1	IL-6 signaling accelerates iron overload by upregulating DMT1 in endothelial cells to
2	promote aortic dissection
3	
4	Authors: Qiang Xie ^{1,2} , Jianji Wang ¹ , Runqiao Li ¹ , Hao Liu ¹ , Yongliang Zhong ¹ , Qinfeng Xu ¹ ,
5	Yipeng Ge ¹ , Chengnan Li ¹ , Lizhong Sun ¹ and Junming Zhu ^{1, *}
6	
7	¹ Department of Cardiovascular Surgery, Beijing Aortic Disease Center, Beijing Anzhen
8	Hospital, Capital Medical University, Beijing 100029, China
9	² Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of
10	Medicine, Shanghai 200025, China.
11	
12	* Correspondence: Professor Junming Zhu, MD. Department of Cardiovascular Surgery,
13	Beijing Aortic Disease Center, Beijing Anzhen Hospital, Capital Medical University, 2
14	Anzhen Avenue, Beijing 100029, China.
15	Tel: +86 13801132276
16	E-mail: anzhenzjm@ccmu.edu.cn; anzhenzjm@163.com
17	
18	Supplementary Figure count: 6

Supplementary Table count: 5

Fig. S1. Dimensionality reduction and clustering of aortic cells in scRNA-seq data. (A) 20 UMAP plot of all cells and separate clusters. (B) Gene expression profiles of selected markers 21 in separate clusters. (C) UMAP plot of seven cell types in the aortas. (D) Proportion of 22 different cell types in the aortas. (E) Separate clusters of all endothelial cells (ECs). (F) Gene 23 expression profiles of selected markers in separate clusters of ECs. (G) UMAP plot of 24 the expression of aortic endothelial cell (AEC) marker genes (HEY1 and IGFBP3). (H) 25 UMAP of EC types in the aortas. (I) Proportion of different ECs. (J) Heatmap showing the 26 top five genes in AECs. 27

Fig. S2. Volcano plot and enrichment analysis of differentially expressed genes (DEGs) in scRNA-seq and bulk RNA-seq. (A) GO and KEGG analyses of DEGs in aortic endothelial cell 3 of scRNA-seq. (B) Volcano plot of bulk RNA-seq showing DEGs in aortas of dissection patients and transplant donors. (C) Volcano plot showing DEGs in the aortas of six control and six acute AD mice. (D) GO and KEGG analyses of DEGs between acute control and AD mouse aortas.

Fig. S3. Serum biomarker levels and renal section staining in mice with aortic dissection.
Contents of serum hepcidin (A), creatinine (B), Kim-1 (C), and ROS (D) in the first animal
experiment. TCZ and DFO inhibited serum levels of hepcidin (E), creatinine (F), Kim-1 (G),
and ROS (H). (I) HE staining of coronal sections of mouse kidneys. (J) PAS staining of renal
sections. (K) IHC staining of renal sections. (L) ROS staining of renal tissues.
Data are presented as representative images or means ± SDs. **P* < 0.05, ***P* < 0.01, ns, not

40 significant.

Fig. S4. IL-6R overexpression induces ERS and apoptosis in HAECs. (A) C-6F and DFO
reduced apoptosis in HAECs. (B) Confocal images of mito-Ca²⁺ fluorescence staining. (C)
Confocal images of mitoSOX fluorescence staining. (D) AZD1480 and SYP-5 reduced ROS
in HAECs. (E) AZD1480 and SYP-5 reduced apoptosis in HAECs. (F) Fluorescence images
of mito-Ca²⁺. (G) MitoSOX fluorescence staining. (H) Apoptosis of HAECs was detected by
flow cytometry. Data are presented as representative images.

Fig. S5. Excessive IL-6 sensitized FAC-induced ERS and apoptosis in HAECs. (A) IL-6
sensitized FAC-induced apoptosis in HAECs. (B) Confocal images of mito-Ca²⁺ fluorescence
staining. (C) Confocal images of mitoSOX fluorescence staining. (D) C-6F reduced apoptosis
induced by IL-6 and FAC in HAECs. (E) Fluorescence images of mito-Ca²⁺. (F) MitoSOX
fluorescence staining. (G) Apoptosis of HAECs was detected by flow cytometry. Data are
presented as representative images or means ± SDs.

Fig. S6. Changes in perioperative serum biomarkers and the correlation between biomarkers 53 and prognosis. Levels of serum iron ion (A), hepcidin (B), IL-6 (C), ROS (D), MDA (E), 54 Kim-1 (F), and creatinine (G) in a rtic dissection (AD) patients and other patients requiring 55 aortic surgery at pre-operation (Preop), end of cardiopulmonary bypass (End-CPB), and 56 postoperation day one (POD#1). (H) Correlation between preoperative free iron ion and 57 hospital stay in AD patients. (I) Relationship between preoperative IL-6 and hospital stay in 58 dissection patients. Data are presented as representative images or means \pm SDs. *P < 0.05, 59 **P < 0.01, ns, not significant. 60

Categories	Forward (5'3')	Reverse (5'3')				
RT-PCR assay	RT-PCR assay					
Human						
FTH1	-CCAGAACTACCACCAGGACTC-	-GAAGATTCGGCCACCTCGTT-				
FTL	-CAGCCTGGTCAATTTGTACCT-	-GCCAATTCGCGGAAGAAGTG-				
	-GAACGTCGAAAAGAAAAGTCTC	-CCTTATCAAGATGCGAACTCA				
ΠΙΓ-Ια	G-	CA-				
GL C20 10		-ACAGGAATCCATATCCCCAAA				
SLC39A8	-AIGCIACCCAAAIAACCAGCIC-	CT-				
GOD 2		-CCCGTTCCTTATTGAAACCAA				
SOD2	-GGAAGCCATCAAACGTGACTT-	GC-				
		-AAAGCCCTACAGCAACTGTCG				
HMOXI	-AAGACTGCGTTCCTGCTCAAC-	-				
	-CGGGTGCTGGAGCTATACAG-	-CGACAGTGTTGACATCAATGG				
DMTI		C-				
	-ACCACAAGTTTACTAACGCAAG	-TTTGAGGGGGGATTCCAGGTAA				
PTPRC	Т-	Т-				
IL6R	-CCCCTCAGCAATGTTGTTTGT-	CTCCGGGACTGCTAACTGG-				
		-TGACTCGGAGACCAGAACATT				
LYN	-TGCAGAGGGAATGGCATACAT-	AG-				
CCELD		-AGGTTGAGGGTCAGGACTTTT				
CSFIR	-CIGCCCAGAICGIGIGCIC-	Т-				
GAPDH	-CGGGAAGCTTGTCATCAATGG-	-GGCAGAGATGATGACCCTTT-				
Mouse		I				
		-AGGTTGTCCAACTGACATCTT				
Ptprc	-GTTTTCGCTACATGACTGCACA-	TC-				
		-TCCTGTGGTAGTCCATTCTCTG				
ll6r	-GCCACCGTTACCCTGATTTG-	-				

Table S1. The primers sequence information.

Categories	Forward (5'3')	Reverse (5'3')	
Lyn	-ATTGTGGTGGCCTTATACCCT-	-ACCATTCCCCATGCTCTTCTA-	
Csflr	-TGTCATCGAGCCTAGTGGC-	-GGTCCAAGGTCCAGTAGGG-	
Gapdh	-AGGTCGGTGTGAACGGATTTG-	-GGGGTCGTTGATGGCAACA-	
ChIP assay			
	-AGGGACCCAGATGAAAGGTCTC	-GGTTCACGCCTGTAATCCCAG	
DMT1-Site1	TTT-	CA-	
	-TGTTTAAGGTGTACAAGATGGA	-AATCCTTGTAGTAGGCTGGCA	
DMT1-Site2	GG-	C-	
DMT1-Site3	-TCCCCTCCTCCCAGATTGAG-	-AGACATCAGAGCCACGCAAA-	
Pulldown assay (biot	in-labeling)		
		-ACACCTTAAACAATTCCCTTC	
DM11-Site1-probe	-AGGGACCCAGAIGAAAGGICI-	CATT-	
	-TGTTTAAGGTGTACAAGATGGA	-AATCCTTGTAGTAGGCTGGCA	
DWI11-Site2-probe	GG-	C-	
DMT1-Site3-probe	-AAACTTCTAGAAAACTGCCTGC-	-TAACCCCAAGCCTGACAGTG-	
Luciferase plasmids construction			
DMT1 WT		-GCTTACTTAGATCGCAGATCTG	
DMII-wi		GTGCAGAACTAGTTTGACTTTC	
-pOL5-Basic	TTCTCCTOCCTOAOCCTCCCA-	CCAATGC-	
DMT1 Mart 1		-TTGCGGCCAGGCACAGTGGTT	
Divi i i -iviut-i	-ACCACIOIOCCIOOCCOCAA-	CTGTAATCCCAGCACTTTG-	
DMT1 Mart 2	-GCTGGGATTGCAGAATTTTTGTG	-AAAAATTCTGCAATCCCAGCA	
Divi i i -iviut-2	CCAGCCTACTAC-	CTTTGG-	
DMT1 Mart 2	-CCAAGTCCGGAGTTTGCTCTGAT	-AGAGCAAACTCCGGACTTGGT	
DIVITI-MUT-3	GTCTGCTCGTGG-	GC-	

- 62 Abbreviations: RT-PCR, reverse transcription-polymerase chain reaction assay; ChIP,
- 63 chromatin immunoprecipitation; WT, wild type plasmid; Mut, mutant plasmid.

Categories	Usage and dosage	Product codes	Sources
Primary antibodies			
FTH	WB 1:200 IHC 1:100 IF 1:50	sc-376594	Santa Cruz, California, USA
FTL	WB 1:200 IHC 1:100 IF 1:50	sc-74513	Santa Cruz, California, USA
IL-6R	WB 1:200 IHC 1:100 IF 1:50	sc-373708	Santa Cruz, California, USA
HIF-1α	WB 1:1000 IHC 1:500 IF 1:100 ChIP 2 ug	#36169	CST, Massachusetts, USA
DMT1	WB 1:1000 IHC 1:200 IF 1:100	20507-1-AP	Proteintech, Illinois, USA
CD31	IF 1:100	11265-1-AP	Proteintech, Illinois, USA
p-JAK1	WB 1:1000 IHC 1:200	SAB4300123	SIGMA, Missouri, USA
p-STAT3	WB 1:1000 IHC 1:200	#9145	CST, Massachusetts, USA
ATF6	WB 1:1000 IHC 1:200	24169-1-AP	Proteintech, Illinois, USA
GRP78	WB 1:1000 IHC 1:200	11587-1-AP	Proteintech, Illinois, USA
СНОР	WB 1:1000 IHC 1:200	15204-1-AP	Proteintech, Illinois, USA
Caspase 12	WB 1:500	#58208	CST, Massachusetts, USA
Cleaved-caspase 3	WB 1:500	#9661	CST, Massachusetts, USA
GAPDH	WB 1:10000	10494-1-AP	Proteintech, Illinois, USA
Histone H3	WB 1:2000	17168-1-AP	Proteintech, Illinois, USA
Control Rabbit IgG	ChIP 2 ug	#2729	CST, Massachusetts, USA

Table S2. The antibodies used information.

Categories	Usage and dosage	Product codes	Sources	
Secondary antibodies				
IRDye® 800CW Goat	WB 1.20000	926 32210	LLCOP Nebraska USA	
anti-Mouse IgG (H+L)	WB 1.20000	920-92210	LI-COR, WOIASKA, USA	
IRDye® 800CW Goat	WD 1.20000	026 22211	LLCOD Nebreska USA	
anti-Rabbit IgG (H+L)	WB 1:20000	920-32211	LI-COR, Nedraska, USA	
Donkey anti-Mouse IgG	IE 1.200	AD 255(542	Thermo Fisher Scientific,	
(H+L) Alexa Fluor [™] 488	IF 1:200	AB_2330342	Massachusetts, USA	
Goat anti-Mouse IgG	IE 1.200	AD 255(547	Thermo Fisher Scientific,	
(H+L) Alexa Fluor [™] 594	IF 1:200	AB_2330347	Massachusetts, USA	
Donkey anti-RabbitIgG	IE 1.200	AD 255(540	Thermo Fisher Scientific,	
(H+L) Alexa Fluor [™] 594	IF 1:200	AB_2556549	Massachusetts, USA	
Goat anti-Rabbit IgG	IE 1-200	AD 255(544	Thermo Fisher Scientific,	
(H+L) Alexa Fluor [™] 488	IF 1:200	AB_2350544	Massachusetts, USA	

65 Abbreviations: WB, western blot; IHC, immunohistochemistry; IF, immunofluorescence;

66 ChIP, chromatin immunoprecipitation.

67	Table S3. The	enzyme-linked	immunosorbent	assay k	kits used	information.
----	---------------	---------------	---------------	---------	-----------	--------------

Categories	Product codes	Sources
Human		
Free iron ion (Non-transferrin binds iron)	MM-60946H1	Mmbiology, Jiangsu, China
Interleukin-6	MM-0049H1	Mmbiology, Jiangsu, China
Malonaldehyde	MM-2037H1	Mmbiology, Jiangsu, China
Reactive oxygen species	MM-1893H1	Mmbiology, Jiangsu, China
Kidney injury molecule-1	MM-0647H1	Mmbiology, Jiangsu, China
Creatinine	MM-13833H1	Mmbiology, Jiangsu, China
Mouse		
Free iron ion (Non-transferrin binds iron)	MM-46281M1	Mmbiology, Jiangsu, China
Interleukin-6	MM-0163M1	Mmbiology, Jiangsu, China
Malonaldehyde	MM-0897M1	Mmbiology, Jiangsu, China
Reactive oxygen species	MM-43700M1	Mmbiology, Jiangsu, China
Kidney injury molecule-1	MM-0318M1	Mmbiology, Jiangsu, China
Creatinine	MM-0693M1	Mmbiology, Jiangsu, China

Table S4. Clinical details of aortic dissection and other patients.

Variables	AD $(n = 67)$	Others (n = 70)	<i>p</i> -value
Preoperative variables			
Age (years)	50.0 ± 11.2	50.3 ± 13.0	0.813
Male	46 (68.7%)	57 (81.4%)	0.084
Height (cm)	169.6 ± 7.7	170.4 ± 7.6	0.230
Weight (kg)	74.0 ± 12.2	71.6 ± 11.6	0.244
Body mass index (kg/m ²)	25.7 ± 3.7	24.6 ± 3.4	0.060
Smoking	21 (31.3%)	33 (47.1%)	0.059
Hypertension	44 (65.7%)	35 (50.0%)	0.063
Left ventricular ejection fraction (%)	60.5 ± 4.7	58.1 ± 7.7	0.116
Free iron ion (ug/mL)	7.9 ± 2.0	2.7 ± 0.9	< 0.001
Interleukin-6 (pg/mL)	113.3 ± 39.1	52.4 ± 23.1	< 0.001
Serum creatinine (ug/mL)	101.2 ± 18.4	76.3 ± 15.2	< 0.001
Hepcidin (ng/mL)	21.1 ± 8.2	6.6 ± 4.6	< 0.001
Kidney injury molecule-1 (pg/mL)	139.5 ± 33.5	80.1 ± 25.8	< 0.001
Malondialdehyde (nmol/mL)	5.6 ± 0.8	4.2 ± 0.6	< 0.001
Reactive oxygen species (U/mL)	363.0 ± 79.4	220.2 ± 60.8	< 0.001
Operation-related variables			
Length of operation (hour)	7.5 ± 1.7	5.8 ± 1.1	< 0.001
Cardiopulmonary bypass time (min)	187.2 ± 46.6	136.9 ± 41.2	< 0.001
Cross-clamp time (min)	105.3 ± 28.5	89.8 ± 27.5	0.003
Assisted circulation time (min)	73.9 ± 28.4	39.0 ± 21.7	< 0.001
Postoperative variables			
Packed red cells on first 24h (units)	1.9 ± 2.2	0.7 ± 1.9	< 0.001
Frozen plasma on first 24h (100 mL)	0.9 ± 1.9	0.4 ± 1.3	0.067
Platelet concentrate on first 24h (units)	0.1 ± 0.3	0	0.006
Packed red cells (units)	4.3 ± 5.7	1.2 ± 3.6	< 0.001

Variables	AD $(n = 67)$	Others (n = 70)	<i>p</i> -value
Postoperative variables			
Fresh frozen plasma (100 mL)	1.6 ± 3.6	0.7 ± 2.6	0.049
Platelet concentrate (units)	0.4 ± 0.8	0.1 ± 0.7	< 0.001
Hospital length of stay (day)	17.3 ± 7.3	16.9 ± 6.3	0.799
ICU length of stay (hour)	98.8 ± 83.2	38.2 ± 45.6	< 0.001
Prolonged ICU of stay (\geq 3 days)	32 (47.8%)	7 (10.0%)	< 0.001
Mechanical ventilation (hour)	38.5 ± 48.4	27.6 ± 49.8	0.004
Mechanical ventilation (\geq 24 hours)	35 (52.2%)	8 (11.4%)	< 0.001
In-hospital mortality	2 (3.0%)	1 (1.4%)	0.534
Renal replacement therapy	5 (7.5%)	0	0.061
Acute kidney injury	28 (41.8%)	13 (18.6%)	0.003
Acute kidney injury			0.006
None	39 (58.2%)	57 (70.1%)	
Stage 1	15 (22.4%)	10 (14.3%)	
Stage 2	6 (9.0%)	3 (4.3%)	
Stage 3	7 (10.4%)	0	
Extracorporeal membrane oxygenation	0	2 (2.9%)	0.497
Stroke	7 (10.4%)	1 (1.4%)	0.059
Paraplegia	3 (4.5%)	0	0.228
Re-exploration for bleeding	2 (5.0%)	2 (2.9%)	0.228
Serious adverse events	42 (62.7%)	11 (15.7%)	< 0.001

Footnote: Variables are displayed as n (%) and mean \pm standard deviation. The *p*-values with

71 statistical significance are bolded.

72 Abbreviations: ICU, intensive care unit.

Variables	OR (95% CI)	<i>p</i> -value
Age	1.03 (0.99 - 1.08)	0.151
Male	1.29 (0.44 - 3.80)	0.649
Body mass index	0.99 (0.86 - 1.13)	0.869
Smoking	0.71 (0.25 - 2.04)	0.527
Hypertension	1.49 (0.53 - 4.18)	0.452
Left ventricular ejection fraction	1.01 (0.91 - 1.13)	0.830
Free iron ion	1.69 (1.24 - 2.31)	0.001
Interleukin-6	1.02 (1.00 - 1.04)	0.037
Serum creatinine	1.04 (1.00 - 1.08)	0.049
Hepcidin	1.04 (0.97 - 1.10)	0.266
Kidney injury molecule-1	1.00 (0.98 - 1.01)	0.584
Malondialdehyde	0.90 (0.50 - 1.61)	0.717
Reactive oxygen species	1.00 (0.99 - 1.00)	0.549
Cardiopulmonary bypass time	1.01 (1.00 - 1.02)	0.069
Cross-clamp time	1.01 (0.99 - 1.03)	0.170

73 **Table S5.** Univariable logistic regression of serious adverse events.

Footnote: Preoperative and operation-related variables with p-values < 0.20 in univariable logistic regression were considered candidates for multivariable regression. The p-values with statistical significance are bolded.

77 Abbreviations: OR, odds ratio; CI, confidence interval.