Parameter	Cases _	<i>H. pylori</i> infection		<i>p</i> value
		Negative	Positive	
Age				0.8289
<60	343	114	229	
≥60	90	31	59	
Gender				0.0669
Male	215	63	152	
Female	218	82	136	
Differentiation degree				0.6369
Poorly	229	79	150	
Highly and moderately	204	66	138	
Invasive depth				0.2565
T2	14	3	11	
Т3	196	60	136	
T4	223	82	141	
TNM stage				0.8397
1/11	221	75	146	
III/IV	212	70	142	
Preoperative Total				0.6008
cholesterol				
<6	416	138	278	
≥6	17	7	10	
Preoperative HDL-C				0.3017
<1.0	144	53	91	
≥1.0	289	92	197	
Preoperative LDL-C				0.0430
<4	403	140	263	
≥4	30	5	25	
Postoperative Total				0.0414
cholesterol				
<6	419	144	275	
≥6	14	1	13	
Postoperative HDL-C				<0.0001
<1.0	205	41	164	
≥1.0	228	104	124	
Postoperative LDL-C				0.0040
<4	408	143	265	
≥4	25	2	23	

Supplementary table 1. Relationships between H.pylori infection and clinicopathological characteristics in 433 GC patients.

name	sequences
Si-CYP11A1-1	ACTCGACCCTTCTTTATGA
Si-CYP11A1-2	GAAAGCCATCCTCGTTACA
Si-CYP11A1-3	AGTGCATCGGTATGCATGA
Si-CYP19A1-1	GCTGCATGGGACGTGATTT
Si-CYP19A1-2	TGGTTCTTCGAGATTACAT
Si-CYP19A1-3	ACATGGCCACGATGCTACA

Supplementary table 2. The siRNA sequences in this study.

Supplementary table 3. The primers in this study.

Primer name	Sequence(5'-3')		
CYP11a1-F	GGATGCTGGAGGAAGTAGTGAAC		
CYP11a1-R	TGGTGAACACTTCCTTTCTGTCT		
CYP19a1-F	GCAAAGCACCCTAATGTTGAAGA		
CYP19a1-R	CGAGTCTGTGCATCCTTCCAATA		
WNT10a-F	ATCCACGAATGCCAACACCAATT		
WNT10a-R	CTCTCGGAAACCTCTGCTGAAGA		
GATA3-F	CTCCTCCTCCTCTGCTCTTC		
GATA3-R	AAGCAAAGGTGAGCAAAGGAGAA		
EGFR-F	CTGGGTGCGGAAGAGAAAGAATA		
EGFR-R	CCAAAGGTCATCAACTCCCAAAC		
GAPDH-F	GGAGCGAGATCCCTCCAAAAT		
GAPDH-R	GGCTGTTGTCATACTTCTCATGG		

Name	Manufacturer	Catalog	observed
			molecular weight
anti-CYP11A1	abcam	ab272494	50 kDa
anti-CYP11A1	Proteintech	13363-1-AP	50 kDa
anti-CYP19A1	Affinity	BF8059	43-50 kDa
anti-cagA	Santa Cruz	sc-28368	120 kDa
anti-cagA	Santa Cruz	sc-28368 AF647	120 kDa
anti-GAPDH	Proteintech	60004-1-lg	36 kDa
anti-GST	Santa Cruz	sc-138	26 kDa
anti-LC3	CST	4108S	14/16 kDa
anti-p62	CST	23214S	62 kDa
anti-PINK1	Proteintech	23274-1-AP	65 kDa
anti-Parkin	CST	#32833	50 kDa
anti-Tom20	Abcam	ab186735	16 kDa
Ani-Ki67	CST	34330SF	
VeriBlot for IP	Abcam	ab131366	
Detection reagents			
(HRP)			
GAPDH Rabbit	ABclonal	AC001	36 kDa
pAb			
Mouse IgG (H+L)	Invitrogen	A32723	
Highly			
Cross-Adsorbed			
Secondary			
Antibody			
Donkey	Invitrogen	A-11034	
anti-Rabbit IgG			
(H+L) Highly			
Cross-Adsorbed			
Secondary			
Antibody			

Supplementary table 4. The antibodies in this study.

Fig. S1. The baseline serum lipid profiles of patients and the co-culture of GC cells with *H. pylori* strains.

A-B The scatter plots showed the distributions of the high-density lipoprotein cholesterol (LDL) (A) and the total serum cholesterol (B) from GC patients whose surgical specimens

were selected for sequencing. C The typical images of GC tissues under different H. pylori infection status as determined by FISH fluorescence staining with *H. pylori* probes. **D-E** The scatter plots showed the distributions of the high-density lipoprotein cholesterol (LDL) (A) and the total serum cholesterol (B) from GC patients whose surgical specimens were use to examine the cholesterol content. F Schematic diagram of co-culture of Helicobacter pylori and GC cells. Initially, GC cells in the logarithmic growth phase were subjected to serum deprivation by incubating them in a serum-free medium for a duration of 2 hours following fluid exchange. Subsequently, the H. pylori strain was introduced to the starved cells at an infection ratio of 100:1 (bacteria: cells). Following a 6-hour co-culture treatment, the medium was once again replaced, and the cells were further expanded to a specific cell density to facilitate subsequent experimental procedures. G Visualization of fluorescent cholesterol uptake in HGC-27 cells using live cell imaging. Data and error bars were shown as mean ± SD of triplicate independent replicate experiments. For the assessment of data passing independence, normality, and homogeneity of variance, the Student's t-test was employed to compare the differences between the two sets of data. Nonparametric tests were utilized in cases where the aforementioned conditions were not met. Significant flags and p-values are intricately linked in the following manner: (*p < 0.05; ***p* < 0.01; ****p* < 0.001; *****p* < 0.001).

A-B CCK8 assays were performed in AGS cells and HGC-27 cells in a combination treatments of different *H. pylori* infection and AVT stimuli. **C-F** EdU experiments were conducted in the same groups as in A and B. **G** The colony formation assays of GC cells alone or with the stimuli of cholesterol (5 ug/L). **H** The HE and Ki-67 immunohistochemical staining of subcutaneous tumor constructed from HGC-27 cells in mice chowed with

normal diet (ND) or high-cholesterol diet (HCD) (left) and the quantification of Ki67-positive tumor cells (right). I The quantification of Ki67-positive tumor cells (upper)and Filipin III staining (lower) in **Figure S2E. J** The HE and Ki-67 immunohistochemical staining of human GC tissues with or without *H. pylori* infection (left) and the quantification of Ki67-positive tumor cell percentage (right). **K** Diameter of organoids constructed from the surgical specimen of human GC. **L-M** The quantification of the effect of cholesterol on the apoptosis rate of AGS (K) and HGC-27 (L) cells treated by serum-free medium by flow cytometry assay.

Fig.S3. *H. pylori* induced the expression of CYP11A1/CYP19A1 and caused cholesterol accumulation in a CagA-dependent manner.

A The quantification of **Figure 3G**. **B** The examination of CYP11A1 and CYP19A1 by WB in human GC. **C** The examination of CYP11A1 and CYP19A1 by WB in HGC-27 cells co-cultured with different *H. pylori* strains. **D** The quantification of **Figure 3I**. **E** The examination of CagA by WB in HGC-27 cells co-cultured with *H. pylori*^{\triangle CagA} and *H. pylori*^{WT}. **F-G** The relative cholesterol content was varying in HGC-27 cells with the manipulation of CYP11A1 (C) or CYP19A1 (D) under the infection of different *H. pylori* strains. Data and error bars were shown as mean \pm SD of triplicate independent replicate experiments. For the assessment of data passing independence, normality, and homogeneity of variance, a mixed-design analysis of variance was used for pairwise comparisons. Nonparametric tests were utilized in cases where the aforementioned conditions were not

met. Significant flags and p-values are intricately linked in the following manner: (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.001).

Fig.S4. The *H. pylori^{WT}* disrupted the negative regulatory relationships between CYP11A1 and CYP19A1 in a CagA-dependent manner.

A The effects of different CYP11A1 levels on CYP19A1 were examined by PCR in HGC-27 cells alone or those pretreated by various *H. pylori* strains infection. **B** The influence of varying CYP19A1 levels on CYP11A1 were demonstrated by PCR in HGC-27 cells alone or those infected with different *H. pylori* strains. **C** The effects of CYP11A1 on CYP19A1 were examined by WB in HGC-27 cells alone and those co-cultured with different *H. pylori* strains. **D** The effects of CYP19A1 on CYP11A1 were examined by WB in HGC-27 cells alone or those infected with different *H. pylori* strains. **E** Luciferase reporter assay were conducted in transfected HGC-27 cells under the infection of different *H. pylori* strains. **F** Luciferase reporter assay were performed in HGC-27 cells transfected with indicated plasmids for 48 h. Data and error bars were shown as mean \pm SD of triplicate independent replicate experiments. For the assessment of data passing independence, normality, and homogeneity of variance, the Student's t-test was employed

to compare the differences between the two sets of data. A mixed-design analysis of variance or one-way analysis of variance was used for pairwise comparisons. Nonparametric tests were utilized in cases where the aforementioned conditions were not met. Significant flags and p-values are intricately linked in the following manner: (*p < 0.05; **p < 0.01; ***p < 0.001; ***p < 0.001).

A The colony formation assays were used to show the impact of CYP11A1 on the proliferation of GC cells. **B-C** The quantification of **Figure 5G** and **5H**. **D-E** The quantification of Figure 5J and 5K. Data and error bars were shown as mean \pm SD of triplicate independent replicate experiments. For the assessment of data passing independence, normality, and homogeneity of variance, the Student's t-test was employed to compare the differences between the two sets of data. One-way analysis of variance was used for pairwise comparisons. Nonparametric tests were utilized in cases where the aforementioned conditions were not met. Significant flags and p-values are intricately linked in the following manner: (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.001).

Fig.S6. CYP11A1 suppress mitophagy via decreasing mitochondrial cholesterol content.

AGS cells and HGC-27 cells were transfected by CYP11A1 or si-CYP11A1 or the corresponding control. Subsequently, they were treated by serum-free medium for the indicated time (AGS cells: 12 h; HGC-27 cells: 3 h). Cholesterol stimuli (5 ug/L) was simultaneously administered in CYP11A1-overexpressed GC cells. AVT (5 uM, 24h)was used to treat CYP11A1-knockdown GC cells. **A-B** The immunofluorescence staining of anti-Tom20 represented the total mitochondrial size in AGS cells alone or in those pretreated with serum-free medium for 12 h (A) and the quantification of A (B). **C-F** The immunofluorescence staining of anti-Tom20 represented the total mitochondrial size in HGC-27 cells with CYP11A1 knockdown (C) or overexpression (E) and the average

mitochondrial sizes of C and E were quantified (D, F, respectively). **G** The Mitotracker-Red staining represented the functional mitochondria in AGS cells or in those pretreated with serum-free medium for 12 h. **H** The immunofluorescence staining using JC-1 represented the mitochondrial potential in treated AGS cells with CYP11A1 overexpression and/or cholesterol stimuli. I Co-staining of mitophagy dye and lysosomal dye was used to detect the mitophagy. **J** Electron microscopy showed representative mitophagy induced by starvation in cells with CYP11A1 overexpression and/or cholesterol stimuli. **K**-L Examination of mitophagy markers by WB in knockdown group alone or with AVT stimuli (K) and in overexpression group alone or with cholesterol stimuli (L). **M-N** Examination of mitophagy markers by WB in infected HGC-27 cells with CYP11A1 knockdown (M) or overexpression (N) under different *H. pylori^{WT}* infeciton status.

Fig.S7. The verification of CYP11A1 or CYP19A1 knockdown and overexpression by PCR and WB.