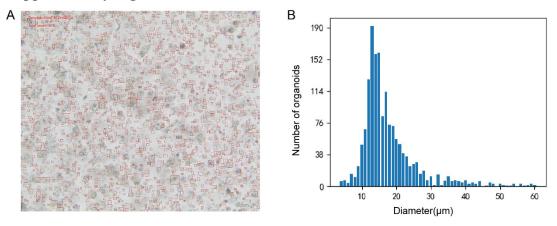
Supporting Information

Leveraging Patient-Derived Organoids for Personalized Liver Cancer Treatment Jianhua Rao^{1,#}, Chao Song^{2,4,#}, Yangyang Hao^{3,#}, Zaozao Chen^{2,6,8,#}, Sidu Feng³, Shihui Xu⁶, Xiaoyue Wu⁷, Zhengfeng Xuan¹, Ye Fan¹, Wenzhu Li¹, Junda Li¹, Yong Ren^{5,*}, Jian Li^{3,*}, Feng Cheng^{1,*}, Zhongze Gu^{2,4,6,7,8,*} ¹Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China ²State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China ³Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China ⁴School of Biological Science & Medical Engineering, Southeast University, Nanjing, China ⁵State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Nanjing, China ⁶Jiangsu Avatarget Co, Suzhou, China ⁷Jiangsu Institute for Health and Sport (JIHS), Nanjing, China

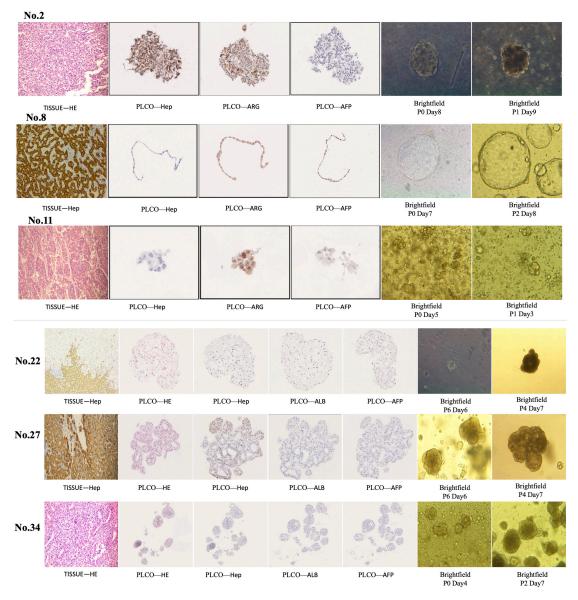
⁸Institute of Medical Devices (Suzhou), Southeast University, Nanjing, China

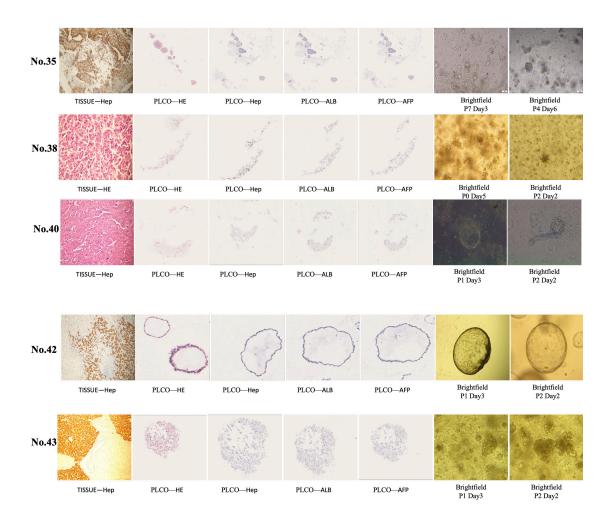
[#]These authors are co-first author and equally contribute to this work.

*Correspondence: Yong Ren, State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co, Nanjing, China. Email: yong.ren@simceredx.com;


Jian Li, Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China. Email: jianli2014@seu.edu.cn;

Feng Cheng, Hepatobiliary Center of The First Affiliated Hospital, Nanjing Medical University; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China. Email: <u>docchengfeng@njmu.edu.cn</u>;


Zhongze Gu, State Key Laboratory of Digital Medical Engineering, Southeast


University, Nanjing, China. Email: gu@seu.edu.cn

Supplementary Figures

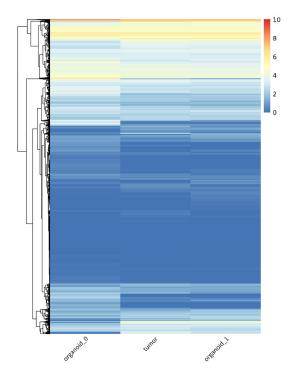
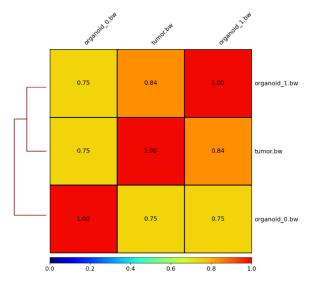


Figure S1. Seeding after digestion during organoid passage. (A) Visualization of organoid recognition results. (B) Organoid size distribution. This well demonstrates the distribution of organoids based on their diameters. It shows that the organoids range in size from 4 to 60 micrometers, with a mode around 13 micrometers and a median near 16 micrometers.



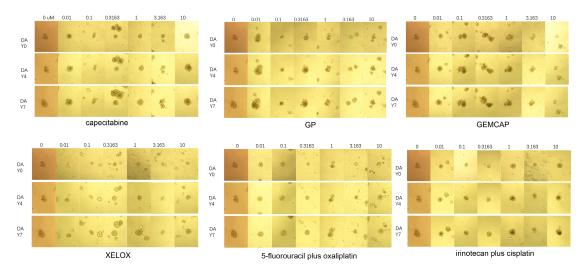

Figure S2. Bright-field images of all successfully cultured organoids, along with corresponding IHC staining for Hep, ARG, ALB, and AFP and Tissue HE or Hep.

Figure S3. Cluster analysis was used to compare the gene expression patterns of organoids and tumor tissues cultured under different experimental conditions, in which genes were clustered according to the similarity of expression. organoid_0, organoid_1, and tumor, denote the organoids cultured before medium optimization, the organoids cultured after medium optimization, and the corresponding tumor tissues, respectively.

Figure S4. Quantitative assessment of gene expression similarity between organoid_0, organoid_1, and tumor. The closer the correlation coefficient is to 1, the higher the similarity of expression patterns between the samples.

Figure S5. Effect of different compound concentrations on organoid formation at different time points in the No. 43 sample.

Supplementary Tables

IDENTIFIER
IDENTIFIER
Cat#KLV0101
Cat#356231
Cat#MLV0101
Cat#12605010
Cat#P1020
Cat#98-92-0
Cat#HY-P7114
Cat#HY-P7007

Table S1 Key resources table.

 Table S2 The baseline characteristics of 19 patients.

Number	Gender	Age	Pathological types	HBV/HCV	TNM staging
				infection	
No.8	Male	63	ICC	No	
No.11	Male	58	HCC	No	
No.18	Female	58	Other	No	
No.27	Female	65	HCC	Yes	II
No.34	Male	54	HCC	Yes	III
No.35-1/2	Male	57	HCC	No	III
No.37	Female	64	HCC	No	III
No.38	Male	62	HCC	No	II
No.40	Male	51	HCC	No	II
No.42	Male	67	ICC	No	
No.43	Female	59	ICC	No	II
No.48	Male	64	HCC	No	
No.49	Female	65	Other	Unknown	III
No.54	Male	58	HCC	No	
No.55	Female	48	HCC	No	IV
No.57	Male	73	Other	No	
No.60	Female	70	HCC	No	
No.61	Male	56	HCC	No	III
No.63	Female	68	HCC	No	IV

Abbreviations: ICC, intrahepatic cholangiocarcinoma; HCC, hepatocellular carcinoma; HBV/HCV, hepatitis B/C virus.

	D		NT 11			27.05	27.42	
Drugs		No.11	No.2	7 No.34	No.35	No.43	No.60	
sorafenib		99.86	>10	9.745	>100	ND	>10	
re	regorafenib		89.85	>10	5.390	>100	ND	>10
C	donafenib		26.98	>10	9.391	>100	ND	>10
1	lenvatinib		>100	>10	>10	>100	ND	>10
ca	cabozantinib		>100	>10	>10	>100	ND	>10
С	oxaliplatin		33.05	>10	>10	>100	ND	>10
F	FOLFOX 4		30.63	>10	>10	>100	ND	>10
XELOX		88.43	>10	>10	>100	>10	>10	
1	obaplatin		ND	ND	ND	>100	ND	ND
ca	pecitabine		ND	ND	ND	ND	>10	ND
GP		ND	ND	ND	ND	6.426	ND	
(GEMCAP		ND	ND	ND	ND	7.966	ND
5-fluorouracil + oxaliplatin		ND	ND	ND	ND	5.298	ND	
irinotecan + cisplatin		ND	ND	ND	ND	3.029	ND	
μΜ	1-10	> 10	1	0-50	50-100	> 100	NOT	DONE

 Table S3 The IC50 values for all drugs in six PLCOs..