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Abstract 

Emerging studies have revealed matrix stiffness promotes hepatocellular carcinoma (HCC) development. We 
studied metabolic dysregulation in HCC using the TCGA-LIHC database (n=374) and GEO datasets 
(GSE14520). HCC samples were classified into three heterogeneous metabolic pathway subtypes with 
different metabolic profiles: Cluster 1, an ECM-producing subtype with upregulated glycan metabolism; Cluster 
2, a hybrid subtype with partial pathway dysregulation. Cluster 3, a lipogenic subtype with upregulated lipid 
metabolism; These three subtypes have different prognosis, clinical features and genomic alterations. We 
identified key enzymes that respond to matrix stiffness and regulate lipid metabolism through bioinformatic 
analysis. We found long-chain acyl-CoA dehydrogenase (ACADL) is a mechanoreactive enzyme that 
reprograms HCC cell lipid metabolism in response to extracellular matrix stiffness. ACADL is also regarded as 
tumor suppressor in HCC. We found that increased extracellular matrix stiffness led to activation of 
Yes-associated protein (YAP) and the YAP/TEA Domain transcription factor 4 (TEAD4) transcriptional 
complex was able to directly repress ACADL at the transcriptional level. The ACADL-dependent 
mechanoresponsive pathway is a potential therapeutic target for HCC treatment. 
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Introduction 
Hepatocellular carcinoma (HCC) is the third 

most common cause of cancer-related deaths 
worldwide[1]. This dismal outcome has been 
attributed to patients being diagnosed at late stages 
and the high frequency of metastasis in HCC. Even 
among patients with resectable HCC (most of them 
belonging to early stage), up to 70% will experience 
intra- or extra-hepatic recurrent metastasis after 
resection[2]. As a highly heterogeneous tumor, 
although some regulators attributing to HCC 

progression has been identified, the molecular 
mechanisms underlying the rapid cell proliferation 
and metastasis of HCC cells are largely unknown[3]. 
There is an urgent need for more complete 
understanding of the molecular mechanisms involved 
in deregulated HCC cell proliferation, which could 
help improve therapeutic strategies. 

 The majority of HCC develop in liver fibrosis or 
cirrhosis[4], a condition in which altered biochemical 
and biophysical microenvironment initiates cancer 
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onset and progression. Matrix stiffness is a character-
istic of biophysical signals in the microenvironment 
and potently regulates cellular behaviors in various 
physio-pathological processes. Abnormal matrix 
stiffness plays a significant role during tumor 
progression. Increasing matrix stiffness is a strong 
predictor of HCC incidence, regulates HCC cell 
proliferation, chemotherapeutic response, invasion 
and metastasis[5], and correlates with poor survival in 
HCC patients[6,7]. The signal from physical matrix 
stiffness is converted into various biochemical 
responses to drive malignant behaviors; among these, 
metabolic input that occurs during matrix stiffness- 
induced tumor progression is poorly understood. 

 Herein, we examined the specific contribution of 
lipid metabolic reprogramming to HCC progression 
triggered by matrix stiffness. Long-chain acyl-CoA 
dehydrogenase (ACADL) is a mitochondrial enzyme 
that catalyzes the initial step of fatty acid oxidation. 
Previous study has found that ACADL played a 
tumor-suppressor role in HCC[8,9]. Furthermore, 
ACADL is an essential mechano-mediator that 
reprograms HCC cell lipid metabolism. Collagen 
deposit indicates increased matrix stiffness in the 
tumor microenvironment. We found that in human 
HCC tissues, collagen content, a marker of increased 
matrix stiffness, and decreased expression of ACADL 
both predicted poor survival in HCC patients. These 
findings reveal that an ACADL-dependent mechano-
responsive pathway responds to increasing matrix 
stiffness (the biomechanical signals in the tumor 
microenvironment) and promotes HCC progression 
through lipid metabolic reprogramming, thereby 
providing a new therapeutic target for HCC 
treatment. 

Results 
Bulk Transcriptomic Profiling Revealed 
Evident Metabolic Dysregulation in HCCs 

To investigate the mechanism behind metabolic 
reprogramming of HCCs, we selected 2886 human 
genes associated with 86 metabolic pathways from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database (Table S1)[10]. To reveal the metabolic 
heterogeneity of HCCs, we estimated, based on gene 
set variation analysis (GSVA), the enrichment scores 
of 74 metabolic pathways in each sample from the 
Cancer Genome Atlas (TCGA) cohort, among which 
12 pathways were filtered out due to relatively low 
sample size[11]. Based on the hierarchical clustering 
result, a three-cluster solution was found to be 
optimal for the TCGA dataset and was fitted in the 
clustering models. All 374 HCC tumors were 
classified into three heterogeneous subtypes based on 

the enrichment scores of 74 metabolic pathways, 
cluster 1 to cluster 3 (Figure 1A-E, Table S2). Cluster 1 
(34.5% of all tumors, n=129), was characterized by the 
relative upregulation of glycan metabolism pathways, 
including N-Glycan biosynthesis, O-Glycan biosyn-
thesis, and Chondroitin sulfate biosynthesis, which 
were all associated with the production of 
extracellular matrix (ECM), but the three major 
nutrients (carbohydrates, lipids and amino acids) 
metabolism pathway were downregulated. Cluster 3 
(34.2% of all tumors, n=128), was characterized by 
remarkable upregulation of lipid, amino acid and 
carbohydrate metabolism pathways, including fatty 
acid degradation, arginine biosynthesis, histidine 
metabolism, and pyruvate metabolism. Cluster 2 
(31.3% of all tumors, n=117) was characterized by the 
combined dysregulation of each major category. 
Similar patterns were observed in external indepen-
dent cohorts using data from GSE14520 and ICGC) 
database (Figure S1A-S1D)[12]. Tumor purity is 
considered as a frequent contributing factor in the 
study of heterogeneity since variations in tumor 
purity can lead to skewed estimations of hetero-
geneity. Tumor purity analysis was performed by 
using “Estimate” R package. There was no statistically 
significant difference in tumor purity across the three 
clusters (Figure S1E). Principal component analysis 
(PCA) revealed the presence of three distinct 
transcriptomic clusters (Figure 1D). Furthermore, the 
three subtypes demonstrated distinct clinical 
characteristics (Figure S1F, Table S3). Significantly, 
the majority of patients of cluster 3 were male (p < 
0.001) with a higher percentage of older patients (p < 
0.05). Patients in cluster 1 had a significantly higher 
tumor grade percentage (p <0.001) and more 
advanced clinical stage (p < 0.05). Moreover, cluster 1 
had significantly worse overall survival (OS) (p < 
0.01) and disease-free survival (DFS) (p < 0.01) than 
cluster 3 (Figure 1F, G). Moreover, we next performed 
GSVA to figure out dynamics of biological processes 
and pathways for Hallmark gene sets of each cluster. 
GSVA/hallmark pathway analysis revealed signifi-
cant upregulation of wnt β-catenin signaling, TGF-β 
signaling and PI3K/Akt mTOR signaling in cluster 1, 
implicating a variety of cancer-associated pathways 
were activated (Figure S1F). Collectively, our results 
demonstrated that the metabolic heterogeneity of 
HCCs fell into three metabolic phenotypes. ECM 
receptor relevant pathways were found significantly 
enriched and fatty acid metabolism pathways were 
downregulated in cluster 1 by different analysis 
approaches. Collectively, downregulation of fatty acid 
metabolism was correlated with the aggressiveness of 
tumors. 
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Figure 1. (A) Heatmap of metabolic-pathway-based GSVA analysis in TCGA-LIHC samples. (B) Heatmap of metabolic-pathway-based GSVA analysis according to the metabolic 
classes in TCGA-LIHC samples. (C) Determination of the optimal number of clusters (k). The elbow method shows k =3 as the optimal number of clusters. (D) The PCA plot 
of the samples from three different subtypes. The blue spots indicated the samples from cluster 1. The yellow spots indicated the samples from cluster 2, and the red spots 
indicated the samples from cluster 3. (E) Hierarchical clustering highlighting three different clusters. Euclidian distances and Ward's linkage were used. (F) Kaplan-Meier curves 
of OS among clusters in the TCGA-LIHC cohort. (G) Kaplan-Meier curves of DFS among clusters in the TCGA-LIHC cohort. 
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Metabolic-Pathway-Based Clusters Show 
Distinct Genomic and Transcriptomic 
Characteristics 

To determine whether cluster 1 tumors possess 
unique transcriptome programs that might suppress 
their metabolism phenotype, we constructed volcano 
plots to compare the gene expression in the samples 
from cluster 1 and cluster 3 (Figure 2A). To explore 
whether the differentially expressed genes between 
cluster 1 and cluster 3 that are related to specific 
functional features, we performed KEGG and 
REACTOME analysis for each differentially expressed 
gene group. Pathways of mitotic cell cycle 
checkpoints, cell cycle phase and extracellular matrix 
organization were found to be relatively enriched in 
cluster 1, while, as expected, gene sets related to the 
substance metabolic process such as metabolism of 
amino acids and derivatives, fatty acid metabolism 
and cytochrome P450 were found to be enriched in 
cluster 3 (Figure 2B). Similar results were obtained 
using KEGG analysis in circos plot. Categories related 
to tumorigenesis and development such as “Cell 
Cycle” and “ECM-receptor interaction” were enriched 
in cluster 1 (Figure 2C). Lipid-related metabolic 
pathways including retinol metabolism, steroid 
hormone biosynthesis, bile secretion and fatty acid 
degradation were enriched in cluster 3 (Figure 2D). 
Gene set enrichment analysis (GSEA)[13] further 
demonstrated that fatty acid and bile acid related 
metabolic pathways were significantly upregulated in 
cluster 3 compared with cluster 1 whereas pathways 
included “focal adhesion”, “cell adhesion molecules”, 
“ECM-receptor interaction” and “Hippo signaling 
pathway” were significantly upregulated in cluster 1 
compared with cluster 3 (Figure 2E, F). Furthermore, 
to investigate the difference of somatic variations 
between two subtypes, we used Maftools to access 
HCC driver genes and further analyzed the top 20 
genes with the highest mutation frequency (Figure 
2G, H). The results showed that there were significant 
differences in the mutation frequency of CTNNB1, 
TP53 in the cluster 1 and cluster 3 groups (Chi-square 
test, both p < 0.001; Table S4). Based on the results 
above, we found that the upregulation of ECM related 
pathways is typically accompanied by the 
downregulation of lipid metabolism pathway. Taken 
together, the biological process of lipid metabolism is 
potentially linked to ECM composition. 

Correlation between the pathways associated 
with cancer associated fibroblast (CAF) and 
fatty acid degradation 

Pathway analysis demonstrated that these 
metabolic pathways were enriched with amino acid 

and lipid metabolism, particularly fatty acid 
degradation, which was also termed “fatty acid 
oxidation (FAO)” (hsa00071) (Figure 3A). Our 
metabolism-based classification reflected the expres-
sion levels of all genes from fatty acid degradation 
pathway, which were enriched in cluster 3 and most 
of genes showed significantly higher mRNA levels in 
cluster 3 compared with other subgroups (Figure 3B). 
Survival analyses showed that the patients with 
higher FAO pathway enrichment scores had better 
DFS and OS in comparison to those with low 
enrichment scores (p < 0.01; Figure 3C, D and Figure 
S1G). indicating that FAO pathway activation may 
inhibit HCC occurrence and development. The 
downregulation of FAO pathway could result in lipid 
accumulation, which generally leads to immunosup-
pressive effects and promotes tumor growth and 
metastasis[8]. We then investigated transcriptional 
patterns of different cell subsets in the microenviron-
ment using the microenvironment cell populations- 
counter (MCP counter) (Figure 3E, F) and found 
significant differences between the cluster 1 and 3. 
Compared with patients in the cluster 3, the 
abundance of T-cell lineage, cytotoxic lymphocytes, 
NK cells, B cells, monocyte cells, macrophages, 
myeloid cells, and cancer associated fibroblasts 
(CAFs), were significantly higher in cluster 1, 
especially CAFs. Indeed, the patients from cluster 1 
expressed high levels of CAF markers[14] like 
COL1A1, POSTN, LUM, ACTA2, MCAM, PDGFRA, 
and genes for collagen synthesis enzymes (Figure 3G). 
In addition, the degree of CAF infiltration score was 
negatively correlated with the FAO enrichment score 
(Pearson’s R = -0.32, p<0.001, Figure 3H). Meanwhile, 
FAO exhibited a significant negative correlation with 
fibroblast migration, collagen activated signaling 
pathway, collagen formation, collagen receptor 
activity and collagen biosynthetic process (Figure 3H). 

Taken together, the biological process of fatty 
acid degradation was potentially linked to the 
functions of CAFs. 

Metabolic-Pathway-Based Subtypes of 
malignant and other cells in the tumor 
microenvironment based on scRNA-seq data 

The single-cell resolution could help us to better 
understand the precise nature of subclonal diversity 
of tumors and the tumor microenvironment. Thus, we 
sought to determine whether the metabolic difference 
between the three clusters can be distinguished at the 
single-cell level. We first analyzed the GEO: GSE151 
530 database[15] including 46 primary liver tumors 
samples and investigated the metabolic heterogeneity 
of cells in the tumor microenvironment.  
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Figure 2. (A) Volcano plots showing genes that are differentially expressed in cluster 1 or cluster 3 samples. Blue dots indicate genes upregulated in cluster 1; red dots indicate 
genes upregulated in cluster 3. (B) Reactome enrichment analyses of genes upregulated in cluster 1 and cluster 3. (C) Circos plot showing top 10 KEGG pathway enriched in 
cluster 1. (D) Circos plot showing top 10 KEGG pathway enriched in cluster 3. (E) GSEA identified cell adhesion molecules, ECM−receptor interaction, focal adhesion and Hippo 
signaling pathway upregulated in cluster 1 subtype. (F) GSEA identified bile secretion, fatty acid degradation, fatty acid metabolism and primary bile acid biosynthesis pathway 
upregulated in cluster 3 subtype. (G) The waterfall plot showing the mutation distribution of the top 20 most frequently mutated genes in cluster 1. (H) The waterfall plot showing 
the mutation distribution of the top 20 most frequently mutated genes in cluster 3. 
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Figure 3. (A) Differential analysis of metabolic pathways suggested that 43 metabolic pathways were upregulated in cluster 3. (B) The boxplot showing the intensities of all of 
genes expression in hsa00071 geneset. Each boxplot shows the median and interquartile range (IQR, 25th–75th percentiles). The significance was determined using Wilcoxon 
rank-sum tests. (C) The OS rates were compared between the FAO-low enrichment score and FAO-high enrichment score groups. (D) The DFS rates were compared between 
the FAO-low enrichment score and FAO- high enrichment score groups. (E) Average microenvironment cell populations (MCP) among clusters to estimate the relative 
abundance of different cell populations in the TME displayed in a heatmap. (F) Quantification of MCP scores among clusters. (G) The boxplot outlining the expression of CAF 
markers COL1A1, POSTN, LUM, ACTA2, MCAM, PDGFRA, and genes for collagen synthesis enzymes among all clusters. (H) The association of the levels of fatty acid 
degradation enrichment score and fibroblast related pathways enrichment score was analyzed using Pearsons correlation analysis. 
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The cells were classified into seven major cell 
types according to the labels from the dataset, 
including T cells (n = 9286), malignant cells (n = 4784), 
unclassified cells (n = 3007), tumor-associated 
macrophages (TAMs) (n = 2184), B cells (n = 1718), 
tumor-associated endothelial cells (TECs)(n = 1580) 
and CAFs (n = 919) (Figure 4A). CellPhoneDB analysis 
based on receptor-ligand interactions was performed 
to reveal the cellular communication in HCC. Our 
analyses showed an apparently increased interactions 
of receptor–ligand pairs between Malignant cells and 
TAMs as well as CAFs, suggesting close cellcell 
communications among these two clusters (Figure 
S1H). We used the scMetabolism R package to 
visualize the metabolic diversity of single cells in 
uniform manifold approximation and projection 
(UMAP) representation. Results showed that fatty 
acid degradation pathway was mainly enriched in the 
malignant cells, while ECM proteoglycans pathway 
was enriched in CAFs (Figure 4B, C, Figure S1I). 
Furthermore, we performed GSVA to evaluate the 
pathway enrichment score of each patient at the bulk 
RNA-seq level. Interestingly, all of the patients were 
stably allocated into three metabolic subtypes based 
on the the same clustering approach (Figure 4D, E). 
Similar to the results of TCGA bulk RNA-sequencing, 
fatty acid degradation score was significantly 
upregulated in cluster 3 while O-glycan metabolism 
was upregulated in cluster 1 (Figure S1J, K, p < 0.001). 
Remarkably, the subclusters were highly patient 
specific, the proportion of each cell type varied greatly 
by cluster (Figure 4D, Figure S1L). To compare the 
fatty acid degradation score among malignant cells 
from different clusters, malignant cells were extracted 
for further analyses. Consistent results were shown 
that fatty acid degradation score was significantly 
upregulated in cluster 3 compared with cluster 1 
(Figure S1M). ReactomeGSA analysis among all cell 
types and clusters revealed similar results of fatty acid 
metabolism and ECM relevant pathways. The 
collagen associated pathway like “Collagen 
formation” and “Collagen chain trimerization” was 
significantly enriched in CAFs and cluster 1. Lipid 
metabolism pathways were enriched significantly in 
malignant cells and cluster 3 (Figure 4F, G). The 
expression pattern of pathways above was clustered 
into a heat map according to the Pearson correlation. 
It could be observed that the level of pathways above 
showed a strong negative correlation (Pearson’s R = 
-0.57, Figure 4H) between CAFs and malignant cells, 
which was consist with results from the bulk 
RNA-seq that fatty acid degradation was potentially 
associated with the functions of CAFs. 

Together, both transcriptome analysis at single 
and bulk cell level identified the negative correlation 

between lipid metabolism and ECM remodeling. 

ACADL as a key enzyme of fatty metabolism is 
downregulated in HCCs  

To explore the important molecules that may 
play roles in the fatty acid metabolism, we 
summarized the key enzymes of the top ten pathways 
highly expressed in cluster 3 (Table 1). Univariate Cox 
regression analysis of TCGA HCC dataset showed 
only FAO‐related gene (ACADL) remained significant 
(p <0.05) (Figure 5A, Table S5). ACADL, a key enzyme 
catabolizing the first step of FAO in mitochondria, 
was not only found decreased in HCC tissues (n = 
369) compared with normal livers (n = 160) (Figure 
5B). Interestingly, correlation heatmap showed that 
ACADL was negatively correlated with a variety of 
CAF and collagen related genes (Figure 5C). 
Moreover, ACADL was significantly decreased in 
various tumors (Figure 5D). Notably, HCC patients 
with low ACADL expression had poorer overall 
survival and disease-free survival than those with 
high ACADL expression (Figure 5E, F and Figure 
S2A). The tumor stage plot analysis using the 
UALCAN (http://ualcan.path.uab.edu/) from TCGA 
database further showed that ACADL expression was 
gradually decreased in higher HCC clinical stage 
(Figure S2B). According to the presence of cirrhosis, 
HCC patients were divided into 2 groups and the 
patients with stiffer hepatic background had lower 
ACADL expression (p < 0.01; Figure 5G). Importantly, 
similar results were observed in the external 
validation cohorts (Figure 5H-J). Herein, we 
hypothesize that stiffness may affect the lipid 
metabolism re-programing by regulating ACADL 
expression. 

 

Table 1. Top10 upregulated pathway in cluster 3 with key 
enzymes of each pathway. 

pathway pathway_name key_enzyme 
hsa00071 Fatty acid degradation - Homo sapiens 

(human) 
ACADM, ACADL, CPT1A, 
CPT1B, CPT1C 

hsa00120 Primary bile acid biosynthesis - Homo 
sapiens (human) 

CYP7A1, CYP8B1, CYP27A1 

hsa00280 Valine, leucine and isoleucine 
degradation - Homo sapiens (human) 

BCAT1, BCAT2, BCKDHA, 

hsa00350 Tyrosine metabolism - Homo sapiens 
(human) 

TYR, TAT 

hsa00053 Ascorbate and aldarate metabolism - 
Homo sapiens (human) 

UGDH 

hsa00380 Tryptophan metabolism - Homo 
sapiens (human) 

TDO2, IDO1, IDO2, KMO 

hsa00220 Arginine biosynthesis - Homo sapiens 
(human) 

ASS1, ARG1, ARG2, ASL 

hsa00650 Butanoate metabolism - Homo sapiens 
(human) 

ACAT1, ACAT2 

hsa00260 Glycine, serine and threonine 
metabolism - Homo sapiens (human) 

SHMT1, SHMT2 

hsa00410 beta-Alanine metabolism - Homo 
sapiens (human) 

GAD1, GAD2, GADL1 
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Figure 4. (A) Uniform manifold approximation and projection (UMAP) plot of seven cell types from liver tumors from GEO: GSE151530. (B) UMAP plot showing expression of 
fatty acid degradation pathway enriched in all cells. (C) UMAP plot showing expression of ECM proteoglycans pathway enriched in all cells. (D) UMAP plots showing the 
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distribution of the three major clusters. (E) Heatmap representing the mean expression of metabolic-pathway-based GSVA analysis by three major clusters. (F) Functional 
enrichment analysis for the three clusters using “ReactomeGSA” package. (G) Functional enrichment analysis for the seven cell types using “ReactomeGSA” package. (H) The 
heatmap showing correlation between each pathway of seven cell types. 

 

Matrix stiffness modulates lipid metabolism 
re-programing via YAP-TEAD4-ACADL 
regulation 

The rigidity of the substrate that cells adhere can 
have a profound effect on cell morphology and gene 
expression. To test our hypothesis that stiffness may 
affect the lipid metabolism, HepG2, Huh7 and 
SK-Hep1 HCC cells were seeded on surface with 
micro-stiffnesses of 2 kPa and 16 kPa, respectively. 
HCC cells presented an invasive phenotype on stiff 
supports of 16 kPa, showing a protrusive appearance 
of polygonal cells with typical HCC cell morphology, 
while cells under 2 kPa stiff supports were spherical 
and appeared as small dots (Figure 6A, Figure S2C).  

As shown in Figure 6B, liver cancer cells on high 
matrix stiffness at 16 kPa had increased free fatty acid 
levels in the media (p < 0.01, Figure 6B, Figure S2D) 
and markedly downregulated mRNA and protein 
levels of ACADL compared with the control group (p 
< 0.01; Figure 6C, D and Figure S2E, F). Previous 
studies have shown that signaling by diverse ECM 
components can trigger YAP/TAZ activity in 
different tissue types. For example, in the neonatal 
mouse heart, the ECM proteoglycan agrin binds to the 
dystrophin–glycoprotein complex (DGC) and induces 
YAP nuclear accumulation, promoting cardiomyocyte 
proliferation[16,17]. Moreover, the activation of the 
YAP transcription factor is a signature feature of 
CAFs. YAP function is required for CAFs to promote 
matrix stiffening, cancer cell invasion and angio-
genesis[18]. In this study, upregulated protein levels 
of active YAP/TAZ were observed in high-stiffness 
matrices (Figure 6D).  

To figure out the underlying mechanism of the 
downregulation of ACADL in HCC, we investigated 
the upstream regulator of ACADL by using hTFtarget 
and JASPAR2022 (Table S6, Figure S2G, H) and 
obtained 4 candidate TFs including FOXA2, HNF4A, 
TEAD4, YY1. Of note, YAP and TAZ are established 
TEAD4 co-transcriptional activators in the Hippo 
pathway. They are known to bind to TEAD family 
proteins, including TEAD4, to promote cell prolife-
ration, growth and survival[19]. Because of the lack of 
DNA-binding motif in YAP, the transcription factors 
TEAD1-4 function as the major partners of YAP to 
regulate target gene expression. We hypothesized that 
YAP/TAZ could be activated by increased ECM 
stiffness, localizing to the nucleus and YAP-TEAD4 
complex directly targets ACADL, leading to reduced 
ACADL expression. To confirm this hypothesis, the 
expressions of ACADL, YAP1 and TEAD4 were 

re-analyzed in the TCGA database and it was found 
that ACADL was higher expressed while YAP1 and 
TEAD4 were lower expressed in cluster 3(Figure S2I). 
The expression of ACADL is negatively correlated 
with TEAD4 (Pearson’s R = -0.477, p<0.001, Figure 
S2J). Verteporfin is a YAP inhibitor which disrupts 
YAP-TEAD interactions. Our results showed that 
HCC cells exhibited significantly lower levels of lipid 
accumulation when treated with increasing concen-
trations of verteporfin, suggesting that disrupting 
YAP-TEAD interactions could help utilizing lipid in 
HCC (Figure 6E, Figure S2K, p < 0.01). Our results 
also indicated that with an increase of verteporfin 
concentration, the ACADL mRNA and protein levels 
in HCC cells got increased (Figure 6F, G, Figure S2L, p 
< 0.01). Moreover, the transcriptional levels of YAP 
downstream genes CYR61, which was one of the 
well-recognized downstream target genes of YAP, 
were gradually decreased under increasing concen-
tration of verteporfin treatment (Figure 6H, p < 0.01). 
Furthermore, the level of ACADL expression was 
then determined in YAP-overexpressed cells. 
Intriguingly, mRNA and protein levels of ACADL 
were both down-regulated in YAP-5SA overexpres-
sion HepG2 and Huh7 cells (Figure 6I, J, and Figure 
S3A, B, both p < 0.01). Our cytoplasmic/nuclear 
protein extraction assay showed that less nuclear 
accumulation of YAP in cells on soft supports (Figure 
6K). These results suggested that ACADL expression 
is negatively regulated by YAP at the transcriptional 
level.  

To further illustrate the detailed mechanism, we 
recognized three conserved TEAD4 binding sites 
(AGCATTCTTT) in the promoter region of the human 
ACADL gene (Figure 6L). The chromatin immuno-
precipitation (ChIP)-PCR results indicated that 
TEAD4 might bind to the distal conserved sites (R3) of 
ACADL promoter (Figure 6M, Table S6). To further 
verify whether ACADL is the target gene of the 
YAP-TEAD transcriptional complex, we generated 
two luciferase reporters driven by the wild- type (WT) 
and TEAD4-binding–deficient ACADL promoters 
(Figure 6K). Importantly, siRNA-mediated YAP/TAZ 
knockdown significantly enhanced the transcriptional 
activity of WT ACADL promoter reporter in HepG2 
and Huh7 cells, but had no effect on the mutant 
ACADL promoter reporter (Figure 6N, Figure S3C).  

Collectively, these results suggested that YAP 
was activated in tumor cells by stiff substrates and 
consequently induce the repression of ACADL 
transcription via YAP-TEAD4 complex binding to 
ACADL gene promoter. 
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Figure 5. (A) Forest plot showing the hazard ratios from the univariate Cox regression analysis of five key enzyme of fatty acid degradation. (B) Box plots showed mRNA levels 
of ACADL in HCC tissues and noncancerous tissues in TCGA datasets from GEPIA. (C) The heat map shows that the mRNA level of ACADL was negatively related with the 
level of CAF-related genes. (D) Expression of ACADL across TCGA cancers (with tumor and normal samples) analyzed by UALCAN. (E) KM curve for OS of patients with high 
and low ACADL mRNA level by median value in TCGA datasets. (F) KM curve for DFS of patients with high and low ACADL mRNA level by median value in TCGA datasets. 
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(G) Comparison of mRNA levels of ACADL and CAF marker genes between patients with and without liver cirrhosis in TCGA datasets. (H) KM curve for OS of patients with 
high and low ACADL mRNA level by median value in GSE14520 datasets. (I) KM curve for DFS of patients with high and low ACADL mRNA level by median value in GSE14520 
datasets. (J) Comparison of mRNA levels of ACADL and CAF marker genes between patients with and without liver cirrhosis in GSE14520 datasets. 

 
Figure 6. (A) HCC cells morphology was observed by light microscopy under different stiffnesses (2kpa &16kpa). (B) The level of free fatty acid release into cell culture medium 
under different stiffnesses (2kpa &16kpa) after 48 hours of culture. (C) qRT-PCR analysis of ACADL mRNA expression in HCC cells under different stiffnesses (2kpa &16kpa) 
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after 48 hours of culture. (D) The expression level of ACADL, β-tubulin, and active yap were compared by western blotting, and GAPDH was used as a loading control. (E) 
Bright-field images of HCC cells after treated with DMSO or verteporfin of indicated concentration. (F) The mRNA expression level of ACADL of HepG2 cells after treated with 
DMSO or verteporfin of indicated concentration. (G) The protein level of ACADL of HepG2 cells after treated with DMSO or verteporfin of indicated concentration. (H) The 
mRNA level of CYR61 of HepG2 cells after treated with DMSO or verteporfin of indicated concentration. (I) The mRNA expression level of ACADL and CYR61 in YAP5SA 
overexpression HepG2 cells. (J) The western showing the expression levels of ACADL and CYR61 in YAP5SA overexpression HepG2 cells. (K) Cytosolic and nuclear proteins 
from HepG2 cells under different stiffnesses (2kpa &16kpa) were separated to detect expression of YAP by western blotting. Histone H3 and GAPDH were used as a loading 
control. (L) Schematic illustration of ACADL promoter region with potential TEAD4 binding sites (TBS). The WT and TBS mutant sequences were indicated. R1, R2, and R3 
indicated Region1, Region2, and Region3 in ACADL promoter containing the potential TBS respectively. (M) A Chromatin immunoprecipitation (CHIP) analysis. HepG2 were 
used to extract cross-linked DNA, and CHIP was performed using anti-P300 and anti-RNAPol II. PCR was carried out using a primer designed according to the ACADL 
promoter. IgG CHIP was used as a negative control. (N) Luciferase analysis showing the effects of siRNA-YAP/TAZ on ACADL promoter R3 containing the WT or mutant TBS 
region in HepG2 cells. 

 
Figure 7. (A) Flow diagrams of animal experiments. (B) The SK-hep1 cells were injected subcutaneously into nude mice. A week later, the mice were administrated with 
β-aminopropionitrile (BAPN, 100 mg/kg) or PBS for indicated time. Representative image of the xenograft tumors obtained from the indicated groups. (C) Quantification for 
tumor volume of subcutaneous tumors in the indicated groups. (D) Quantification for tumor weight of subcutaneous tumors in the indicated groups. (E) Collagen content of 
xenograft tumors from indicated groups. (F) HE, Sirius red staining and expression of ACADL, a-SMA and YAP of subcutaneous tumors in the indicated groups were analyzed by 
immunohistochemistry.  

 

Soft substrates increase the mRNA and 
protein level of ACADL in vivo 

The animal experimental workflow for our study 
is shown in a schematic representation (Figure 7A). 
β-aminopropionitrile (BAPN), a well-recognized 
inhibitor of LOX activity. Previous researches had 
proved that BAPN decreases tissue stiffness in mice 
with insulinomas[20]. The results indicated that the 
tumor volumes in BAPN group were significantly 

smaller than those in the control group (Figure 7B, C, 
p < 0.05). Additionally, the weight of tumors was 
significantly greater in the control group than the 
those in BAPN group (Figure 7D, p < 0.01). 
Hydroxyproline analysis revealed a significant 
decrease in collagen content in the BAPN group 
versus PBS control group (Figure 7E, p < 0.001). 
ACADL showed higher mRNA and protein levels in 
tumor tissues in BAPN group than PBS control group 
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(Figure S3D, E, p < 0.01). In the tumors from the 
BAPN group, sirius red staining showed that collagen 
deposition was reduced in the same area of tumor 
stroma tissue. Moreover, ACADL expression was 
significantly increased, whereas that of YAP and 
α-SMA, which was considered as a marker gene of 
CAF, were markedly increased in BAPN group 
(Figure 7F).  

Increased collagen content and ACADL 
downregulation synergistically predict poor 
outcome in HCC patients 

We explored the synergistic predictive value of 
collagen content and ACADL expression in tumor 
tissue on prognosis. In an independent cohort of 78 
HCC patients, ACADL expression and intratumoral 
collagen content were measured by immunofluores-
cence in tissue microarray. The baseline characteristics 
of patients are summarized in Table S7. As an 
alternative marker of tissue stiffness, the mean 
fluorescence intensity of collagen type I was 
automatically quantified using Image J software to 
measure the collagen content. The collagen type I 
staining was found specifically in the stromal 
compartment of tumors while ACADL was 
preferentially distributed in the cytoplasm (Figure 
S3F). The collagen content was significantly 
negatively correlated with the level of ACADL 
expression in HCC (Figure 8A, B, p=0.013). The 
patients with stiffer tumors had a poor OS compared 
with patients with compliant tumors (p < 0.01; Figure 
8C). Meanwhile, the patients with low ACADL 
expression had more unfavorable outcome than those 
with high ACADL expression (p < 0.05; Figure 8D). 
More significantly, the prognosis of HCC patients was 
stratified by the level of ACADL expression and 
collagen content. Patients with collagenhigh/ 
ACADLlow tumors had markedly poor survival 
outcomes compared with patients with collagenlow/ 
ACADLhigh tumors (p < 0.001, Figure 8E). Similarly, in 
the TCGA-LIHC cohort, tumors with collagenhigh/ 
ACADLlow were associated with poor survival 
(p=0.0396, Figure 8F). These indicated the synergistic 
effect of increasing matrix stiffness and ACADL 
downregulation on HCC progression. Similar to the 
importance of HBV infection, the association between 
collagenhigh/ACADLlow tumors and poor prognosis 
was significant and independent of other 
clinicopathological parameters (Table S8). 

In conclusion, this study provides a new 
mechanistic insight linking matrix stiffness-YAP- 
ACADL axis to lipid metabolic reprogramming and 
HCC progression, indicating that the ACADL- 
dependent mechanoresponsive pathway is a potential 
therapeutic target for HCC treatment (Figure 8G). 

Discussion 
Matrix stiffness is a physical cue in the tumor 

environment that significantly increases carcinogen-
esis and tumor progression[21]. We attempted to 
explore the correlation between ECM and lipid 
metabolism through bioinformatics analysis, eventu-
ally targeting the key enzyme of lipid metabolism, 
ACADL, and analyzing the possible regulatory 
mechanisms. To the best of our knowledge, this is the 
first study that reveals that the ACADL-mediated 
mechanoresponsive pathway is downregulated by 
high matrix stiffness. This leads to lipid metabolic 
reprogramming, which in turn promotes HCC cell 
proliferation and metastasis. This study provided a 
new potential approach by enhancing ACADL 
expression/activity to reduce matrix stiffness- 
induced HCC progression. 

HCC frequently develops and progresses in the 
fibrotic or cirrhotic liver with increased matrix 
rigidity, which has led to detrimental interactions 
between the altered biomechanical environment and 
HCC[22]. The increase in extra-/intra tumoral tissue 
rigidity or matrix stiffness plays a significant role in 
HCC progression[23]. Reportedly, the mechanical 
forces derived from matrix stiffness underlie the 
physio-pathological processes, including develop-
ment[24], inflammation[25], and cancer[21,26,27]. The 
physical signal derived from matrix stiffness is a 
characteristic feature in the mechanical properties of 
extracellular matrix and transformed into intracellular 
biochemical responses to direct cancer cell beha-
vior[28,29]. However, metabolic input during matrix 
stiffness induced tumor progression is largely 
unknown. Only a few studies have yet addressed the 
interconnection between matrix stiffening and tumor 
metabolic rewiring in cancer. This study explored the 
direct connection between matrix stiffness and lipid 
metabolic reprogramming. We used bioinformatic 
analysis and examined changes in lipid metabolism in 
HCC cells in response to matrix stiffness. Moreover, 
ACADL was identified as a key enzyme, initiating the 
FAO process, modulated by matrix stiffness. Lipid 
metabolic reprogramming influenced by matrix 
stiffness was interacted in an ACADL-dependent 
mechanoresponsive manner. 

Changes in the actomyosin cytoskeleton also 
modulate the activity of the ubiquitously expressed 
paralogous factors YAP and TAZ, which have a 
central role in regulating transcription downstream of 
mechanical force generated by cell geometry, ECM 
stiffness, stretching and shear stress[30]. Previous 
study has indicated that Agrin was a tissue and ECM 
stiffness signal to activate YAP[31]. Agrin engages 
both integrins as well as Lrp4/MuSK for optimal 
activation of YAP in response to ECM stiffness[32].  
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Figure 8. (A) Immunofluorescence staining of collagen type I and ACADL in HCC tissue chip. Scale bar represents 650 μm. (B) Patients divided into different proportions 
according to the level of collagen and ACADL. (C) Kaplan-Meier curve of OS and DFS for HCC patients grouped by intratumoral collagen content. (D) Kaplan-Meier curve of 
OS and DFS for HCC patients grouped by the protein levels of ACADL. (E) Kaplan-Meier curve of OS and DFS for HCC patients grouped by intratumoral collagen content and 
ACADL expression (collagenlow/ACADLlow versus collagenlow/ACADLhigh versus collagenhigh/ACADLlow versus collagenhigh/ACADLhigh tumors). (F) Kaplan-Meier curve of OS for 
TCGA-LIHC patients grouped by intratumoral collagen content and ACADL expression (COL1A1low/ACADLlow versus COL1A1low/ACADLhigh versus COL1A1high/ACADLlow 
versus COL1A1high/ACADLhigh tumors). Schematic of the proposed mechanism that an ACADL-dependent mechanotransduction pathway responsive to stiff matrix promotes 
HCC progression through lipid metabolic reprogramming. ECM, extracellular matrix 
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It is, however, very common for transcription 
factors to modulate the expression of their target 
genes both positively and negatively, depending on 
the context[33]. Repressive functions for YAP/TAZ 
were not well described. According to the gene 
expression microarray results performed in YAP- 
overexpressing cells, many genes were negatively 
regulated by YAP[34]. Besides the role of activating 
target gene transcription, the YAP-TEAD complex has 
also been implicated to repress target gene transcrip-
tion by recruiting members of the nucleosome 
remodelling and deacetylation (NuRD) complex to 
TSO (TEAD-SMAD-OCT4) elements[33]. Here, we 
identified ACADL as a target gene repressed by the 
YAP-TEAD transcriptional complex. Future 
investigation will be interesting to identify more 
target genes repressed by the YAP-TEAD4 complex, 
which may open an avenue for understanding the 
transcriptional repressor role of YAP-TEAD.  

Nevertheless, this study has some limitations. 
Firstly, C2 cluster was considered as an intermediate 
metabolic state, since C2 cluster has some 
characteristics of C1 cluster and C3 cluster. There was 
no detailed analysis in this article as this study 
focused on the inhibitory effects the extracellular 
matrix (ECM) on HCC lipid metabolism. Secondly, 
the direct molecular mechanism by which ACADL 
inhibit HCC carcinogenesis and progression was not 
determined. Although previous study has indicated 
that the tumor-suppressive effects of ACADL through 
inhibiting the Hippo/YAP signaling[35]. Moreover, 
regulation of extracellular matrix rigidity on lipid 
metabolism was not only exhibited at the transcript-
ional level, integration of multi-omics data may 
provide insights into comprehensive changes in 
biological pathways of lipid metabolism induced by 
ECM stiffness. 

In this study, we demonstrated that subsets of 
HCCs were characterized by distinct transcriptomic 
signature depending on their metabolic features, 
indicating that different therapeutic strategies 
targeting metabolic vulnerabilities could have clinical 
benefits in subsets of HCC patients. Furthermore, this 
study also provides a new mechanistic linking matrix 
stiffness-ACADL axis to lipid metabolic reprogram-
ming and HCC progression, indicating that the 
ACADL-dependent mechanoresponsive pathway is a 
potential therapeutic target for HCC treatment. 

Methods 
Ethical approval 

This study was approved by the ethics 
committee of Sir Run Run Shaw Hospital. All animal 
studies were conducted according to the Association 

for the Assessment and Accreditation of Laboratory 
Animal Care and the Institutional Animal Care and 
Use Committee guidelines. All experiments were 
carried out in accordance with approved guidelines. 

Cell Culture and Transfections 
The HCC cell line, Huh7, HepG2 and SK-Hep-1 

were obtained from the American Type Culture 
Collection and were maintained in Dulbecco modified 
Eagle medium containing 10% (v/v) fetal bovine 
serum at 37°C in 5% CO2 condition. All cell lines were 
routinely tested to be negative for mycoplasma 
contamination. Transfection of siRNA and plasmids 
was performed using Lipofectamine 3000 Reagents 
(Thermo Fisher Scientific, Waltham, MA) following 
the manufacturer’s instructions. 

Matrices with Different Stiffness for Cell 
Culture 

As matrices with different surface micro- 
stiffnesses, we used 6-well CytoSoft® plates with two 
different micro-stiffnesses (2 kPa & 16 kPa) were 
coated with PureCol® Type I collagen, following 
manufacturer’s instructions (Advanced Biomatrix, 
San Diego, CA, USA). Cells were seeded at a cell 
density of 2 × 105 cells/well for 48 h. Samples were 
collected for quantitative real time-polymerase chain 
reaction (qRT-PCR) or for western blotting analysis. 

RNA extraction and qRT-PCR  
Total RNAs from HCC cells and samples were 

extracted using TRIzol reagent (Ambion, USA). cDNA 
was synthesized as well, using Hifair® II 1st Strand 
cDNA Synthesis SuperMix (Yeasen, Shanghai, China). 
Afterward, qPCR was conducted using the Hieff 
UNICON® qPCR SYBR Green Master Mix (Yeasen). 
Three independent replicates were conducted with 
every experiment. Then, the ∆∆Ct method was used 
for the relative calculation and quantification of 
mRNA. Glycer- aldehyde 3-phosphate dehydro-
genase (GAPDH) was used as an internal control. 
Primer sequences used in this study are as depicted in 
Table S9 in Supporting Information. 

Western blotting analysis 
The RIPA lysis buffer was used to extract total 

proteins. Sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) was also used to separate 
extracted proteins. Subsequently, the PVDF mem-
brane (Millipore) was used for protein transfer, 
following incubation of the transferred membrane 
with appropriate antibodies overnight at 4°C. The 
next day, enhanced chemiluminescence reagents 
(Fdbio Science) were used to detect the antigen- 
antibody complex on the membrane. 
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Luciferase reporter assay 
The promotor of ACADL containing the 

potential TEAD4 binding site was synthesized by 
TSINGKE Biological Technology (Beijing, China). The 
sequence was cloned into pGL3-basic (Promega, 
USA). The promotor of ACADL was inserted at the 
head of the firefly luciferase gene and the Renilla 
luciferase gene was used as an internal control. Cells 
transfected with ACADL promotor plasmid and 
Renilla luciferase plasmid were then transfected with 
si-YAP/TAZ and negative control after 48 hours. The 
Promega Dual-Luciferase Reporter assay system 
(Promega, USA) was used to measure the activities of 
firefly and Renilla luciferase. 

Human HCC Tissue Array and 
Immunofluorescence Assay 

Tissue chip LVC1609, which consists of 80 paired 
HCC tumor and para-tumor samples, was purchased 
from Shanghai liaoding Biotech. The following 
antibodies were used to detect specific proteins: 
Collagen Type I (Mouse, 1:200, Proteintech, Cat No. 
CL594-67288), anti-ACADL (Rabbit, 1:300, Protein-
tech, Cat No. 17526-1-AP). 

Hydroxyproline analysis 
Mouse tumor tissues were collected and 

hydroxyproline content was analyzed by the 
QuickZyme Total Collagen Assay from QuickZyme 
BioSciences. Briefly, the tumors were dried in an oven 
at 70°C for 48 hours and then hydrolyzed in 6 M HCL 
at 95°C for 20 hours. Then hydroxyproline content 
were measured following the manufacturer’s protocol 
using collagen as standards. 

Measurement of lipids in medium 
We treated HCC cells with verteporfin of 

different concentration gradient and cells were fixed 
under conventional six-well plate and subjected to oil 
red O staining after 48 hours of treatment. The 
non-esterified Free Fatty Acids (NEFA) was estimated 
in plasma by NEFA Colorimetric Assay Kit 
(E-BC-K013-M). NEFA ELISA kit (E-BC-K013-M) was 
purchased from Elabscience Biotechnology. Oil- 
Red-O staining was performed with Oil Red O Kit 
(G1262, Solarbio). Cells were washed with PBS for 
twice, and fixed with the fixative buffer for 30 min. 
Wash the cells with distilled water twice and then 
incubate in 60% isopropanol for 5 min. The newly 
prepared oil red O staining solution was added and 
soaked for 20 min. Mayer hematoxylin staining 
solution was added for 2 min. Discard the dye and 
wash it for 3 times. Oil-Red-O staining pictures were 
taken using a Zeiss inverted microscope. The Oil Red 
O Staining experiment was performed at least three 
independent repeat experiments. Quantifications 

were performed using Image J software. 

Survival analysis 
Kaplan-Meier plots of OS and DFS were 

generated using the R package survival 
(http://cran.r-project.org/package=survival). A 
log-rank test p < 0.05 was used to define differences in 
survival time. 

Identification of differentially expressed genes 
Differential pathway expression analyses 

between C1 and C3 and Differentially expressed 
genes (DEG) were performed by using limma 
package. Adjusted P-values (adjP) < 0.05 and log fold 
change (logFC) > 0.1 were considered to be 
significantly differentially expressed pathways. We 
considered logFC as “Pathway Impact” for 
differentially regulated pathways between two 
clusters. 

Metabolic Transcript Gene Set Variation 
Analysis (GSVA) 

Pathway-level metabolic gene set enrichment 
analysis was performed using R Bioconductor 
package GSVA v1.32.0 function gsva() with 
parameters “method = gsva, min.sz = 5, max.sz = 500” 
using a log2(TPM + 1) transformed gene expression 
matrix[11]. GSVA pathway enrichment scores per 
sample were extracted and assessed for significance 
using R Bioconductor package limma v3.40.0. 
Pathway metabolite sets were constructed using the 
KEGG PATHWAY Database. 

Immune cell infiltration accessment  
Microenvironment cell populations-counter 

(MCP-counter): MCP-counter is a computational 
Method based on the mean marker gene expression 
that is specifically expressed in the cell type[36]. The 
eight immune-cell lineage scores were estimated by 
using the R package MCP-counter algorithm. 

ScRNA-seq data processing 
The GEO: GSE151530 dataset contains annotated 

cell types from each sample. We determined several 
cell types based on the annotation file in GEO: 
GSE151530 with the Seurat analysis package[37]. 
Specifically, T cells (CD4+ and CD8+), B cells, 
cancer-associated fibroblasts, tumor-associated 
macrophages, tumor-associated endothelial cells and 
epithelial cells could be recognized by uniform 
manifold approximation and projection (UMAP). The 
metabolism pathway enrichment of scRNA-seq data 
was analyzed through the ReactomeGSA R pack-
age[38]. The average gene expression level of each cell 
type was calculated using the “AverageExpression” 
function in Seurat. 
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CellphoneDB (v2.0.0) was used for cell-cell 
ligand receptor analysis. 

In vivo experiments 
SK-Hep1 cells were inoculated subcutaneously 

in nude mice (n = 8) at 4–6 weeks of age. Two weeks 
after cells injection, the xenograft tumor models were 
successfully established in all nude mice. Xenograft 
tumor nude mice were treated with BAPN and PBS 
intraperitoneally, respectively. After another two 
weeks of treatment, the mice were sacrificed. Tumor 
volume was calculated using digital caliper 
measurements. Tumors were harvested and frozen in 
liquid nitrogen or fixed in 4% formalin immediately.  

Statistical analysis  
Results are expressed as mean ± standard error 

of the mean. The Student t test was used for 
comparison between 2 groups. One-way analysis of 
variance (ANOVA) was used for comparisons among 
3 or more groups. The Tukey test, Bonferroni test, or 
Dunnett test were used for post multiple comparisons 
between groups. The level of significance was P < .05 
(*P < .05, **P < .01, and ***P < .001). The number of 
independent experiments was 3 (if not depicted 
otherwise). Calculations were performed using the 
GraphPad Prism Software (San Diego, CA). 
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