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Abstract 

Our study aims at developing an interferon-stimulated genes (ISGs) signature that could predict overall 
survival (OS) in cancer patients, which enrolled a total of 5643 pan-cancer patients. Linear models for 
microarray data method analysis were conducted to identify the differentially expressed prognostic genes 
in the global ISGs family. Time-dependent receiver operating characteristic (ROC) and Kaplan-Meier 
survival analysis were used to test the efficiency of a multi-gene signature in predicting the prognosis of 
pan-cancer patients. The prognostic performance and potential biological function of gene signature were 
verified by quantitative real-time PCR in a pan-cancer independent cohort. Three ISGs genes were finally 
identified to build a classifier, a specific risk score formula, with which patients were classified into the 
low- or high-risk groups. Time-dependent ROC analyses proved prognostic accuracy. Then, its 
prognostic value was validated in seven external validation series. A nomogram was constructed to guide 
the individualized treatment of patients with lung adenocarcinoma. Biological pathway and tumor immune 
infiltration analysis showed that the signature might cause poor prognosis by blocking NK cell activation. 
Finally, the signature in our centers was confirmed by real-time quantitative PCR. A robust ISGs-related 
feature was discovered to effectively classify pan-cancer patients into subgroups with different OS. 
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Introduction 
According to the latest worldwide cancer 

statistics, breast cancer (BRCA), lung cancer, and 
colorectal cancer (CRC) separately rank the first, two, 
and three prevalent malignant tumors in the world 
[1], while lung and colorectal cancer cause the most 
and the third cancer-related death every year. Lung 
adenocarcinoma (LUAD) and colon adenocarcinoma 
(COAD) are the most common subtypes of lung 
cancer and CRC, respectively. Even with the same 

pathological subtype, the difference in prognosis 
between breast cancer, lung cancer, and colorectal 
cancer still varied significantly due to inter-/intra- 
tumor heterogeneity [2]. For those cancer patients 
with poor prognosis or even untreated, the 
introduction of immunotherapy has completely 
changed the mode and method of cancer treatment 
and improved the survival rate [3]. Kidney clear cell 
carcinoma (KIRC) stands out as one of the most 
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immune-infiltrated tumors in pan-cancer compari-
sons, which may be promising to respond 
efficaciously to immunotherapy [4]. However, it is 
still unclear which patients with poor prognoses 
should receive immunotherapy to achieve better 
survival. 

Genomic abnormalities were assessed by 
pan-cancer analysis utilizing sequencing methods, 
universal model systems and projects, regardless of 
the tumor origin [5]. The data of prevalent pan-cancer 
studies were mainly from the TCGA database, which 
stored sequences of all transcripts from more than 30 
cancers [6]. Molecular similarities appeared in cancers 
originating from different organs according to the 
results of pan-cancer analysis, compared to those, 
which had different genomic profiles, originating 
from the same tissue [7, 8]. Thus, the trend of genomic 
analysis to classify patients into subtypes was on the 
basis of pan-cancer data. Pan-cancer prognostic 
genomic analysis was required to make up for 
excessive hidden defects in the practical application of 
the mainstream staging system, which has been 
determined to have an association with cancer 
prognosis. Predominant assessment models 
encompassed too many independent variables and 
were limited by the scales and tumor types involved 
in validation cohorts, so it was difficult to warrant 
that these models can effectively and stably predict 
and stratify patients[9]. Therefore, this study aimed to 
stratify patients with fewer variables to obtain higher 
operability and economic value. Moreover, more and 
more pan-cancer studies, the key prognostic genes of 
common cancers, and their impact on tumor biology 
and microenvironment have not been systematically 
analyzed, which was also the significance of this 
research.  

The expression of classical interferon-stimulated 
genes (ISGs) that have key immune effector functions 
was induced by the IFN receptor and the Janus kinase 
(JAK)-signal transducer and activator of transcription 
1 (STAT1) pathway [10]. The type I interferon 
signaling promoted dendritic cell function and CD8 T 
cell cross-priming, while type II interferon signaling 
changed tumors to STAT1-related epigenomic. Both 
IFNs augmented the expression of ISGs which 
mediated anti-tumor response [11]. Decades of 
research have proved that many of the protein 
products encoded by ISGs made contributions to one 
or more cellular outcomes, including antiviral 
defense, antiproliferative activities, and stimulation of 
adaptive immunity[12]. Nevertheless, few have been 
characterized with respect to anti-tumor potential. 
Only one study found that the expression of ISG was 
correlated with radiotherapy resistance and outcome 
in breast cancer patients [13]. More studies were 

required to know about their anti-tumor activity, their 
target specificity, and their mechanisms of action[14]. 

In our study, we divided TCGA pan-cancer 
cohorts into subgroups based on the medium of their 
overall survival (OS). ISGs family was related to 
immune microenvironment and prognosis. Then we 
demonstrated that the gene signatures constructed by 
the three ISGS, NDC80, NPAS2, and AHNAK2, were 
significantly correlated with the prognosis of patients 
and seemed better than the traditional staging criteria 
in TCGA-LUAD cohorts and seven independent 
validation series. An intuitive and comprehensive 
nomogram was developed to predict the probability 
of OS in LUAD patients. Biological pathway and 
tumor immune infiltration analysis showed that the 
signature might cause poor prognosis by blocking NK 
cell activation. 

Materials and Methods 
Publicly available mRNA data and ISGs sets 

This study incorporated data from two publicly 
available datasets. The detailed workflow was shown 
in Figure 1. TCGA data of samples from pan-cancer 
patients (Illumina HiSeq 2000) were acquired from the 
UCSC Xena (https://tcga.xenahubs.net). Using 
bioinformatic technology, we can use transcriptome 
data to analyze the immune infiltration and biology 
characteristics in tumors for pan-cancer cohorts, 
including LUAD, BRCA, KIRC, and COAD patients 
[15]. More LUAD and COAD cases were selected 
from GSE30219, GSE50081, GSE126044, and 
GSE39582. These datasets were downloaded from the 
GEO database (http://www.ncbi.nlm.nih.gov/geo/), 
to serve as one of the individual validation sets. More 
gene expression and prognosis data of BRCA and 
KIRC patients were downloaded from Kaplan-Meier 
(K-M) plotter database (http://kmplot.com/ 
analysis/) [16, 17]. After log2 transformation and 
quantile normalization, mRNA expression data 
detected with more than one probe were calculated by 
mean expression. ISGs list was excerpted from 
previous research [14]. Since this study paid 
particular attention to the response of 
immunotherapy, patients with advanced KIRC and 
LUAD were specifically included in the validation 
cohorts to evaluate the predictive performance. 
Patients with incomplete information were excluded. 

Immune infiltration estimation 
To explore the immune infiltration in 

pan-cancer, CIBERSORT was used to calculate the 
proportion of 22 immune cells and revealed the detail 
of immune infiltration [18, 19], while R package 
“ssGSEA” was associated with supplied cell makers 
[3]. 
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Figure 1. The workflow of establishment and validation of an interferon-stimulated genes (ISGs) prognostic signature in pan-cancer patients. 

 

Differentially-expressed analysis and signature 
generation 

Linear model for microarray data (LIMMA) 
method was conducted to evaluate differentially 
expressed genes (DEGs) between pan-cancer patients 
who had different OS statuses. The Cox proportional 
hazards regression model was used to identify 
significant prognostic genes and to determine 
correlation estimated coefficients, which were 
employed to calculate a risk score formula with the 
expression of optimized genes.  

Statistics for classification, prediction, and 
validation in the TCGA and GEO series 

Patients were divided into high-risk and 
low-risk groups according to the signature formula. 
After that, we implemented time-dependent receiver 
operating characteristic (ROC) analysis to determine 
the cut-off value and to calculate the area under the 
curve (AUC) for 1‐, 3‐, and 5‐year OS and RFS in order 
to confirm the signature performance based on the 
“survivalROC” R package [20]. The K-M survival 
curve analyses and log-rank tests were used to 
evaluate the prognostic significance of the risk score 
formula. Evaluation of the relationship between the 
distribution of patients’ risk scores and survival and 
recurrence status was conducted. Based on 
“ComplexHeatmap” R package, the research group 
constructed a heatmap with cluster analysis in view of 
the gene expression difference [21]. The same protocol 

was used to verify the signature in GSE30219, 
GSE50081, and GSE39582 to further investigate the 
classification constancy. Univariable Cox regression 
analyses were used to compare the effects of signature 
and other clinicopathological variables in the training 
and validation cohorts. The variables with P < 0.05 in 
the univariate model were used to construct a 
nomogram. ROC and K-M survival analyses were 
used to evaluate the nomogram. 

Pan-cancer validation series including 
department of thoracic surgery, National 
Cancer Center (NCC)/Cancer Hospital, 
Chinese Academy of Medical Sciences 
(CHCAMS) and Fudan University Shanghai 
Cancer Center (FUSCC)  

To further substantiate that the results are 
significant regardless of the data set and tumor type 
in the study, we verified the results in pan-cancer 
validation cohorts, which comprised patients from 
CHCAMS, FUSCC, and K-M plotter database. This 
study retrospectively analyzed 76 LUAD patients and 
41 CRC patients who underwent radical surgery in 
CHCAMS and FUSCC from 2011 to 2014. The study 
design was approved by the ethics committee or 
institutional review board of each participating 
clinical center, and the written informed consent of all 
patients was provided before enrollment. According 
to the manufacturer's protocol, this study conducted 
total RNA extraction and reverse transcription. The 
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primers used to amplify specific genes are shown in 
Table S1. Furthermore, this research enrolled 1879 
BRCA patients and 82 KIRC patients from the K-M 
plotter database to compose extensive pan-cancer 
series. Since KIRC patients benefited significantly 
from immunotherapy and immunotherapy was only 
suitable for specific patient groups in the clinic, this 
study only included stage IV KIRC patients to delve 
into the potential benefit population of 
immunotherapy. The same protocol was applied to 
determine the signature in this pan-cancer validation 
series. 

Functional enrichment analysis and gene set 
variation analysis (GSVA) 

Functional enrichment analysis of KEGG and 
GO pathway was performed to determine 
significantly enriched pathways of DEGs correlated 
with the signature using the R package 
“clusterProfiler” [22]. Biological pathways with P < 
0.05 were considered as significant using functional 
annotation chart options with the whole human 
genome as background. GSVA was conducted to 
measure the signaling pathway variation score for 
each sample in TCGA-LUAD cohorts based on 
“GSVA” R package [23]. Meanwhile, Gene Set 
Enrichment Analysis (GSEA) was also performed 
between different risk subgroups via “javaGSEA” to 
obtain GSEA results [24]. 

Statistical analysis 
Most analyses used in this study were performed 

by R software (version 4.1.1). WilcoxTest was used to 
compare the infiltration of immune cells in two 
groups. For the survival analysis, P value was 
calculated with the log-rank test. P < 0.05 was 
considered as statistically significant.  

Results 
Correlation of genome and clinical parameters 
in pan-cancer cohorts and construction of 
predicting signature 

A total of 2500 patients were enrolled from 
TCGA pan-cancer cohorts, including 1045 BRCA 
patients, 437 COAD patients, 517 KIRC patients, and 
501 LUAD patients, with a medium OS of 28 months. 
Among them, women accounted for 67.36%. The 
analysis of DEGs suggested that important genes 
were associated with prognosis (Fig. 2A). Only five 
differential transcripts in four carcinomas were 
concerned (Fig. S1A-S1D and Table S2). A transcript, 
ENSG00000270061, was sense intronic to CCDC92, 
which was affiliated with the ISGs family. CCDC92 
was dramatically deregulated in pan-cancer patients 
with a worse prognosis (Fig. S2), with a fold change ≥ 

1.2. Furthermore, the relationship between the 
transcription of CCDC92 and the immune 
microenvironment was detected. The upregulating 
transcription was associated with lower neutrophils 
and macrophages infiltration (Fig. 2B and 2C). 315 
ISGs were excerpted as ISGs family (Table S3), in 
which 12 ISGs were found as helpful prognostic genes 
by the LIMMA method, with a fold change ≥ 1.5 (Fig. 
2D and S1E-S1F). A Cox proportional hazards 
regression model was applied to select the most 
predictive genes, which identified a final set of 3 
genes, including NDC80, NPAS2, and AHNAK2 (P < 
0.05). Upregulating those ISGs predicted worse 
survival in LUAD patients. We also calculated a risk 
value as follows: Risk Value = (0.2445880× NDC80 
expression) + (0.1861538 × NPAS2 expression) + 
(0.1242815× AHNAK2 expression). This formula was 
used to calculate the risk score for each patient in the 
TCGA-LUAD, five individual validation cohorts 
downloaded from public databases and two Chinese 
medical centers. The demographic and clinical 
characteristics of the GEO and Chinese cohorts were 
shown in Table 1, while the K-M plotter database did 
not provide more clinical information systematically. 
In the training cohort, the optimized risk value was 
used in LUAD patients from TCGA set to divide them 
into high-risk and low-risk groups (Fig. 2E). The K-M 
survival analyses displayed that the OS in the 
high-risk group was significantly worse than the 
low-risk group (Fig. 2F, P < 0.0001). The areas under 
the time-dependent ROC curves were calculated to 
assess the prognostic performance. The 
three-ISG-based signature had AUC values of 0.706, 
0.698, and 0.646 in TCGA LUAD set at 1, 3, and 5 
years, respectively (Fig. 2G).  

Validation of the prognostic model for overall 
survival in pan-cancer cohorts 

GSE30219 was used as a validation cohort to 
measure the three-ISG-based signature. Patients from 
GSE30219 were divided into a high-risk group (N = 
58) and a low-risk group (N = 25) with the same 
formula (Fig. 3A). The heatmap showed patients’ 
clinical characteristics and detailed expression 
patterns of 3 ISGs (Fig. 3B). K-M survival analyses 
revealed that patients in the low-risk group had 
significantly better OS and relapse-free survival (RFS) 
than the high-risk group (Fig. 3C and Fig. 3D). 
Similarly, time-dependent ROC analyses were 
conducted to assess the prognostic function of the 
three-ISG-based classifier, with AUC 0.921, 0.795, and 
0.796 at the OS time of 1, 3, and 5 years, respectively 
(Fig. 3E). For predicting relapse in GSE30219 set at 1, 
3, and 5 years, the signature had AUC values of 0.802, 
0.838, and 0.816, respectively (Fig. 3F). GSE50081 and 
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GSE39582 were arranged as pan-cancer cohorts after 
the research group demonstrated that the prognostic 
model had a robust ability to predict LUAD patients’ 
OS and RFS. Due to tumor heterogeneity, we matched 
clinicopathological features in two datasets to 
determine the best applicable population of the 
predicting model. A total of 229 patients with CRC 
were extracted from GSE39582 in order to match the 
pathological characteristics of each group (Table 1). In 
GSE50081, patients with stage I-II LUAD were 
divided into two groups based on the risk value (Fig. 
3G). The 1-years AUC value of the three-ISG-based 
signature supported the previous conclusion that the 
model had excellent accuracy and sensitivity in 
predicting LUAD patients’ OS (Fig 3H). OS of patients 
in the low-risk group seemed obviously better than 
the high-risk group according to K-M survival 
analyses (Fig 3I). In GSE39582, patients with stage I-II 
CRC showed a similar distribution (Fig 3J). Although 
the predicting performance appeared to decline (Fig. 
3K), the K-M survival analyses revealed that groups 

divided by three-ISG-based signature had a 
substantial discrepancy in OS (Fig. 3L).  

By dividing patients in the TCGA-LUAD, 
GSE30219, GSE50081, and GSE39582 cohorts into 
subgroups according to their clinicopathological 
features, subgroup K-M survival analysis indicated 
that the signature had more exactly clinical values 
than distant metastasis for TCGA-LUAD patients 
(Fig. S3A-S3F). Whether gene signatures had the 
comparative predictive performance in patients with 
different tumor stages had contradictory conclusions 
(Fig. S3A, S3B, and S3G-S3J). In light of lymph nodes 
metastasis (LNM), the signature had more robust 
discrimination for LNM-negative LUAD patients in 
GSE50081 (Fig. S3K and S3L). Thus, the study 
included non-metastasis CRC patients from GSE39582 
and proved that the signature better distinguished 
patients with different prognoses than other 
clinicopathological features (Table 2). This research 
team proved that signature had good differentiation 
performance in early, non-metastatic tumors. 

 

Table 1. Clinicopathological characteristics of patients in the training and validation cohorts (N (%)). 

Characteristics Training cohort   Validation cohort 
TCGA-LUAD  GSE30219 GSE50081 GSE39582 CHCAMS FUSCC 

 N=83 N=127 N=229 N=76 N=41 
Age        
 <60 136 (27.1)  37 (44.6) 19 (15.0) 45 (19.7) 34 (44.7) 10 (24.4) 
 ≥60 355 (70.9)  46 (55.4) 108 (85.0) 183 (79.9) 42 (55.3) 31 (75.6) 
NA 10 (2.0)  0 (0) 0 (0) 1 (0.4) 0 (0) 0 (0) 
 Median (IQR) 66 (59-72)  60 (55-69) 69.9 (62.7-75.7) 69 (62-77) 60 (51-69) 63 (57-71) 
Gender        
 Female 268 (53.5)  18 (21.7) 62 (48.8) 92 (40.2) 48 (63.2) 14 (34.1) 
 Male 233 (46.5)  65 (78.3) 65 (51.2) 137 (59.8) 28 (36.8) 27 (65.9) 
Primary site        
 Right 298 (59.5)  \ \ 87 (38.0) 0 (0) 20 (48.8) 
 Left 195 (38.9)  \ \ 142 (62.0) 0 (0) 21 (51.2) 
NA 8 (1.6)  83 (100) 127 (100) 0 (0) 76 (100) 0 (0) 
T stage        
 T0 and T1 166 (33.1)  69 (83.1) 43 (33.9) 9 (3.9) 6 (7.9) 0 (0) 
 T2 270 (53.9)  12 (14.5) 82 (64.5) 28 (12.2) 54 (71.1) 0 (0) 
 T3 44 (8.8)  2 (2.4) 2 (1.6) 192 (83.9) 7 (9.2) 11 (26.8) 
 T4 18 (3.6)  0 (0) 0 (0) 0 (0) 9 (11.8) 30 (73.2) 
 TX 3 (0.6)  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
N stage        
 N0 326 (65.1)  80 (96.4) 94 (74.0) 229 (100) 35 (46.1) 41 (100) 
 N1 92 (18.3)  3 (3.6) 33 (26.0) 0 (0) 15 (19.7) 0 (0) 
 N2 68 (13.6)  0 (0) 0 (0) 0 (0) 26 (34.2) 0 (0) 
 N3 2 (0.4)  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 NX 13 (2.6)  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
M stage        
 M0 474 (94.6)  83 (100) 127 (100) 229 (100) 76 (100) 41 (100) 
 M1 25 (5.0)  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
 MX 2 (0.4)  0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
OS        
 Alive 320 (63.9)  40 (48.2) 76 (59.8) 175 (76.4) 35 (46.1) 15 (36.6) 
 Death 181 (36.1)  43 (51.8) 51 (40.2) 54 (23.5) 41 (53.9) 26 (63.4) 
 Median (IQR) 22.5 (14.5-37.8)  68.5 (28-113) 52.8 (24-69.6) 61 (37-85)  67.4 (44-76.6)  43.8 (30-63.2) 
RFS        
 Non-relapse 286 (57.1)  56 (67.5) 87 (68.5) 197 (86.0) 0 (0) 32 (78.0) 
 Relapse 215 (42.9)  27 (32.5) 37 (29.1) 32 (14.0) 0 (0) 9 (22.0) 
 NA 0 (0)  0 (0) 3 (2.4) 0 (0) 76 (100) 0 (0) 
Median (IQR) 18.0 (10.1-29.6)  63 (18-107) 42 (15.6-64.8) 56 (30-83) \ 43.8 (12-60.8) 

CHCAMS, Cancer Hospital Chinese Academy of Medical Sciences; FUSCC, Fudan University Shanghai Cancer Center; TCGA, The Cancer Genome Atlas; LUAD, lung 
adenocarcinoma; IQR, interquartile range; OS, Overall survival; RFS, Relapse-free survival 
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Comprehensively combining the results of 
univariable cox regression, four variables, including 
the signature, T stage, N stage, and M stage, were 
determined as independent predictive parameters to 
develop a nomogram in TCGA-LUAD cohorts (Figure 
4A). The calibration curves were used to evaluate the 
reliability of nomogram prediction ability inconsis-
tency with the standard curve (Fig. 4B-4D). The 
distributions of patients’ survival and risk score 
calculated based on the nomogram were shown in 
Figure 4E. Investigators adapted the time-dependent 
ROC analyses to assess the predictive function of the 
nomogram, with AUC 0.745, 0.738, and 0.705 at 1-, 3-, 
and 5-years OS, respectively (Fig. 4F). Besides, the 
TNM staging system was crucial in clinical. To 
compare the ISGs signature with it, this research 
tested the AUC of the TNM stage and the signature by 
the bootstrap method (Figure 2G and 4F, P = 0.44), 
and there was no significant difference in sensitivity 
and specificity between the two prediction models, 
which demonstrated that the gene signature had the 
same predictive performance compared with TNM 
staging system. The K-M survival analyses displayed 
that the OS in the high-risk group was significantly 

worse (Fig. 4G, P < 0.0001).  

Potential biological function of the signature 
on tumor biology and microenvironment 

With the purpose of further gaining insight into 
the immunogenicity and microenvironment 
characteristics of ISG signature, we explored the 
relationship between the risk score and immune 
metagenes (Fig. 5A). The results showed that the risk 
score was not significantly correlated with the 
genomic changes of immune metagene (Fig. S4A) but 
significantly associated with natural killer (NK) cell 
activation at the transcriptome level (Fig. 5B and 5C), 
which put forward the potential mechanism of the 
ISG signature to predict the prognosis of LUAD 
patients. In order to study the relationship between 
TMB and ISG based signatures and verify signatures 
as potential markers of LUAD treatment response, we 
explored the distribution of TMB in ISG based 
signatures (Fig. 5D and 5E). TMB was positively 
correlated with the risk score, and the OS of LUAD 
patients with higher risk scores was worse than those 
with lower risk scores, no matter whether the 
patient’s TMB was low or high (Fig. 5F). 

 
 

Table 2. Univariate Cox regression for overall survival in TCGA-LUAD, GSE30219, GSE50081 and GSE39582 cohorts. 

Characteristics TCGA-LUAD GSE30219 GSE50081 GSE39582 
HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value 

Age  0.86  0.59  0.38  0.10 
 <60 1  1  1  1  
 ≥60 1.029 (0.742-1.428)  1.186 (0.636-2.211)  1.471 (0.626-3.457)  2.033 (0.868-4.762)  
Gender  0.59  0.78  0.23  0.12 
 Female 1  1  1  1  
 Male 1.084 (0.809-1.452)  1.114 (0.516-2.403)  1.410 (0.807-2.463)  1.588 (0.892-2.828)  
Primary site  0.89  \  \  0.95 
 Left 1      1  
Right 1.022 (0.756-1.381)      1.017 (0.576-1.796)  
T stage  <0.001  0.1  0.004  0.9 
 T0 and T1 1  1  1  1  
 T2 1.538 (1.072-2.206) 0.019 2.050 (1.022-4.114) 0.04 2.441 (1.217-4.896) 0.01 1.435 (0.168-12.30) 0.74 
 T3 2.969 (1.743-5.058) <0.001 0.927 (0.125-6.889) 0.94 11.73 (2.502-54.99) 0.002 1.572 (0.217-11.41) 0.66 
 T4 3.129 (1.606-6.097) <0.001       
 TX 5.057 (1.214-21.074) 0.026       
N stage  <0.001  0.76  0.01  \ 
 N0 1  1  1    
 N1 2.454 (1.740-3.461) <0.001 1.247 (0.299-5.202)  2.142 (1.199-3.825)    
 N2 3.065 (2.086-4.504) <0.001       
 N3 Inf 0.99       
 NX 1.411 (0.517-3.853) 0.50       
M stage  0.06  \  \  \ 
 M0 1        
 M1 2.275 (1.338-3.868) 0.002       
 MX 3.127 (0.434-22.538) 0.2579       
Risk group  <0.001  0.001  0.025  0.022 
 Low risk 1  1  1  1  
 High risk 2.553 (1.872-3.480)  2.741 (1.499-5.012)  1.917 (1.085-3.385)  1.903 (1.098-3.296)  

HR, hazard ratio; CI, confidence interval; TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; 
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Figure 2. Identification and establishment of ISGs-related signature: Five DEGs in the TCGA pan-cancer cohorts (A). The association between ENSG00000270061 and 
neutrophils infiltrated (B). The association between ENSG00000270061 and non-activated macrophages (C). The prognostic ISGs defined by the LIMMA method in the 
TCGA-LUAD cohort (D). The distributions of the risk score and survival status of LUAD patients (E). Kaplan–Meier survival curves of OS between high-risk and low-risk patients 
in the TCGA-LUAD cohort (F). AUC values of ROC predicted 1-, 3- and 5-year OS of the signature in the TCGA-LUAD cohort (G). 
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Figure 3. Validation of the 3-ISGs signature in GSE30219, GSE50081 and GSE39582 independent cohorts: The distributions of the risk score and survival status of LUAD and 
CRC patients (A, G and J). The expression pattern of the 3-ISGs signature and clinical features of patients from GSE30219 (B). Kaplan–Meier survival curves of OS (C, I, and L) 
and RFS (D) between high-risk and low-risk patients in three independent cohorts. Time-dependent ROC curves at the OS (E, H and K) and RFS (F) time of 1, 3, and 5 years. 

 
As part of the ISG family, overexpression of 

NDC80, NPAS2, and AHNAK2 changed tumor 
microenvironment. In particular, they resulted in a 
decrease in the proportion of resting dendritic cells 
(DCs) and mast cells, an increase in the proportion of 
macrophage M0 and activation of CD4 memory T cell 
in the TCGA (Fig. 6F), GSE30219 (Fig. S4B-S4E), and 
GSE50081 (Fig S4F-S4I) cohorts. As shown in Figure 
6A and 6B, there was a significant difference in NK 
cell mediated immunity pathway variation and 
enrichment score between patients in high-risk and 
low-risk groups according to the result of GSVA and 
GSEA. According to functional enrichment analysis of 
GO and KEGG pathway (Fig. 6C-6E), immunity and 
cytotoxicity mediated by NK cell activation were key 
biology processes for the formation of low-risk groups 
through JAK-STAT signaling pathway and cytokine- 
cytokine receptor interaction pathway. ULBP/RAET 
encoded ligands that affected the NK cells activation 
in downstream of the pathway. ULBP2 was highly 
expressed in patients in the high-risk group, which 
seemly was the reason for the increase of resting NK 
cells (Fig. 6E and Fig. S5A-S5B). Among all 22 immune 
cell types, resting NK cells were significantly 
positively correlated with signature while activated 
NK cells showed negative relation, indicating that the 

3-ISGs signature was different from the previously 
concerned family member, CCDC92. This signature 
played a pivotal role in the immune regulation of 
cancer patients by affecting NK cells (Fig. 6F-6H). 
Similar results were obtained from the analysis of 
GSE30219 (Fig. S5C and S5D). In addition, biological 
function enrichment analysis indicated that 
chromosome segregation and proliferation-related 
pathways also made great contributions to the 
prognosis of LUAD patients (Fig. S5E). 

Verification of prognostic performance and 
biological function of ISG signature 

In the pan-cancer series, this signature had a 
valuable performance in distinguishing BCRA 
patients whose survival varied widely (Fig. S6A, S6C, 
and S6E). In consideration of KIRC, stage IV patients 
with better prognosis, who might benefit from 
nivolumab treatment, could be tagged by this 
signature (Fig. S6B, S6D, and S6F). In CHCAMS and 
FUSCC cohorts, based on individual expression of the 
3 ISGs genes analyzed by Real-time PCR, we 
calculated the risk score in conformity with the same 
formula. Apparently, the survival time of the 
high-risk group was significantly shorter than that of 
the low-risk group (P < 0.05, Fig. 7A and 7B). The 
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AUC was 0.89/0.746, 0.723/0.862, and 0.783/0.685 at 
1, 3, and 5 years in CHCAMS/FUSCC cohorts, 
respectively (Fig. 7C and 7D). The expression pattern 
of 3-ISGs biomarkers and distribution of the 3 ISGs 
expression levels among pan-cancer patients 
belonging to the CHCAMS and FUSCC cohorts were 
shown in Figures 7E–7H. Besides, we analyzed the 
different expression levels of ISGs and ULBP2, a 
classical legend of NK cells, between tumor and 
non-tumor tissue in CRC cohorts (Fig. 7I). 
Considering the discrepancy between cancer and 
normal adjacent tissues, all data were acceptable, and 
except for NPAS2, the others had significant 
differences. Moreover, pan-cancer patients from the 
high-risk group apparently had high expression of 
NK cell ligands, such as ULBP2 (Fig. 7J, 7K, S6G and 
S6H). The Cox proportional hazards regression 
analysis was used to demonstrate the most 
significantly increased risk associated with signature 
in the CHCAMS and FUSCC cohorts (Table S4). The 
multivariate Cox regression in the training and 
validation cohort indicated that risk signature was the 
most stable evaluation variable, and the HR and 95% 
confidence interval (CI) were shown in Table 3. The 
detail of prognostic effects of time-dependent ROC 
analysis on the signature, TNM staging system, and 
nomogram in training and validation cohorts was 
displayed in Table S5. It was found that signature and 
TNM staging had considerable prognostic prediction 

performance, while the nomogram established by 
them performed best. In the post-immunotherapy 
cohort, the risk scores calculated using the same 
formula differed significantly between responders 
and non-responders during anti-PD-1 therapy (Fig.7L, 
P < 0.05). The AUC of the signature predicting 
response to anti-PD-1 therapy was 0.891 (Fig.7M, 95% 
CI 0.74-1.00), which signified that this gene signature 
can effectively predict the efficacy of immunotherapy. 
Because the efficacy of immunotherapy was closely 
related to T cells, the absolute value of tumor immune 
cell infiltration was calculated by the CIBERSORT 
algorithm (Fig. 7N). It was observed that the activated 
NK cells in the low-risk group were more than those 
in the high-risk group, despite the difference not 
being statistically significant. The strong correlation 
between the ISGs signature and the classical legend of 
NK cells, ULBP2, was demonstrated in the GSE120644 
cohort (Fig. 7O). Besides, the levels of gamma delta T 
cells were significantly increased in the low-risk 
group, which partially confirmed the possible 
mechanism of the NK cell activation pathway. 
Comprehensively taking the result of the 
post-immunotherapy cohort into consideration, the 
ISG-related signature was expected to predict the 
response to immunotherapy, especially the treatment 
related to cytotoxic T cells and NK cells in the tumor 
microenvironment. 

 

Table 3. Multivariate Cox regression for overall survival in training and validation cohorts. 

Characteristics TCGA-LUAD GSE30219 GSE50081 GSE39582 CHCAMS FUSCC  
HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value  

Age  0.21  0.64  0.58  0.07  <0.01  0.20  
 <60 1  1  1  1  1  1   
 ≥60 1.2 (0.9-1.8)  1.2 (0.6-2.2)  1.3 (0.5-3.1)  2.2 (0.9-5.3)  5.4 (2.3-13)  2.1 (0.7-6.7)   
Gender  0.93  0.79  0.15  0.08  0.02  0.54  
 Female 1  1  1  1  1  1   
 Male 1.0 (0.7-1.4)  0.9 (0.4-2.0)  1.5 (0.9-2.7)  1.7 (0.9-3.0)  0.4 (0.2-0.9)  0.7 (0.2-2.5)   
Primary site  0.98  \  \  0.78  \  <0.01  
 Left 1      1    1   
Right 1.0 (0.7-1.4)      1.1 (0.6-1.9)    0.1 (0.03-0.4)   
T stage  0.09  0.52  0.02  0.68  0.92  0.22  
 T0 and T1 1  1  1  1  1  \   
 T2 1.2 (0.8-1.6) 0.64 1.5 (0.7-3.3) 0.28 1.9 (0.9-4.0) 0.08 1.2 (0.1-10) 0.87 0.9 (0.6-1.7) 0.92 \   
 T3 2.4 (1.2-3.7) <0.01 0.5 (0.1-6.5) 0.60 15 (2.3-91) <0.01 1.4 (0.2-10) 0.76 2.0 (0.9-3.4) 0.90 1   
 T4 3.5 (0.6-5.0) 0.40       2.9 (0.3-5.0) 0.99 2.0 (0.7-6.1)   
 TX 4.7 (0.3-18) 0.42            
N stage  <0.01  0.81  0.03  \  0.02  \  
 N0 1  1  1    1     
 N1 2.1 (1.5-3.1) <0.01 0.8 (0.1-4.9)  2.0 (1.1-3.6)    2.4 (1.1-6.0) 0.04    
 N2 4.3 (3.0-6.7) <0.01       0.4 (0.1-0.9) 0.03    
 N3 Inf 0.99            
 NX 1.1 (0.3-5.2) 0.77            
M stage  0.02  \  \  \  \  \  
 M0 1             
 M1 3.9 (2.1-7.5) 0.03            
 MX 2.0 (0.4-2.6) 0.36            
Risk group  <0.01  <0.01  0.04  0.01  0.02  <0.01  
 Low risk 1  1  1  1  1  1   
 High risk 2.3 (1.7-3.2)  2.8 (1.4-5.3)  1.8 (1.1-3.2)  2.0 (1.2-3.5)  1.6 (1.1-2.5)  8.3 (2.9-24)   

TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; CHCAMS, Cancer Hospital Chinese Academy of Medical Sciences; FUSCC, Fudan University Shanghai 
Cancer Center; HR, hazard ratio; CI, confidence interval 
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Figure 4. Nomograms convey the results of prognostic models using the 3-ISGs signature and TNM staging system to predict OS of patients with LUAD (A). The calibration 
curve for predicting patients’ OS at 1-year(B). The calibration curve for predicting patients’ OS l at 3-year (C). The calibration curve for predicting patients’ OS at 5-year (D). The 
distributions of the risk score calculated by the nomogram and survival status of TCGA-LUAD patients (E). Time-dependent ROC analysis to assess the predictive function of the 
nomogram and TNM staging system at 1, 3, and 5 years (F). Kaplan–Meier survival curves of OS between high-risk and low-risk patients in the TCGA-LUAD cohort (G).  
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Figure 5. Relationship between risk score and immune-related signaling pathway in LUAD: The relationship between risk score and immune-related metagenes (A). Map of 
high-frequency mutation characteristics in patients from TCGA (B). The correlation analysis between risk score and metagenes (C). Significant gene sets enriched based on DEGs 
from LUAD patients with high- or low-risk scores (D). The distribution of TMB and risk scores (E). The survival analysis for LUAD patients according to risk score and TMB (F). 

 

Discussion 
Due to inter-/intra-tumor heterogeneity, the 

prognosis of pan-cancer patients with the same 
pathological stage was of a wide variety, even among 
patients with localized carcinoma. In this study, 
three-ISGs signature, which was applied to evaluate 
OS in pan-cancer patients, and TNM staging system 
were incorporated to build a nomogram. The ROC 
and K-M survival curves indicated that the three-ISGs 
signature had robust discrimination performance. The 
application of the nomogram was confirmed 
regarding its calibration curve, which showed the 
possibility of OS predicted by the nomogram was 
highly consistent with the reality. Moreover, the 
obstruction of the NK cell activation pathway was 
considered as a cause of poor prognosis in biological 
function and tumor immune infiltration analysis. 

Previous studies have tried to identify molecular 
markers for the detection of response to immuno-
therapy and OS in pan-cancer patients, especially in 
KIRC and LUAD [25, 26]. Many reliable results have 
been achieved. Actually, programmed death ligand-1 
tested by IHC was a predictive marker for 

immunotherapy in solid tumors [27]. However, it did 
not have a direct correlation with the prognosis of 
patients, while the specificity of prediction could not 
reach the expectation. Because of durable survival 
benefit, PD-1/PD-L1 axis immunotherapy was the 
option of first-line treatment for LUAD patients [28]. 
The efficacy of immunotherapy in patients with CRC 
or BRCA still needed more evidence to substantiate 
the application. Although immunotherapy prolonged 
patient survival in the clinic, the response rate of 
unselected pan-cancer patients was approximately 
20%, observing acquired resistance [29, 30]. Because 
only a minority of the patients was responsive to 
immunotherapy, efforts were made to determine the 
most suitable population for immunotherapy. Most 
studies concentrated on the evaluation of immune 
cells or tumor mutational burden on the efficacy of 
immunotherapy in pan-cancer patients, lack of 
evidence supporting at the transcriptional level [15, 
31]. Therefore, the 3-ISGs signature developed by us 
satisfied clinical demand, and efficiently and 
economically prognosticated the OS of pan-cancer 
patients. 
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Figure 6. The biological function of the signature on tumor biology and microenvironment: The result of GSVA concentrating on immune-related signaling pathway (A). GSEA 
validated enhanced activity of natural killer cell mediated immunity pathway (B). GO (C and E) and KEGG (D) analysis of DEGs between high-risk and low-risk groups. The 
comparison of 22 immune cells infiltration levels in high- and low-risk groups in the TCGA cohort (F). The correlation analysis between resting (G) and activation (H) natural killer 
cell infiltration level and risk score. 
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Figure 7. Verification of prognostic performance and biological function of 3-ISGs signature: Kaplan–Meier survival curves of OS between high-risk and low-risk patients in 
CHCAMS (A) and FUSCC (B) cohorts. Time-dependent ROC analyses in CHCAMS (C) and FUSCC (D) cohorts. The expression pattern of the 3-ISGs signature and clinical 
features of patients from CHCAMS (E) and FUSCC (F). The distributions of the risk score and survival status of CHCAMS (G) and FUSCC (H) patients. The different expression 
of differential ISGs and ULBP2 between tumor and non-tumor tissue in the FUSCC cohort (I). The correlation between risk score and ULBP2 in CHCAMS (J) and FUSCC (K) 
cohorts. The risk score between responder patients and non-responder patients during anti-PD-1 treatment (L). Logistic ROC analysis in GSE126044 (M). The comparison of 22 
immune cells infiltration levels in high- and low-risk groups in the GSE120644 cohort (N). The correlation between risk score and ULBP2 in the GSE120644 cohort (O). 
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Previous studies have demonstrated that ISGs 
were closely related to the innate immune killing of 
tumor malignant tumors [32]. Hence, we focused on 
the prognosis of pan-cancer patients and ISGs 
expression profiles to find potential biomarkers. In 
our research, NDC80, NPAS2, and AHNAK2 were 
sifted out from the ISGs family to develop a signature 
that improved the prediction of OS for pan-cancer 
patients. The complex comprising of NDC80 protein 
located in the outer layer of the kinetochore and 
played a critical role in mitosis [33]. Up-regulating 
expression level of NDC80 was negatively correlated 
with OS and positively correlated with immune 
infiltration cells, including regulatory T cells (Treg) 
and macrophages M0 in patients with hepatocellular 
carcinoma [34], which was consistent with the results 
of this study. Heretofore, none of studies has focused 
on how the up-regulated NDC80 in tumor tissue 
specifically affected the activation and biological 
properties of immune cells. NPAS2, the largest of the 
circadian genes, has been involved in tumorigenesis 
by forming heterodimers with BMAL1, which target 
the E-box sequence (CACGTG) to mediate the 
promoter of the oncogene c-myc and suppress its 
transcription[35, 36]. High expression of NPAS2 was 
correlated with poor survival in LUAD and liver 
cancer, and abnormal expression also contributed to T 
cell exhaustion and upregulation of immune 
checkpoint molecules and TNF signaling pathway [37, 
38]. Taking previous research and our results into 
consideration, overexpression of NPAS2 may 
negatively regulate DCs and positively associate 
macrophages. AHNAK2, a large nucleoprotein, was 
reported to be involved in the stress-induced 
non-classical FGF1 secretion pathway and shortened 
survival in patients with KIRC and thyroid cancer [39, 
40]. Besides, up-regulating expression of AHNAK2 
was connected with lower activated NK cells and 
higher CD4 memory resting T cells and macrophages 
M0 infiltration, which was similar to the result of this 
research. Composing the signature, all three ISGs, 
NDC80, NPAS2, and AHNAK2, made contributions 
to poor OS and the suppressive immune 
microenvironment in general. Some NKG2D ligands, 
for example, ULBP/RAET family, were induced by 
overexpression of three ISGs and correlated with the 
prognosis of CRC patients [41]. 

Obviously, this research still has some 
limitations. First, this was a retrospective study that 
introduced inherent selection bias. Second, how 
interferon stimulated NDC80, NPAS2, and AHNAK2 
expression still needs further cytology research. In 
addition, the model needs further optimization and 
prospective assessment to prove its clinical 
effectiveness. 

Conclusion 
In conclusion, a three-ISGs signature was 

developed and validated for predicting the OS of 
pan-cancer patients. On account of this signature, a 
novel nomogram had sufficient discrimination and 
calibration capabilities and could be a handy 
instrument to decide patients’ treatment strategies. 
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