Supplementary Data

Deubiquitination of CIB1 by USP14 promotes lenvatinib resistance via the PAK1-ERK1/2 axis in hepatocellular carcinoma

Ming-Hao Xu, Yi-Min Zheng, Bu-Gang Liang, Wen-Xin Xu, Jun Cao, Pei Wang, Zi-Ying Dong, Chen-Hao Zhou, Hui-Chuan Sun, Ning Ren, Ai-Wu Ke, and Ying-Hao Shen

The Supplementary Data consist of:

Supplementary Figures 1-4 Supplementary Tables 1-6

Fig. S1. Establishment and verification of lenvatinib-resistant models. **a.** The graphical representation of lenvatinib-resistant models. **b.** CCK8 assay of lenvatinib-resistant cell lines and control cell lines with lenvatinib treatment at indicated concentrations for 72 h. **c.** Colony formation assay of lenvatinib-resistant cell lines and control cell lines with lenvatinib treatment in 6-well dish for 2 weeks (n=3). Representative images (left) and average number of colonies (right) are shown. **d.** Analysis of apoptosis of lenvatinib-resistant cell lines and control cell lines with lenvatinib treatment by flow cytometry. **e.** Representative pictures and tumor weight of LEN-C and LEN-R under lenvatinib or vehicle treatment (20 mg/kg/day) for 30 days. **f.** Pre- and post-lenvatinib-treatment images of 5 HCC cases. Pre-treatment biopsy specimens were abstained for transcriptome sequencing. **g.** Swimmer plots of the 5 lenvatinib-resistant cases. Three

independent experiments with three technical repetitions were performed. Statistical analyses used Student's *t*-test. CDX, cell-derived xenograft; LEN-R, lenvatinib resistant; LEN-C, lenvatinib control; EHS, extrahepatic spread; MVI, macrovascular invasion; PD, progressive disease; RECIST, Response Evaluation Criteria in Solid Tumors. p < 0.05 was considered statistically significant. * p < 0.05, ** p < 0.01, *** p < 0.001.

Fig. S2. USP14 promotes the activation of MAPK pathway. **a.** The transcriptome analysis of PLC-R cells of Control group and shUSP14 group. **b.** Gene ontology analysis of differential expressed genes. **c.** GSEA analysis of the TCGA-LIHC dataset after dividing the patient specimens into USP14 high expression and low expression group. **d.** Immunoblot assays of phosphorylated or non-phosphorylated ERK1/2, MEK1/2, JNK, and p38 proteins in the indicated HCC cells. **e-f.** The tissue of 15 HCCs was stained with USP14, p-ERK1/2, or p-MEK1/2 by using the IHC assay. The typical images of IHC are shown in **e.** The expression and correlation of p- MEK1/2 and USP14, or p-ERK1/2 and USP14 are shown in **f.** Three independent experiments with three technical repetitions were performed. *p* values as indicated.

Fig. S3. USP14 interacts with and stabilizes CIB1 through the deubiquitinase activity. **a.** The peptide information of CIB1 in the MS of USP14 in PLC-R cells. **b-c.** Huh7-R cells stably expressing control shRNA or USP10 shRNA were treated with or without cycloheximide (40 ug/mL) and harvested at the indicated times. Protein levels of USP10 and CIB1 were analyzed by immunoblotting and by densitometry. **d-e.** Interaction between exogenous USP14 and CIB1. Huh7-R cells were co-transfected with indicated constructs. Cellular extracts were immunoprecipitated with FLAG Sepharose and immunoprecipitations were performed with antibodies against the indicated proteins. **f.** PLC-R cells were transfected with FLAG-tagged CIB1. Extracts were immunoprecipitated with FLAG Sepharose and examined by immunoblotting.

Endogenous USP14 was detected to interact with CIB1. g. Endogenous CIB1 was immunoprecipitated with USP14 antibody and examined by immunoblotting in PLC-R cell lines. h. Immunofluorescence showed the co-localization of USP14 and CIB1 in HCC tissues. i. Statistical result for the expression of USP14 and CIB1. Three independent experiments with three technical repetitions were performed. *** p < 0.001, Fischer's exact test (two sided).

Fig. S4. K24 is important for K48-linked ubiquitination mediated CIB1-USP14 interaction. PLC-R cells transfected with HA-USP14 or the empty vector **a**. and shNC or shUSP14 **b**. co-transfected with FLAG-CIB1 and a vector encoding HA-WT-Ub or its mutants (HA-K48O-Ub or HA-K63O-Ub) were subjected to denature-IP and immunoblotted with the indicated antibodies. **c.** PLC-R cells overexpressing Myc-

USP14 and HA-K48 were transfected with the indicated plasmid combinations to measure the ubiquitination of Flag-CIB1/CIB1-K24R. **d-e.** Immunofluorescence showed the co-localization of PAK1 and CIB1 in PLC-R and Huh7-R cell lines. **f.** Western blot showing the effects of overexpression of CIB1 on ERK1/2 pathway in the USP14-knockdown and control groups in Huh7-R cell lines. **g.** Western blot showing the effects of knocking down CIB1 or PAK1 on ERK1/2 pathway in the USP14 overexpression and control groups in Huh7-R cell lines. Three independent experiments with three technical repetitions were performed.

Supplementary Tables

Characteristics	USP14 high (n=83)	USP14 low (n=87)	P value	
Age, years, n (%)			0.297	Chisq test
<60	56 (32.9%)	65 (38.2%)		
≥60	27 (15.9%)	22 (12.9%)		
Gender, n (%)			0.534	Chisq test
Male	75 (44.1%)	76 (44.7%)		
Female	8 (4.7%)	11 (6.5%)		
AFP, ng/mL, n (%)			0.093	Chisq test
>400	33 (19.4%)	24 (14.1%)		
≤400	50 (29.4%)	63 (37.1%)		
HBsAg, n (%)			0.459	Chisq test
Positive	66 (38.8%)	73 (42.9%)		
Negative	17 (10%)	14 (8.2%)		
HCV, n (%)			0.261	Yates' correction
Negative	83 (48.8%)	84 (49.4%)		
Positive	0 (0%)	3 (1.8%)		
TB, umol/L, n (%)			0.532	Chisq test
>21	9 (5.3%)	7 (4.1%)		
≤21	74 (43.5%)	80 (47.1%)		
ALB, g/L, n (%)			0.559	Chisq test
>35	74 (43.5%)	75 (44.1%)		

Table S1. Correlation between USP14 expression and clinicopathological features inHCC patients.

Characteristics	USP14 high (n=83)	USP14 low (n=87)	P value	
≤35	9 (5.3%)	12 (7.1%)		
ALT, U/L, n (%)			0.283	Chisq test
>40	38 (22.4%)	47 (27.6%)		
≤40	45 (26.5%)	40 (23.5%)		
PT, s, n (%)			0.516	Chisq test
≤14	75 (44.1%)	81 (47.6%)		
>14	8 (4.7%)	6 (3.5%)		
Cirrhosis, n (%)			0.097	Chisq test
No	39 (22.9%)	30 (17.6%)		
Yes	44 (25.9%)	57 (33.5%)		
MVI, n (%)			0.480	Chisq test
No	59 (34.7%)	66 (38.8%)		
Yes	24 (14.1%)	21 (12.4%)		
Differentiation grade, n (%)			0.303	Chisq test
I-II	51 (30%)	60 (35.3%)		
III-IV	32 (18.8%)	27 (15.9%)		
Tumor number, n (%)			0.004	Chisq test
Single	41 (24.1%)	62 (36.5%)		
Multiple	42 (24.7%)	25 (14.7%)		
Tumor size, cm, n (%)			0.110	Chisq test
≤5	58 (34.1%)	70 (41.2%)		
>5	25 (14.7%)	17 (10%)		
BCLC stage, n (%)			0.001	Chisq test
0-A	58 (34.1%)	78 (45.9%)		

Characteristics	USP14 high (n=83)	USP14 low (n=87)	P value
B-C	25 (14.7%)	9 (5.3%)	

Abbreviations: AFP, α-fetoprotein; ALB, albumin; BCLC, Barcelona Clinic Liver Cancer; HBsAg, hepatitis B surface antigen; HCV, Hepatitis C; MVI, microvascular invasion; PT, prothrombin time; TB, total bilirubin; USP14, ubiquitin proteasome system.

	<i></i>		Univariate analysis		Multivariate analy	ysis
Characteristics		n	Hazard ratio (95% CI)	P value	Hazard ratio (95% CI)	P value
USP14 high	(OS)	83	1.820 (1.095 - 3.026)	0.021	1.489 (0.882 - 2.511)	0.136
expression	(RFS)	83	1.875 (1.214 - 2.897)	0.005	1.548 (0.987 - 2.428)	0.057
Sin ala taman	(OS)	103	0.284 (0.171 - 0.472)	< 0.001	0.404 (0.212 - 0.768)	0.006
Single tumor	(RFS)	103	0.303 (0.193 - 0.474)	< 0.001	0.333 (0.198 - 0.558)	< 0.001
Tumor size	(OS)	42	1.839 (1.077 - 3.139)	0.026	1.863 (1.037 - 3.347)	0.037
>5cm	(RFS)	42	1.134 (0.691 - 1.859)	0.619		
BCLC stage	(OS)	34	5.209 (3.051 - 8.893)	< 0.001	2.098 (1.034 - 4.260)	0.040
B-C	(RFS)	34	2.483 (1.475 - 4.180)	< 0.001	1.049 (0.569 - 1.933)	0.879
Differentiation	(OS)	111	0.444 (0.270 - 0.733)	0.001	0.541 (0.324 - 0.906)	0.019
grade I-II	(RFS)	111	0.726 (0.463 - 1.138)	0.163		
AP>400	(OS)	57	2.023 (1.222 - 3.350)	0.006	1.613 (0.950 - 2.738)	0.077
ng/mL	(RFS)	57	2.107 (1.364 - 3.255)	< 0.001	1.877 (1.198 - 2.939)	0.006

Table S2. Univariate and multivariate COX analysis of OS and RFS in 1 cohort (n = 170)

Abbreviations: AFP, α-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; USP14, ubiquitin proteasome system.

Protein names	Gene names	Scores	Diff Sig.
Calcium And Integrin- Binding Protein 1	CIB1	28.510	++
Tubulin Beta 3 Class III	TUBB3	24.771	++
Poly (ADP-Ribose) Polymerase 1	PARP1	20.260	++
Filamin A	FLNA	18.834	++
Protein Kinase, DNA- Activated, Catalytic Subunit	PRKDC	18.029	++
Chromobox 3	CBX3	17.659	++
Synuclein Alpha	SNCA	16.431	++
Proteasome 26S Subunit, Non-ATPase 3	PSMD3	15.881	++
Drebrin 1	DBN1	15.309	++
Solute Carrier Family 1 Member 5	SLC1A5	13.980	++

Table S3. Top 10 protein scores from 225 unique proteins that interact with USP14 by LC-MS/MS analysis.

_

Characteristic	Preoperative-lenvatinib-receiving HCC Patients (n)	
BCLC stage (A/B/C) (Before lenvatinib-treatment)	5/28/17	
China liver cancer stage (Ib/IIa/IIb/IIIa/IIIb) (Before lenvatinib-treatment)	5/13/15/16/1	
ECOG performance status $(0/1/2)$	31/19/0	
Child-Pugh class (A/B)	50/0	
Tumor response, according to RECIST v1.1 (CR/PR/SD/PD)	0/29/21/0	
Tumor response, according to mRECIST (CR/PR/SD/PD)	5/31/14/0	
Vascular Tumor Thrombus (Yes/No)	16/34	
Pathologic Complete Response (Yes/No)	4/46	

Table S4. Characteristics of the 50 HCC Patients HCC patients receivingPreoperative-Lenvatinib Therapy, Before Hepatectomy.

Abbreviations: BCLC, Barcelona Clinic Liver Cancer; CR, complete response; ECOG, Eastern Cooperative Oncology Group; PD, progressive disease; PR, partial response; SD, stable disease.

Gene	Sequence
USP14-shRNA#1	5'-CCCAAGATTCAGCAGTCAGAT-3'
USP14-shRNA#2	5'-GCAGCCAAATACAAGTGACAA-3'
siCIB1	5'-AAGCAGGAGATCCTCCTAGCC-3'
siPAK1	5'-AAGGTTGACATCTGGTCCCTG-3'
siNC	5'-UUCUCCGAACGUGUCACGUTT-3'
Primer-USP14	5'-ATGCCACTCTACTCTGTTACAGT-3'
Primer-GAPDH	5'-GTCTCCTCTGACTTCAACAGCG-3'

Table S5. The shRNA sequence, siRNA sequence and primers in the article.

Name	Application	Supplier	Cat no.
Rabbit anti-USP14	WB, IHC, IF	Abcam	ab235960
Rabbit anti-CIB1	WB, IF	Abcam	ab220606
Rabbit anti-CIB1	IHC	Abcam	ab198845
Rabbit anti-MEK1/2	WB, IHC	CST	4694
Rabbit anti-p-MEK1/2	WB	CST	9154
Rabbit anti-ERK1/2	WB	CST	9102
Rabbit anti-p-ERK1/2	WB	CST	9101
Rabbit anti-p-ERK1/2	IHC, IF	Proteintech	28733-1-AP
Rabbit anti-PAK1	WB, IF	CST	2602
Rabbit anti-human p38 MAPK	WB	CST	8690
Rabbit anti-human p-p38 MAPK	WB	CST	4511
Rabbit anti-human SAPK/JNK Antibody	WB	CST	9252
Rabbit anti-human p-SAPK/JNK	WB	CST	4668
K48-linkage Specific Polyubiquitin Antibody	WB	CST	4289
Rabbit anti-HA	WB	Sigma	H6908
Rabbit anti-Flag	WB	Sigma	F7425
Mouse anti-Myc-Tag	WB	CST	2276
Rabbit anti-GAPDH	WB	Abcam	ab9458
Rabbit anti-α-Tubulin	WB	CST	2125

 Table S6. Primary antibodies used in the study.