], crescentic glomerulonephritis [119], 
UUO [120], AKI [69], and hypertensive nephropathy 
[22, 120, 121]. Recently, we also identified that 
naringenin (NG), a flavonoid from grapefruit and 
citrus fruits [122], functions as a Smad3 inhibitor, 
whereas asiatic acid (AA), a purified compound from 
Centella asiatica [123], is a Smad7 agonist. The 
combination of these two purified traditional Chinese 
medicine compounds significantly rebalances the 
Smad3/Smad7 signaling and thus additively 
enhances the inhibitory effect on TGF-β1/Smad3 
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signaling and renal fibrosis in vitro and in vivo [124]. 
Quercetin is also functioning to inhibit Smad3 
signaling and has been shown to have therapeutic 
effect on cisplatin-induced AKI [125, 126]. GQ5 (a 
small compound isolated from Resina 
Toxicodendron) can block the interaction of Smad3 
with TβRI and attenuates renal fibrosis [127]. 
Resveratrol (RSV) is a natural plant polyphenol with 
anti-fibrotic and anti-inflammatory properties. RSV 
treatment can significantly activate Sirt1 to suppress 
Smad3 acetylation and the TGF-β1-induced fibrotic 
response in the remnant kidney of 5/6 
nephrectomized rodents, obstructed kidney model or 
in cultured cells following TGF-β1 treatment [128]. 
All-trans retinoic acid (ATRA), an active metabolite of 
vitamin A, belongs to the retinoids family. Treatment 
with ATRA inactivates Smad3 signaling and protects 
against the diabetic kidney disease by upregulating 
renal Smad7 [129]. 

Increasing evidence also shows that specifically 
altering the Smad3-dependent microRNAs or 
lncRNAs related to fibrogenesis or inflammation 
locally in the diseased kidney could be a better 
therapeutic approach for combating kidney disorders. 
As described elsewhere [84, 98] and illustrated in 
Figure 4, epigenetically targeting miR-21 [85, 91], 
miR-192 [86, 94], miR-433 [95], miR-29 [96, 97] and 
miR-200 family [88], Erbb4-IR [102], LRNA9884 [104, 
105], Arid2-IR [103], and Lnc-TSI [106] have been 
shown to be a novel and specific anti-fibrosis and 
anti-inflammation therapy for kidney diseases. More 
excitingly, we have developed a kidney-specifically 
genes delivery system by using non-invasive 
ultrasound-microbubble-technique, which can 
effectively transfer the genes or miRNAs/lncRNAs 
into the kidney to block renal inflammation and 
fibrosis without detectable side effects [85, 95, 96, 102, 
103]. 

Conclusions 
The current advances in research into the 

regulation of TGF-β signaling and particularly the 
Smad3-dependent noncoding RNAs have improved 
our understanding of the molecular mechanisms of 
renal inflammation and fibrosis in kidney diseases. In 
term of renal fibrosis, Smad3 is pathogenic and 
overreactive, whereas Smad7 is protective but lost in 
the fibrotic kidney. Thus, rebalancing Smad3/Smad7 
signaling may be a better therapeutic approach for 
combating kidney diseases. In addition, epigenetic 
identification of Smad3-dependent non-coding RANs 
that specifically regulate renal inflammation and 
fibrosis may be the key step forwards the 
development of effective therapy for kidney diseases. 
It is also highly possible that targeting Smad3 may be 

a novel therapeutic potential for AKI by protecting 
kidney cell death from G1 cell cycle arrest. 
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