SUPPLEMENTAL MATERIALS

S100A4 Is a Key Facilitator of Thoracic Aortic Dissection

Jiajun Shi^{1#}, Wenjun Yu^{1,2,3#}, Chuan Liang^{1,2,3}, Hongjie Shi¹, Dengwei Cao¹, Yong Ran¹, Haisen Qiao¹, Zhe Dong^{1,2,3*}, Jinping Liu^{1,2,3*}

Affiliations

¹Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;

²Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China;

³Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China;

SUPPLEMENTAL METHODS

Data collection and process

RNA-sequencing data of aortic dissection mouse were obtained from the Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo). Four data sets from GPL10787 platform (GSE107479, normal: n=8, AD: n=5; GSE116434, normal: n=3, AD: n=3; GSE138484, normal: n=3, AD: n=3; GSE138558, normal: n=3, AD: n=3) were merged and remove batch effect using "sva" R package. tSNE analysis suggested that the batch effect was eliminated successfully (Figure S1A).

Weighted Gene Co-Expression Network Analysis (WGCNA)

"WGCNA" algorithm was used to construct the co-expression network based on the top 25% variant genes. Sample dendrogram and trait indicator was drawn after detecting outliers (Figure S1B). Pearson's correlation matrices were used for all pair-wise genes and a weighted adjacency matrix was constructed subsequently. Then a scale-free network, which was used for penalizing weak correlations and emphasizing strong correlations, was built based on $\beta=3$ (scale-free R2 = 0.9) (Figure S1C). The topology overlay matrix (TOM), which was converted from the adjacency matrix, computed the network connectivity of genes and generate 10 gene modules finally (Figure S1D).

Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE)

Algorithms

Genes selected using "WGCNA" algorithm were respectively analyzed by LASSO and SVM-RFE algorithms for hub features selection. The glmnet package could performe the LASSO analysis. By removing SVM-generated eigenvectors, the machine learning method "SVM-RFE" based on support vector machine could find the best features (Figure S1E).

Gene Ontology enrichment analysis

We divided aortic dissection mice into a high-S100A4 expression and low-S100A4 expression groups according to the median expression value of S100A4, and used the "Limma" package for differential analysis ($|LogFC| \ge 0.58$, p<0.05). Subsequently, the up-regulated and down-regulated genes in the high S100A4 group were imported into the Metascape online database (https://metascape.org/gp/index.html#/main/step1) for enrichment analysis, respectively.

SUPPLEMENTAL FIGURE

Figure S1. Selection of the hub genes in AD.

A. tSNE plot before (left) and after (right) removing batch effects. B. Sample dendrogram and trait indicator. The color intensity was proportional to sample information. C. Determination of soft threshold power in WGCNA (scale-free R2 = 0.9). β = 3 was chosen as the optimal soft-thresholding parameter. D. Heatmap of the correlation between sample information and gene modules (pearson analysis). E. Feature selection based LASSO and SVM-RFE algorithms.

Figure S2. Gene Ontology enrichment analysis

A-B, Gene ontology enrichment analysis based on differentially expressed genes between high and low S100A4 expression group ($|LogFC| \ge 0.58$, p<0.05).

Figure S3. Expression of AAV9-S100A4 in the ascending aorta of mice

A. Representative immunofluorescence staining of S100A4 and α -SMA in ascending aortas from AAV9-GFP and AAV9-S100A4 OE mice. Scale bars: 50 μ m.

A. Representative immunofluorescence staining of S100A4 and α -SMA in ascending aortas from AAV9-Ctrl and AAV9-S100A4 KD mice. Scale bars: 50 μ m.

Figure S4. Mature-LOX (m-LOX) improves elastic fiber deposition

A, Immunostaining for elastin in VSMCs transfected with the indicated plasmids for 24 hours. Scale bars: 20 μm.

Figure S5. Collagen I (COL1) is minimally affected in aortas and VSMCs with altered S100A4 expression

A-B, Representative immunoblotting and subsequent quantification of COL1 in aortic wall from AAV9-GFP and AAV9-S100A4 OE mice (n = 6). **C-D,** Representative immunofluorescence staining and subsequent quantification of COL1 in aortas from AAV9-GFP and AAV9-S100A4 OE mice. Scale bars: 50 μ m. Ten fields of view were selected per mouse for calculation. The quantification of each image was normalized using DAPI. **E-F,** Representative immunoblotting and subsequent quantification of COL1 in aortic wall from AAV9-Crtl and AAV9-S100A4 KD mice (n = 6). **G-H,** Representative immunofluorescence staining and subsequent quantification of COL1 in aortic wall from AAV9-Crtl and AAV9-S100A4 KD mice (n = 6). **G-H,** Representative immunofluorescence staining and subsequent quantification of COL1 in aortas from AAV9-Crtl and AAV9-S100A4 KD mice. Scale bars: 50 μ m. Ten fields of view were selected per mouse for calculation. The quantification of each image was normalized using DAPI.

SUPPLEMENTAL TABLE

Characteristics	Controls (n=6)	TAD (n=10)
Age (y)	55.4 ± 9.8	57.1 ± 9.1
Male	4 (66.7%)	7 (70%)
Coronary artery disease	0 (0%)	0 (0%)
Hyperlipidemia	0 (0%)	0 (0%)
Marfan syndrome	0 (0%)	0 (0%)
Diabetes mellitus	0 (0%)	1 (10%)
Hypertension	3 (50%)	8 (80%)
History of smoking	1 (16.7%)	3 (30%)
Aortic diameter (cm)	NA	5.5 ± 1

Table S1. Patient Characteristics

Data are expressed as a number (percent) or as the mean \pm standard deviation. TAD: thoracic aortic tissue from patients with acute ascending thoracic aortic dissection.

 Table S2. Animals (in vivo studies)

Species	Vendor or Source	Background Strain	Sex
	Beijing Vital River		
Mouse	Laboratory Animal Technology Co., Ltd.	C57BL/6J	Male

	Table	S3 .	Antib	odies
--	-------	-------------	-------	-------

Target	Vendor or	Catalog #	Working	Annlications
antigen	Source		concentration	Applications

S100A4	Abcam	ab197896	1:1000; 1:250	WB, IF
S100A4	CST	13018S	1:50	IP
α-SMA	Abclonal	A17910	1:1000; 1:250	WB, IF
LOX	Abcam	ab174316	1:1000; 1:250	WB, IF
Flag-Tag	MBL	M185-3	1:1000; 1:50	WB, IP
DDDDK-Tag	Abclonal	AE092	1:1000	WB
IgG	Abcam	ab131368	1:1000	WB
HA-Tag	MBL	M180-3	1:1000; 1:50	WB, IP
HA-Tag	Abclaonl	AE036	1:1000	WB
GAPDH	Proteintech	10494-1-AP	1:5000	WB
β-tubulin	Abclonal	A12289	1:1000	WB
Elastin	Bioss	Bs-1756R	1:250	IF
Myocardin	Sigma-Aldrich	SAB2106915	1:1000	WB
SM22a	Proteintech	10493-1-AP	1:1000; 1:250	WB, IF
Calponin	Abcam	ab46794	1:5000	WB
COL1	Novus	NBP1-30054	1:1000; 1:100	WB, IF
Anti-mouse				
IgG,		5 4 0 0 0 1 1	1.5000	WD
HRP-linked	Proteintech	SA00001-1	1:3000	wВ
antibody				
Anti-rabbit	Duotoistash	5 4 0 0 0 1 2	1.5000	WD
IgG,	Proteintech	SAUUUU1-2	1:3000	WΒ

antibody

Table S4. Cultured Cells

Name	Vendor or Source	Sex (F, M, or unknown)	Background Strain
Vascular	Beijing Vital River	Male	C57BL/6J
smooth	Laboratory Animal		
muscle cells	Technology Co., Ltd.		

Table S5. Primers for RT-PCR

Gene	Sequence (5'-3')		
Human <i>GAPDH</i>	Forward Reverse	AATGGGCAGCCGTTAGGAAA GCCCAATACGACCAAATCAGAG	
Human S100A4	Forward Reverse	TGACAAGTTCAAGCTCAACAAGTC TTCAAAGAATTCGTTACACATCATG	
Mouse β-Actin	Forward Reverse	GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT	
Mouse <i>S100A4</i>	Forward Reverse	GTGTCCACCTTCCACAAATACTC CAAAGAATTCATTGCACATCATG	
Mouse Myocd	Forward Reverse	AGGAAGTTCCGATCAGTCTTACA GGTATTAAGCCTTGGTTAGCCAG	
Mouse α-SMA	Forward Reverse	GTCCCAGACATCAGGGAGTAA TCGGATACTTCAGCGTCAGGA	

Mouse SM22a	Forward	CCAACAAGGGTCCATCCTACG
	Reverse	ATCTGGGCGGCCTACATCA
Mouco Calmoniu	Forward	TCTGCACATTTTAACCGAGGTC
Mouse Carponin	Reverse	GCCAGCTTGTTCTTTACTTCAGC
Mouse LOX	Forward	ACATTACGTGAACAAATAGCGG
	Reverse	GACGTGGCAGTTTGCAGTTA

Figure S2

Figure S3

Figure S4

Figure S5

