Supplementary Text Supplementary methods Animal modeling and surgery procedures

SPRAGUE DAWLEY® male rats, aged 8 weeks, were purchased from Cavens Laboratory Animal Co., Ltd. After one week of adaptation feeding, they were fed with a high-fat diet (HFD; D12492, Research Diets, Inc., USA) for 12 weeks. They were randomly divided into three treatment groups: sleeve gastrectomy (SG), sham surgery, and sham surgery + diet restriction (DR). Before the surgery, the rats were fasted and deprived of water for 12 hours. They were then anesthetized with 1% pentobarbital sodium (4 mL/kg) intraperitoneal injection, placed on a fixed board, and the surgical area was disinfected. An incision of about 2 cm was made in the middle of the abdomen, and the stomach was located and pulled out from the abdominal cavity. Subsequently, the hepatic and splenic ligaments were ligated and sectioned, and the short gastric and gastrosplenic vessels were ligated. A pair of vascular forceps was applied from the cardia HIS Angle along the greater curvature of the stomach. The gastric body was quickly cut off with tissue scissors, and the incision of the gastric cavity was sutured continuously with 5 - 0 number sterile thread. The vascular clamp was then used to achieve control over the stomach, extending from the incision up to 3 mm above the pylorus. Approximately 70% to 80% of the gastric tissue, including the fundus, was excised, and subsequently, the incision was closed through continuous suturing. Finally, a varus suture was performed to minimize the risk of postoperative wound infection. The peritoneum, muscle, and skin were meticulously closed in layers to complete the sleeve gastric operation. Intraperitoneal injection of Meloxicam at a dosage of 0.5 mg/kg was administered for pain management on the first day after surgery (sham and SG). Additionally, rats preemptively received Penicillin at a dosage of 30,000 U/kg on the first day after surgery (sham and SG). Following the surgery, all rats underwent a one-day fasting period before being provided with sugar and saline on the second day post-operation. Subsequently, their diet gradually turned back to planned feeding.

The anesthesia and perioperative treatment of the sham group and sham + DR group were the same as that of the SG group. An incision of 1 cm was simply made in the stomach and sutured in place for the sham group. Additionally, the diet of the sham + DR group matched that of the SG group. The daily food intake of the SG group was measured, and the average amount was fed to the sham + DR group on the following day. The whole procedure is described in Figure S1.

Artificial intelligence (AI)-guided imaging analysis

The whole slide images (WSIs) with a magnification of $20x (0.2749 \mu m/pixel)$ were processed using QuPath 0.4.4 to measure hepatocyte, lymphocyte, and myeloid cell populations. Tissue detection was conducted by applying a threshold of 200 on the average of the red, green, and blue channels at a resolution of 12.5 μ m/pixel on the smoothed image, followed by median filtering and smoothed coordinates. Tissue regions detected smaller than 1,000 px and holes smaller than 500 px were subsequently removed.

Nuclei were identified based on the hematoxylin optical density at a resolution of 1.5 μ m/pixel, using a background radius of 8 and a sigma of 1.5. Following the opening morphological operation, objects detected smaller than 10 μ m² or larger than 500 μ m² were excluded from further analysis. The intensity threshold was set to 0.1, with a maximum background intensity of 2. Additionally, the boundaries of the detected nuclei were smoothed.

Sparse annotations, comprising approximately 15 cells for each of the cell populations, were manually labeled across three WSIs representing different conditions (Sham, DR and SG). A

simple artificial neural network classifier with two hidden layers, consisting of 20 and 10 neurons, respectively, was trained to distinguish between the three classes versus the rest. Example regions without these classes were used as negative examples during training. Subsequently, cell classification and measurements were exported, and for each cell population, 2D hexagonal binning plots of the number of cells were generated in Python (using matplotlib function 'hexbin') with a blue-yellow-red color map for visualization purposes. The reported metrics included total cell counts of each cell type, as well as the ratio of each cell type to both the total tissue area and the total number of detected cells.

An analogous workflow was applied to 27 test WSIs. Considering slight color differences, the tissue detector utilized a threshold of 240 at a resolution of 20 μ m/pixel, removing tissue regions smaller than 5,000 μ m² and holes smaller than 1000 px². The same cell detector, cell classifier, and post-analysis procedures were employed for consistency.

Fig. S1. Technical procedures of sleeve gastrectomy on rats.

Fig. S2. Single-cell/single-nuclei RNA-seq analysis identifies cell populations. (A) UMAPs illustrating the cell distribution of all individual samples upon Sham, Sham + DR and SG. **(B)** Histograms illustrating cell proportions of all individual samples upon Sham, Sham + DR and SG. Abbreviations: Sham: sham surgery; DR: dietary restriction; SG: sleeve gastrectomy; B cells: B lymphocytes; T cells: T lymphocytes; DC: dendritic cell.

KEGG function enrichment (bulk)

Fig. S3. Single-cell/single-nuclei RNA-seq analysis deciphers differentially expressed genes.

KEGG function enrichment analysis on significant DEGs upon comparisons (Sham + DR vs. Sham and SG vs. Sham). Abbreviations: Sham: sham surgery; DR: dietary restriction; SG: sleeve gastrectomy; KEGG: Kyoto Encyclopedia of Genes and Genomes; DEG: differentially expressed gene.

Fig. S4. Single-cell/single-nuclei RNA-seq analysis deciphers cellular interactions. Numbers and strength of cellular interactions among cholangiocytes, endothelial cells, hepatic stellate cells, hepatocytes, B, T, NK, DCs, macrophages, monocytes and neutrophils in Sham, Sham + DR and SG groups illustrated in (A) networks and **(B)** matrixes. Abbreviations: Sham: sham surgery; DR: dietary restriction; SG: sleeve gastrectomy; DC: dendritic cells; NK: natural killer cells; B and B_cells: B lymphocytes; T and T_cells: T lymphocytes; Neu: neutrophils; Mac: macrophages; Mono: monocytes: Endo: endothelial cells; HSC: hepatic stellate cells; Chol: cholangiocytes; HepaC: hepatocytes.

Α

Fig. S5. Single-cell/single-nuclei RNA-seq analysis dissects key pathways in cellular interactions. (A) Frequency of key signaling pathways in Sham, Sham + DR and SG groups.

В

Significant signaling pathways (**B**) from cholangiocytes to monocytes, macrophages, neutrophils, B, T and NK cells, as well as (**C**) from monocytes, macrophages, DCs, HepaCs, T and NK cells to cholangiocytes. Abbreviations: Sham: sham surgery; DR: dietary restriction; SG: sleeve gastrectomy; DC: dendritic cells; NK: natural killer cells; B: B lymphocytes; T: T lymphocyte; Neu: neutrophils; Mac: macrophages; Mono: monocytes; Chol: cholangiocytes; HepaC: hepatocytes.

D

Е

Fig. S6. Metabolomics depicts metabolite profiles and distribution. Spectrum of mass spectrometry detection by positive and negative ions in (A) Sham, (B) Sham + DR and (C) SG groups. The distribution of metabolites detected by (D) positive and (E) negative ions is illustrated in UMAPs and divided into 15 clusters according to the similarity. Abbreviations: Sham: sham surgery; DR: dietary restriction; SG: sleeve gastrectomy.

Fig. S7. Assessment of myeloid cells and lymphocytes in rat livers. Proportions of (A) myeloid cells and (B) lymphocytes per rat liver sample from sc/sn RNA-seq analysis. (C) The expression of phenotype-associated markers in myeloid cell clusters was illustrated based on sc/sn RNA-seq data (SG vs. Sham). Abbreviations: C: control; Sham/S: sham surgery; DR: dietary restriction; SG: sleeve gastrectomy; KEGG: Kyoto encyclopedia of genes and genomes. sc/sn: single-cell/single-nuclei; Mono: monocytes; Mac: macrophage; DC: dendritic cells; Neu: neutrophils; SAM: scar-associated macrophage; LAM: lipid-associated macrophage; LCM: liver capsular macrophage; KC: Kupffer cell; cDC: conventional DC. The unpaired t-test and one-way ANOVA test were performed. '*' represents 'p < 0.05' and statistical significance.

Fig. S8. Single-cell/single-nuclei RNA-seq analysis deciphers cell trajectories. Cell trajectories of HepaC, Chol and HSC, the gene expression of *Pcna* and *Ppara* in HepaC, the gene expression of *Sox9* and *Slc4a2* in Chol, and the gene expression of *Tgfb1* and *Col1a1* in HSC. Abbreviations: Sham: sham surgery; DR: dietary restriction; SG: sleeve gastrectomy; HepaC: hepatocytes; Chol: cholangiocyte; HSC: hepatic stellate cells.

Fig. S9. Cellular interactions in metabolism groups of rat hepatocytes. Numbers and strength of cellular interactions (ligand-receptor) among hepatocytes (Met 1 and 2) and immune cells (B, T, NK, DCs, macrophages, monocytes and neutrophils) displayed in (A) total values and depicted in (B) matrixes. Abbreviations: Sham: sham surgery; DR: dietary restriction; SG: sleeve gastrectomy; DC: dendritic cells; NK: natural killer cells; B: B lymphocytes; T: T lymphocytes; Neu: neutrophils; Mac: macrophages; Mono: monocytes: HepaC: hepatocytes. The unpaired t-test was performed. '*' represents 'p < 0.05' and statistical significance.

Total				
Variables	pre-SG (N = 18)	post-SG (N = 18)	<i>p</i> - value	
BMI	37.01 (34.96 - 39.05)	28.70 (26.81 - 30.58), ↓	< 0.05	
PPG (mmol/L)	9.23 (13.44 - 8.01)	7.23 (9.21 - 7.05), ↓	< 0.05	
AST (IU/L)	38.80 (26.64 - 50.96)	16.56 (13.45 - 19.67), ↓	< 0.05	
ALT (IU/L)	67.28 (38.41 - 96.15)	16.44 (9.03 - 23.85), ↓	< 0.05	
γ-GT (IU/L)	57.89 (34.84 - 80.94)	15.89 (11.49 - 20.28), ↓	< 0.05	
TG (mmol/L)	1.84 (1.25 - 2.44)	1.02 (0.88 - 1.17), ↓	< 0.05	
CHO (mmol/L)	4.82 (4.33 - 5.32)	4.95 (4.49 - 5.41), ↑	0.400	
HDL-C (mmol/L)	1.19 (1.05 - 1.33)	1.35 (1.21 - 1.48), ↑	< 0.05	
LDL-C (mmol/L)	2.96 (2.49 - 3.43)	3.13 (2.67 - 3.59), ↑	0.419	
TBIL (µmol/L)	10.67 (8.51 - 12.84)	14.19 (10.20 - 18.18), ↑	< 0.05	
ALP (IU/L)	72.83 (61.04 - 84.63)	74.00 (65.62 - 82.38), ↑	0.849	
TBA (µmol/L)	2.84 (1.53 - 4.16)	4.88 (0.75 - 10.51), ↑	0.051	
TRF (g/L)	41.01 (35.21 - 46.81)	36.20 (31.78 - 40.62), ↓	0.175	
IL-6 (pg/mL)	398.18 (316.07 - 480.29)	485.43 (385.89 - 584.96), ↑	0.072	
IL-10 (pg/mL)	33.98 (32.18 - 35.79)	36.55 (34.24 - 38.86), ↑	0.626	
FGF-19 (pg/mL)	491.23 (178.42 - 768.31)	642.16 (255.67 - 880.72), ↑	0.058	
FGF-21 (pg/mL)	1219.67 (1210.03 - 1349.31)	1326.99 (1247.35 - 1419.62), ↑	0.378	

Table S1. Clinical follow-up data (One day pre-SG vs. six months post-SG)

0		1
('on	tini	ied
COL	unit	icu

Male				
Variable	pre-SG (N = 8)	post-SG (N = 8)	<i>p</i> -value	
BMI	39.4 (37.4 - 41.0)	30.8 (29.8 - 32.4), ↓	< 0.05	
PPG (mmol/L)	9.31 (13.44 - 8.24)	7.78 (9.21 – 7.15), ↓	< 0.05	
AST (IU/L)	34 (30 - 63)	16 (14 - 18), ↓	< 0.05	
ALT (IU/L)	55 (48 - 122)	16 (13 - 18), ↓	< 0.05	
γ -GT (IU/L)	82 (35 - 107)	24 (14 - 27), ↓	< 0.05	
TG (mmol/L)	2.01 (1.52 - 3.61)	1.05 (0.93 - 1.21), ↓	< 0.05	
CHO (mmol/L)	4.90 (4.55 - 4.99)	5.32 (4.98 - 5.74), ↑	0.059	
HDL-C (mmol/L)	1.05 (0.85 - 1.20)	1.22 (1.06 - 1.31), ↑	0.301	
LDL-C (mmol/L)	2.86 (2.54 - 3.12)	3.71 (3.52 - 4.04), ↑	< 0.05	
TBIL (µmol/L)	12 (9 - 14)	15 (10 - 21), ↑	0.403	
ALP (IU/L)	74 (58 - 78)	78 (63 - 84), ↑	0.414	
TBA (µmol/L)	3 (2 - 3)	1 (1 - 3), ↓	0.103	
TRF (g/L)	40 (36 - 47)	36 (29 - 41), ↓	0.210	
IL-6 (pg/mL)	434 (316 - 456)	423 (342 - 577), ↓	0.703	
IL-10 (pg/mL)	34.2 (32.9 - 35.79)	35.5 (34.24 – 37.79), ↑	0.654	
FGF-19 (pg/mL)	465.43 (178.42 - 723.42)	631.22 (255.67 - 856.23), ↑	0.234	
FGF-21 (pg/mL)	120 (120 - 129)	132 (126 - 136), ↑	0.304	

\sim	. •	1
(`.	ontini	nad
1.1		ICU.
~		

Female				
Variable	pre-SG (N = 10)	post-SG (N = 10)	<i>p</i> -value	
BMI	35.1 (32.0 - 36.7)	26.9 (24.0 - 30.2), ↓	< 0.05	
PPG (mmol/L)	9.17 (13.00 - 8.01)	7.18 (8.89 – 7.05), ↓	< 0.05	
AST (IU/L)	28 (17 - 41)	15 (14 - 17), ↓	< 0.05	
ALT (IU/L)	39 (22 - 63)	13 (8 - 15), ↓	< 0.05	
γ -GT (IU/L)	32 (20 - 42)	10 (8 - 10), ↓	< 0.05	
TG (mmol/L)	1.10 (0.95 - 1.45)	0.93 (0.77 - 1.03), ↓	0.121	
CHO (mmol/L)	4.86 (4.10 - 5.26)	4.70 (3.85 - 5.30), ↓	0.903	
HDL-C (mmol/L)	1.33 (1.18 - 1.41)	1.41 (1.27 - 1.50), ↓	0.210	
LDL-C (mmol/L)	2.93 (2.48 - 3.62)	3.09 (2.15 - 3.34), ↑	0.721	
TBIL (μmol/L)	9.55 (6.90 - 12.40)	11.25 (8.98 - 13.57), ↑	0.304	
ALP (IU/L)	78 (60 - 93)	77 (66 - 80), ↓	0.700	
TBA (μmol/L)	1.90 (1.45 - 2.28)	2.25 (1.30 - 2.88), ↑	0.701	
TRF (g/L)	34 (29 - 49)	32 (30 - 38), ↓	0.913	
IL-6 (pg/mL)	307 (253 - 583)	448 (362 - 552), ↑	0.314	
IL-10 (pg/mL)	33.6 (32.18 - 34.21)	36.7 (35.2 - 38.86), ↑	>0.9	
FGF-19 (pg/mL)	520.13 (213.10 - 768.31)	672.98 (270.81 - 880.72), ↑	0.050	
FGF-21 (pg/mL)	1235 (1149.03 – 1336.03)	1311 (1204.10 – 1509.03), ↑	0.509	

Values are presented as 'mean (minimum - maximum)'.

Abbreviation: SG: sleeve gastrectomy; BMI: body mass index; PPG: postprandial blood glucose; AST: aspartate aminotransferase; ALT: alanine aminotransferase; γ -GT: gamma-glutamyltransferase; TG, triglycerides; CHO, cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TBIL, total bilirubin; ALP, alkaline phosphatase; TBA, total bile acid. TRF: transferrin; IL: interleukin; FGF, fibroblast growth factor. The paired t-test was used. 'p < 0.05' is considered to be statistically significant.

Method	Antigen	Manufacturer	Catalog No.	Clone	Host species	Dilution
	PPAR-α	ThermoFisher	600-401-421	Polyclonal	Rabbit	1/200
	PNPLA3	ThermoFisher	67369-1-IG	1D2B11	Mouse	1/200
	FXR	ThermoFisher	417200	A9033A	Mouse	1/200
ше	CK7	ThermoFisher	MA1-06315	RCK105	Mouse	1/500
IHC	IL-17A	ThermoFisher	PA5-79470	Polyclonal	Rabbit	1/200
	Ki67	ThermoFisher	MA5-14520	SP6	Rabbit	1/500
	CYP2E1	ThermoFisher	PA5-52652	Polyclonal	Rabbit	1/500
	CYP7A1	ThermoFisher	PA5-100892	Polyclonal	Rabbit	1/200
ELISA	IL-6	ThermoFisher	BS-0782R	Polyclonal	Rabbit	1/1000
	IL-6	ThermoFisher	M620	5IL6	Mouse	1/1000
	IL-10	ThermoFisher	PA5-95561	Polyclonal	Rabbit	1/1000
	TRF	ThermoFisher	A1-46375	57-6	Mouse	1/1000
	FGF-19	ThermoFisher	PA5-79252	Polyclonal	Rabbit	1/1000
	FGF-19	Meibiao biology	MB-7355B	Polyclonal	Rabbit	1/1000
	FGF-21	ThermoFisher	PA5-79255	Polyclonal	Rabbit	1/1000

Table S2. List of antibodies used in this study.

Abbreviation: PPAR: peroxisome proliferator-activated receptor; PNPLA3: patatin-like phospholipase domain containing protein 3; FXR: farnesoid X receptor; CK7: cytokeratin 7; IL: interleukin; FGF: fibroblast growth factor; CYP: cytochrome P450; TRF: transferrin.