## **Supporting Information**

## Hypoxia-driven TNS4 fosters HNSCC tumorigenesis by stabilizing integrin $\alpha 5\beta 1$

## complex and triggering FAK-mediated Akt and TGF<sup>β</sup> signaling pathways

Xinyuan Zhao<sup>1,2</sup>, Zizhao Mai<sup>2</sup>, Liu Liu<sup>1</sup>, Ye Lu<sup>2</sup>, Li Cui<sup>2#</sup>, Jinhua Yu<sup>1#</sup>

1 Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China.

2 Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.

<sup>#</sup>Please address the correspondence to

Jinhua Yu, Email: yujinhua@njmu.edu.cn

Li Cui, Email: licui@smu.edu.cn



**Figure S1**. TNS4 overexpression enhances malignant features of HNSCC cells *in vitro* and *in vivo*. (A-B) Validation of TNS4 overexpression in HNSCC cells *via* western blotting and qPCR following specific treatments. (C-D) Measurement of OD values at different time intervals for cells with enforced TNS4 expression and their control

counterparts. (E) Assessment of the proportion of EdU-positive cells in TNS4overexpressing group versus control group (scale bar=50  $\mu$ m). (F-G) Comparative analysis of the colony and sphere formation capabilities in cells with TNS4 overexpression and control cells (scale bar=200  $\mu$ m). (H) Examination of the invasion potential of HNSCC cells following TNS4 overexpression (scale bar=200  $\mu$ m). (I) Western blot analysis to assess PCNA, E-cadherin, N-cadherin, and vimentin levels in cells with elevated TNS4 expression and control cells. (J-K) Comparison of tumor size, weight, and volume between the group overexpressing TNS4 and the control group. (L) Comparative Ki-67 staining intensity in xenograft tissues generated from cells with TNS4 overexpression and control cells (scale bar=100  $\mu$ m).



**Figure S2**. Significant enrichment of integrin-related pathways in the *TNS4*-high subgroup from the TCGA HNSCC cohort.

.



Figure S3. The PTB domain of TNS4 physically interacts with the cytoplasmic domain of integrin  $\beta$ 1 in HNSCC cells. (A) Schematic representation of TNS4 domains. (B) Interactions between TNS4 domains and integrin  $\beta$ 1 in HNSCC cells as revealed by Co-IP assays. (C) Schematic diagram depicting the domain structure of integrin  $\beta$ 1. (D) Interactions between integrin  $\beta$ 1domains and TNS4 in HNSCC cells as revealed by Co-IP assays.



**Figure S4**. Significant enrichment of FAK pathway, focal adhesion pathway, and PI3K-AKT-mTOR pathway in the *TNS4*-high subgroup from the TCGA HNSCC cohort.



**Figure S5.** The effects of integrin  $\alpha$ 5 or integrin  $\beta$ 1 depletion on indicated protein expression in TNS4-overexpressing cells. (A-B) Evaluation of protein levels for integrin  $\beta$ 1, integrin  $\alpha$ 5, p-FAK, FAK, p-Akt, Akt, PCNA, E-cadherin, N-cadherin, and vimentin in SCC-1 and SCC-23 cells subjected to specified treatments.



**Figure S6.** Reduction of tumorigenic potential in TNS4-overexpressing SCC-23 cells through FAK inhibition *in vivo*. (A-C) Comparative analysis of tumor size, weight, and volume among different treatment groups. (D) Evaluation of Ki-67 staining intensity in xenograft tumor tissues derived from SCC-23 cells subjected to specified treatments (scale bar=100 μm).



**Figure S7.** Akt inhibition effectively counteracts TNS4 overexpression-enhanced proliferation in HNSCC cells. (A-B) MTT assay demonstrating the proliferative capacity of HNSCC cells subjected to specified treatments. (C-D) Expression levels of p-Akt, Akt, and PCNA in SCC-1 and SCC-23 cells following respective modifications.



**Figure S8.** GSEA analysis revealing enrichment of the TGF $\beta$  signaling signature in high-*TNS4*-expressing HNSCC tumors across multiple independent cohorts, including TCGA HNSCC, GSE30784, GSE37991, and GSE41613.



**Figure S9.** Alterations in TGF $\beta$  signaling and EMT marker expression in TNS4overexpressing SCC-23 cells with indicated treatments. (A) Western blot analysis assessing the expression levels of p-Smad2, Smad3, p-Smad3, and Smad2 in SCC-23 cells subjected to the indicated modifications. (B) Assessment of E-cadherin, Ncadherin, vimentin, and SNAI2 expression levels in TNS4-overexpressing cells following treatment with LY2109761.



**Figure S10.** Impact of TNS4 depletion or overexpression on key components of TGF $\beta$  signaling in HNSCC cells, with or without TGF $\beta$  supplementation. (A-B) Assessment of p-Smad2, Smad2, p-Smad3, and Smad3 expression levels in SCC-1 and SCC-23 cells following the indicated treatments.



**Figure S11.** Impact of TGF $\beta$  supplementation on TNS4 expression level in HNSCC cells. (A) Temporal variation in TNS4 expression following different durations of TGF $\beta$  exposure. (B) Dose-dependent effects of TGF $\beta$  on TNS4 expression levels in HNSCC cells.



**Figure S12.** The TNS4-FAK axis enhances TGF $\beta$  signaling by facilitating the interaction between TGF $\beta$ RI and TGF $\beta$ RII in SCC-23 cells. (A-B) Analysis of the FAK inhibitor's impact on the interaction between FAK and TGF $\beta$ RI, and between TGF $\beta$ RI and TGF $\beta$ RII. (C-D) Effects of TNS4 depletion on the interaction between FAK and TGF $\beta$ RI, and between TGF $\beta$ RI and TGF $\beta$ RII. (E-F) Effects of TNS4 overexpression on the interaction between FAK and TGF $\beta$ RI and TGF $\beta$ RI. (B-F) Effects of TNS4 overexpression on the interaction between FAK and TGF $\beta$ RI.



Figure S13. Inhibition of FAK markedly reduced the levels of tyrosine phosphorylation on TGF $\beta$ RI in both SCC-1 and SCC-23 cell lines.



**Figure S14.** Effects of TNS4 depletion or overexpression on HIF-1 $\alpha$  expression in normoxic and hypoxic conditions. (A-D) Comparative analysis of HIF-1 $\alpha$  expression in TNS4-depleted and TNS4-overexpressing cells relative to their respective control cells under normoxic conditions. (E-H) Comparative analysis of HIF-1 $\alpha$  expression in TNS4-depleted and TNS4-overexpressing cells relative to their respective control cells under normoxic conditions.

| Clinicopathological parameters | Number of patients (n, %) |
|--------------------------------|---------------------------|
| Age                            |                           |
| ≥60                            | 68 (56.20%)               |
| <60                            | 53 (43.80%)               |
| Gender                         |                           |
| Male                           | 85 (70.25%)               |
| Female                         | 36 (29.75%)               |
| Smoking                        |                           |
| Yes                            | 72 (59.50%)               |
| No                             | 49 (40.50%)               |
| Alcohol intake                 |                           |
| Yes                            | 45 (37.19%)               |
| No                             | 76 (62.81%)               |
| TNM stage                      |                           |
| I-II                           | 66 (54.55%)               |
| III-IV                         | 55 (45.45%)               |
| Lymph node metastasis          |                           |
| Negative                       | 81 (66.94%)               |
| Positive                       | 40 (33.06%)               |

Table S1. The clinicopathological information of in-house HNSCC cohort.

| Sequence (5'-3')          |
|---------------------------|
| F: AGGACACCAGAACTCCGTTCA  |
| R: TCTCGGGTGATGTTTGGCTTA  |
| F: TGCACCACCAACTGCTTAGC   |
| R: GGCATGGACTGTGGTCATGAG  |
| F: CACCATTGGCAATGAGCGGTTC |
| R: AGGTCTTTGCGGATGTCCACGT |
| CUGAUGACCAGCAACUUGATT     |
| GGACCTTGACTCCTACATTGA     |
| GAAGTGGCAGAAGTACTGCAA     |
|                           |

Table S2. Sequences of primers and oligos used in this study.