1	Supplemental Materials
2	PPARγ Agonist Pioglitazone Prevents Hypoxia-induced Cardiac Dysfunction By
3	Reprogramming Glucose Metabolism
4	
5	Supplementary
6	Tables 1-2 and Figures 1-4
7	
8	
9	Yijin Wang ^{1†} , Ru Zhang ^{2†} , Qian Chen ¹ , Zhangwen Lei ³ , Caiyu Shi ¹ , Yifei Pang ³ , Shan'an
10	Zhang ⁴ , Linjie He ⁵ , Longtao Xu ⁴ , Jinliang Xing ^{5*} , Haitao Guo ^{5*}
11	
12	¹ College of Life Sciences, Northwest University, Xi'an, 710069, China
13	² The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical
14	University, Xi'an, 710069, China
15	³ School of Medicine, Northwest University, Xi'an, 710069, China
16	⁴ College of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
17	⁵ State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology,
18	Fourth Military Medical University, Xi'an, 710032, China
19 20	[†] This represents these authors contributed equally to this work.
21	*Correspondence to: Haitao Guo and Jinliang Xing, State Key Laboratory of Cancer Biology
22	and Department of Physiology and Pathophysiology, Fourth Military Medical University, 169
23	Changle West Road, Xi'an 710032, China. Email: haitaoguo@fmmu.edu.cn and
24	xingjl@fmmu.edu.cn.
25	Keywords: Hypoxia, Cardiac dysfunction, Pioglitazone, Glucose metabolic reprogramming,
26	PPARγ, HIF-1α

1

27 Supplementary Tables

28 Supplementary Table 1

	i initially antiboards about for westerin brotting					
Antibody	Target	Working	Catalog No.	Sunnlier		
Antibody	species	dilutions		Supplier		
GLUT1	Rabbit	WB: 1/1000	A6982	ABclonal, Wuhan, China		
HK2	Rabbit	WB: 1/1000	A20829	ABclonal, Wuhan, China		
PKM2	Rabbit	WB: 1/1000	A0268	ABclonal, Wuhan, China		
LDHA	Rabbit	WB: 1/1000	A1146	ABclonal, Wuhan, China		
PDH	Rabbit	WB: 1/1000	ab168379	Abcam, Cambridge, UK		
P-PDH	Rabbit	WB: 1/1000	ab177461	Abcam, Cambridge, UK		
PDK4	Rabbit	WB: 1/1000	A13337	ABclonal, Wuhan, China		
HIF-1a	Rabbit	WB: 1/1000	ab179483	Abcam, Cambridge, UK		
PPARγ	Rabbit	WB: 1/1000	16643-1-AP	Proteintech, Wuhan, China		
α-actin	Rabbit	WB: 1/3000	A2319	ABclonal, Wuhan, China		
AKT	Rabbit	WB: 1/1000	AP0140	ABclonal, Wuhan, China		
p-AKT	Rabbit	WB:1/1000	4060	CST, Boston, USA		
p-70S6	Rabbit	WB:1/1000	2708	CST, Boston, USA		
p-p7086	Mouse	WB:1/1000	9206	CST, Boston, USA		

29

Primary antibodies used for western blotting

31 Supplementary Table 2

Gene		Sequences	
HIF-1α (mouse)	Forward	GCGAGAACGAGAAGAAAAGATG	
	Reverse	GTGGCAACTGATGAGCAAGC	
actin (mayaa)	Forward	AACAGTCCGCCTAGAAGCAC	
actin (mouse)	Reverse	CGTTGACATCCGTAAAGACC	

32

Primer sequences used in RT-PCR

33

Supplementary Figure 1. Pioglitazone prevents hypoxia-induced cardiac left ventricular dysfunction. (A) Representative echocardiographic images and data analysis of left ventricular (LV) ejection fraction (LVEF), LV fractional shortening (LVFS), and LV systolic and diastolic internal dimension (LVIDs/d) under normoxic and hypoxic conditions (n = 6). LVIDd and LVIDs were annotated with red dotted lines. Scale bars, vertical 2mm and horizontal 50ms. *P < 0.05, **P < 0.01 in control group under normoxia vs. hypoxia.

42

Supplementary Figure 2. Effect of pioglitazone on the extracellular field potential signal in cardiomyocytes under hypoxia. (A) Representative field potential wave tracings in control and pioglitazone (pio)-treated cardiomyocytes under 5% O₂ and 1% O₂. The field potential duration (FPD) was labeled with red arrows. Scale bars, vertical 20µV and horizontal 150ms. (B) The recordings of FPD in cardiomyocytes. Data were from three independent experiments. *P < 0.05, **P < 0.01 in control group *vs.* pio group under 1% O₂. #P < 0.05, ##P < 0.01 in control group under 5% O₂ *vs.* 1% O₂.

Supplementary Figure 3. The PPAR γ agonist pioglitazone promotes cardiomyocyte contractility and induces changes in cardiomyocyte electrophysiological activity under hypoxia by modulating the HIF-1 α pathway. (A) Representative tracings of intracellular membrane potential (IMP) in cardiomyocytes treated with pio alone, pio combined with GW9662, and pio combined with KC7F2 under 1% O₂. (B-C) Recordings of IMP upstroke velocity (B) and IMP relaxation velocity (C) in cardiomyocytes with treatment as indicated. The recordings were obtained for 7 hours under 1% O₂. (D) Representative field potential

58 wave tracings in cardiomyocytes with treatment as indicated. Field potential duration (FPD) 59 was labeled. Scale bars, vertical 20µV and horizontal 150ms. (E) Recordings of FPD. Data 60 were from three independent experiments. *P < 0.05, **P < 0.01 in pio group *vs.* pio combined 61 with KC7F2 group under hypoxia. #P < 0.05, ##P < 0.01 in pio group *vs.* pio combined with 62 GW9662 group under hypoxia.

63

64 Supplementary Figure 4. Pioglitazone prevents hypoxia-induced pulmonary hypertension (PH) 65 independently of the PPAR γ -HIF-1 α pathway. (A) Representative echocardiographic images 66 of pulsed-wave doppler of pulmonary artery flow in mice treated with pio and pio combined with GW9662 or KC7F2 under hypoxia, as well as the quantification of the pulmonary artery 67 acceleration time/ejection time ratio (PAT/ET ratio) (n = 6). PAT and ET were annotated with 68 69 red dotted lines. Scale bars, vertical 100 mm/s and horizontal 30 ms. (B) Representative 70 images and the quantification of right ventricular systolic pressure (RVSP) in mice with 71 treatment as indicated (n = 6).