1	Supplementary Information
2	m ⁶ A modification enhances the stability of <i>CDC25A</i> promotes tumorigenicity of
3	esophagogastric junction adenocarcinoma via cell cycle
4	
5	Yongbo Pan ^{a,b,c,1} , Huolun Feng ^{b,1} , Jianlong Zhou ^{b,1} , Wenxing Zhang ^b , Yongfeng Liu ^b ,
6	Jiabin Zheng ^b , Junjiang Wang ^b , Shan Gao ^{c,2} , Yong Li ^{b,2}
7	
8	^a Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital,
9	Guangdong Academy of Medical Sciences, Guangzhou 510080, China
10	^b Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong
11	Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern
12	Medical University, Guangzhou 510080, China
13	^c Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for
14	Life and Health, Southeast University, Nanjing 210096, China
15	
16	¹ Y.P., H.F. and J.Z. contributed equally to this work.
17	² To whom correspondence may be addressed. Email: gaos@sibet.ac.cn and
18	liyong@gdph.org.cn
19 20	
21	
22	This supplementary information contains:
23	• 15 Pages
24	• Supplementary Figures (7 Figures)
25	• Supplementary Tables (6 Tables)

Fig. S1 | RNA-seq analysis of IGF2BP3 KD OE-19 cells. (A) Principal component 28 analysis plot of RNA-seq data for Puro and shIGF2BP3 groups. (B) Volcano plot 29 showing the differentially expressed genes (DEGs) in IGF2BP3 KD OE-19 cells. (C) 30 31 Heatmap showing 75 cell cycle-related and down-regulated genes in IGF2BP3 KD OE-

- 32 19 cells. The red marks indicate G1-S transition-regulated genes. (D) qPCR analysis of
- 33 the mRNA expression levels of 8 G1-S transition-regulated genes in IGF2BP3 KD OE-
- 34 19 cells.
- 35 Related to Fig. 2.

Fig. S2 | IGF2BP3 regulates the cell cycle pathway in AEG. (A-B) Gene set
enrichment analysis (GSEA) showing the top 20 significantly enriched signaling
pathways (A), and the "Cell cycle" signaling pathways (B) in the RNA-seq data of 83
AEG patients based on the median value of IGF2BP3 expression.

41 Related to Fig. 2.

Fig. S3 | RIP-seq, LACE-seq and meRIP-seq analysis of IGF2BP3 in AEG. (A)
Scatterplot showing the high reproducibility of the RIP-seq, LACE-seq, and meRIPseq replicates. The Pearson correlation coefficients (R) of the normalized reads across
the two replicates were calculated and displayed in the plots. A smoother regression line
and 2D kernel density contour bands are also presented. *P* values were determined by
Pearson's correlation test. (B) Overlap of IGF2BP3 target genes identified by RIP-seq
and LACE-seq, and m⁶A modified genes by meRIP-seq in OE-19 cells.

Related to Fig. 3.

Fig. S4 | ALKBH5 and FTO regulate CDC25A expression. (A) Immunoblot analysis
of CDC25A in ALKBH5 and FTO KD OE-19 cells. (B) Immunoblot analysis of

- 54 CDC25A in ALKBH5 and FTO OE OE-19 cells.
- 55 Related to Fig. 4.

57 Fig. S5 | The enrichment of m⁶A and IGF2BP3 in the *CDC25A* 3' UTR. (A) m⁶A

58 RIP-qPCR showing the enrichment of m^6A modification in the *CDC25A* 3' UTR OE-

59 19 and SK-GT4 cells. (B) RIP-qPCR showing the enrichment of IGF2BP3 in the

- 60 *CDC25A* 3' UTR in OE-19 and SK-GT4 cells.
- 61 **Related to Fig. 5.**

66 guided fusion proteins with two gRNAs. (C) qRT-PCR analysis of CDC25A expression

67 in OE-19 cells transfected with gRNAs alone (left), gRNAs combined with Cas13b

- 68 (middle) or dCas13b (right).
- 69 Related to Fig. 6.

Fig. S7 | IHC analysis of CDC25A, IGF2BP3, and METTL3 in AEG tumor tissue

- 72 microarray. Representative images of tissue sections are shown. Normal adjacent
- 73 tissues (N) = 15; Tumor tissues (T) = 30. Scale bars, 100 μ m.
- 74 Related to Fig. 7.

75 Supplementary Tables

7	\sim
1	n
	~

Table S1 List of patient analysis in this study.

Б	Gender	Age	AEG	With adjacent	qRT-PCR	шс
ID			tissue	normal tissue	immunoblot	ІНС
T1	male	73	\checkmark			
T2	male	64	\checkmark	\checkmark	\checkmark	
Т3	male	55	\checkmark	\checkmark	\checkmark	
T4	female	77	\checkmark	\checkmark	\checkmark	
T5	male	77	\checkmark	\checkmark	\checkmark	
T6	male	82	\checkmark	\checkmark		
Τ7	male	68	\checkmark	\checkmark		
Т8	female	52	\checkmark	\checkmark		
Т9	male	63	\checkmark	\checkmark		
T10	male	65	\checkmark	\checkmark		
T11	male	54	\checkmark	\checkmark		
T12	male	55	\checkmark	\checkmark		
T13	male	65	\checkmark	\checkmark		
T14	male	70	\checkmark	\checkmark		
T15	male	63	\checkmark	\checkmark		
T16	male	50	\checkmark			
T17	male	55	\checkmark			
T18	male	81	\checkmark			
T19	male	60	\checkmark			
T20	male	61	\checkmark			
T21	male	62	\checkmark			
T22	male	46	\checkmark			
T23	female	60	\checkmark			
T24	male	55	\checkmark			
T25	female	59	\checkmark			
T26	male	68	\checkmark			
T27	male	69	\checkmark			
T28	male	80	\checkmark			
T29	female	71	\checkmark			
T30	male	42	\checkmark			

	Forwards (5'-3')
IGF2BP3.sh1	GCAAAGGATTCGGAAACTTCA
IGF2BP3.sh2	GCTGAGAAGTCGATTACTATC
METTL3.sh1	GCTGCACTTCAGACGAATTAT
METTL3.sh2	GGATACCTGCAAGTATGTTCA
ALKBH5.sh1	TCCTTGTCCATCTCCAGGATC
ALKBH5.sh2	TATGCAGTGAGTGATTTCATC
FTO.sh1	TGAACCTCTTTATGGAGCTCC
FTO.sh2	ACATTCTGGCTTCTGATCAGC

	-	-
	Forwards (5'-3')	Reverses (5'-3')
IGF2BP3	TCGAGGCGCTTTCAGGTAAA	AAACTATCCAGCACCTCCCAC
METTL3	ATTTTCCGGTTAGCCTTCGGG	CATCCTAGTCTCCCAGCCCT
SELECT	TAGCCAGTACCGTAGTGCGTG	ATGCAGCGACTCAGCCTCTG
GAPDH	GGAGCGAGATCCCTCCAAAAT	GGCTGTTGTCATACTTCTCATGG
CDC25A	GTGGGAGAACAGCGAAGACA	AATCCAAACAAACGTGGCGG
CDC25A 3' UTR	CAAAGGGGACAGCTGTGTGA	GACAGAAGAGGCGTAGCCAG
CCNE2	TAGCTGGTCTGGCGAGGT	GGGCTGCTGCTTAGCTTGTA
CDC6	GCGAGGCCTGAGCTGTG	GCTGAGAGGCAGGGCTTTTA
CDK4	GGCCTGTGTCTATGGTCGG	GGCACCGACACCAATTTCAG
CHEK2	GAGAGTGTGCGGCTCCAG	GAGCCTTGGGACTGGGTAAC
E2F1	TCGTAGCATTGCAGACCCTG	ACATCGATCGGGCCTTGTTT
E2F3	CAGGCTGGTTTCGGAAATGC	TGGACTTCGTAGTGCAGCTC
WEE1	CTGAACAATGGGCCTCGTCT	ATCCTATGGCTCGGGAGTGT

Table S3 List of qRT-PCR primers.

	-	•
Antibodies	Manufacturer	Application
GAPDH	Proteintech, #60004-1-Ig	1:3000 for WB
IGF2BP3	Proteintech, #14642-1-AP	1:3000 for WB, 3 μg for RIP, 1:400 for IHC
METTL3	Proteintech, #15073-1-AP	1:3000 for WB, 1:400 for IHC
CDC25A	Proteintech, #55031-1-AP	1:3000 for WB, 1:300 for IHC
ALKBH5	Proteintech, #16837-1-AP	1:2000 for WB
FTO	Proteintech, #27226-1-AP	1:2000 for WB
m ⁶ A	Synaptic Systems, #202003	3 μg for RIP-qPCR

Table S4 List of primary antibodies.

Table S5 Primers for SELECT qPCR.Sequence (5'-3')A2131.uptagccagtaccgtagtgcgtgCCTCTCCAAATGTCACACAGCTGA2131.down5phos/CCCCTTTGCTTAAGTTTCTCTGcagaggctgagtcgctgcatA2142.uptagccagtaccgtagtgcgtgGTCCCAGGCCCCCTCTCCAAATGA2142.down5phos/CACACAGCTGTCCCCTTTGCTTAcagaggctgagtcgctgcatA2142.downtagccagtaccgtagtgcgtgGAGGTAGGTTTAAGGCATGGAAG

A2164.down5phos/CCCAGGCCCCTCTCCAAATGTCcagaggctgagtcgctgcatN.uptagccagtaccgtagtgcgtgGGCATGGAAGTCCCAGGCCCCCTC

N.down 5phos/CCAAATGTCACACAGCTGTCCCcagaggctgagtcgctgcat

85

86

Table S6 G1-S transition-regulating genes and supporting references.

Gene	Reference
CONDI	Pedraza N et al. Cyclin D1-Cdk4 regulates neuronal activity through phosphorylation of GABAA receptors. CELL MOL
CCNDI	LIFE SCI: CMLS 2023;80:280
CONT	Sonntag R, et al. Cyclin E1 and cyclin-dependent kinase 2 are critical for initiation, but not for progression of
CCNEI	hepatocellular carcinoma. P NATL ACAD SCI USA 2018;115:9282-7
CONT	Sonntag R, et al. Cyclin E1 and cyclin-dependent kinase 2 are critical for initiation, but not for progression of
CCNE2	hepatocellular carcinoma. P NATL ACAD SCI USA 2018;115:9282-7
CCNH	Hume S, et al. A unified model for the G1/S cell cycle transition. Nucleic Acids Res 2020;48:12483-501
CDC25A	Sur S, et al. Phosphatases and kinases regulating CDC25 activity in the cell cycle: clinical implications of CDC25
CDC25A	overexpression and potential treatment strategies. MOL CELL BIOCHEM 2016;416:33-46
CDC(Ochlmann M, et al. The role of Cdc6 in ensuring complete genome licensing and S phase checkpoint activation. JCB
CDC6	2004;165:181-90
CDC7	Moiseeva TN, et al. WEE1 kinase inhibitor AZD1775 induces CDK1 kinase-dependent origin firing in unperturbed G1-
CDC/	and S-phase cells. P NATL ACAD SCI USA 2019;116:23891-3
CDV2	Sonntag R, et al. Cyclin E1 and cyclin-dependent kinase 2 are critical for initiation, but not for progression of
CDK2	hepatocellular carcinoma. P NATL ACAD SCI USA 2018;115:9282-7
CDV 4	Pedraza N, et al. Cyclin D1-Cdk4 regulates neuronal activity through phosphorylation of GABAA receptors. CELL MOL
CDK4	LIFE SCI: CMLS 2023;80:280
CDKNDD	Arya AK, et al. Promoter hypermethylation inactivates CDKN2A, CDKN2B and RASSF1A genes in sporadic parathyroid
CDKN2B	adenomas. SCI REP 2017;7:3123
CHEK2	Zannini L, et al. CHK2 kinase in the DNA damage response and beyond. JCB 2014;6:442-57
CI II I	O'Hagan RC, et al. Myc-enhanced expression of Cull promotes ubiquitin-dependent proteolysis and cell cycle
CULI	progression. GENE DEV 2000;14:2185-91
E2F1	Inoshita S, et al. Regulation of the G1/S transition phase in mesangial cells by E2F1.KIDNEY INT 1999;56:1238-41
E2F3	Inoshita S, et al. Regulation of the G1/S transition phase in mesangial cells by E2F1.KIDNEY INT 1999;56:1238-41
E2F4	Inoshita S, et al. Regulation of the G1/S transition phase in mesangial cells by E2F1.KIDNEY INT 1999;56:1238-41
	Chirackal Manavalan AP, et al. CDK12 controls G1/S progression by regulating RNAPII processivity at core DNA
MIBP	replication genes. EMBO REP 2019;20:e47592
NRVG	Liu J-Y, et al. LncRNA SNHG17 interacts with LRPPRC to stabilize c-Myc protein and promote G1/S transition and cell
MYC	proliferation. CELL DEATH DIS 2021;12:970
DDDCA	Yan Y, et al. Distinct roles for PP1 and PP2A in phosphorylation of the retinoblastoma protein. PP2a regulates the activities
PPP2CA	of G(1) cyclin-dependent kinases. JBC 1999;274:31917-24
PRKDC	Blackford AN, et al. The Trinity at the Heart of the DNA Damage Response. Mol Cell 2017;66:801-17
	Militi S, et al. RBL2-E2F-GCN5 guide cell fate decisions during tissue specification by regulating cell-cycle-dependent
KBL2	fluctuations of non-cell-autonomous signaling. Cell Rep 2023;42:113146
SKP2	Hume S, et al. The NUCKS1-SKP2-p21/p27 axis controls S phase entry. Nat Commun 2021;12:6959
TP53	Zannini L, et al. CHK2 kinase in the DNA damage response and beyond. J MOL CELL BIOL 2014;6:442-57
WEE 1	Moiseeva TN, et al. WEE1 kinase inhibitor AZD1775 induces CDK1 kinase-dependent origin firing in unperturbed G1-
WEEI	and S-phase cells. P NATL ACAD SCI USA 2019;116:23891-3

87 Related to Fig. S1.