Figure S1 Mutational landscape analysis in CRC between the high and low PLCG2 expression groups. **A** The frequency and type of PLCG2 mutations in pan-cancers. **B** The association of four CRC molecular subtypes with PLCG2 mutations. **C** Survival analysis of PLCG2 mutated and unmutated CRC patients. **D** The mutations on different protein structural domains of PLCG2. **E** Mutational landscapes of PLCG2 high-expression groups as well as mutational co-occurrence and mutually exclusive. **F** Mutational landscapes of PLCG2 low-expression groups as well as mutational co-occurrence and mutually exclusive. **G** Signaling pathways enriched by mutated genes in PLCG2 high-expression group. **H** Signaling pathways enriched by mutated genes in PLCG2 low-expression group. Data were presented as mean±SD. ns no statistical significance, *P<0.05, **P<0.01, ***P<0.001, ***P<0.0001.

Figure S2 PLCG2 expression was correlated with prognosis of CRC patients. A Survival analysis and survival status plot in the TCGA-COREAD cohort (n=499). B Survival analysis and survival status plot in the GSE39582 cohort (n=510). C Representative IHC images of high and low PLCG2 expression in the Ruijin cohort (n=68). D Survival analysis and survival status plot in Ruijin cohort. E The ROC curves of PLCG2 expression predicting prognosis in CRC patients. Data were presented as mean±SD. ns no statistical significance, *P<0.05, **P<0.01, ***P<0.001, ROC receiver operating characteristic curve, AUC area under the curve

Figure S3 PLCG2 expression was correlated with clinicopathological features of CRC patients. **A** The complex heatmap was employed to show the distribution of PLCG2 expression and clinicopathological features (Status, Age, Gender, pT, pN, pM, Stage, Location) in TCGA-COREAD cohort. **B** The association between PLCG2 expression and pT, pM, Stage, Location in TCGA-COREAD cohort. **C** The association between PLCG2 expression and pT, pM, Stage, Location in GSE39582 cohort. **D** The association between PLCG2 expression and pT, pM, Stage, Location in Ruijin cohort. Data were presented as mean±SD. ns no statistical significance, *P<0.05, **P<0.01, ****P<0.001, ****P<0.001. AOD average optical density

Figure S4 Single-cell profiles of colorectal cancer. A The single-cell clustering according to patient ID number (n=6). B 33,538 cells were clustered into 23 cell subpopulations based on the t-SNE dimensionality reduction algorithm. C The

annotation of cell subpopulations with the "SingleR" R package. **D** The expression of PLCG2 in different cell subpopulations. Data were presented as mean \pm SD. ns no statistical significance, *P<0.05, **P<0.01, ****P<0.001, ****P<0.0001.t-SNE t-Distributed Stochastic Neighbor Embedding, PLCG2 phospholipase Cy2

Figure S5 Spatial transcriptome described the spatial distribution of PLCG2. A The HE staining of CRC tissue specimen. B The spots of the spatial transcriptome were divided into seven regional subgroups and the regional subgroups were annotated according to the classical cell markers. C The regional subgroups based on t-SNE downscaling and clustering. D The spatial distribution of PLCG2. E The PLCG2 expression in regional subgroups based on t-SNE downscaling and clustering. F The PLCG2 expression in the spatial regional subgroups that was annotated. G The violin plot displaying PLCG2 expression in different spatial regional subgroups. Data were presented as mean±SD. ns no statistical significance, **P*<0.05, ***P*<0.01, ****P*<0.001. PLCG2 phospholipase C γ 2, HE hematoxylin-eosin staining

Figure S6 IHC experiments on subcutaneous tumors of xenografts in nude mice. **A** Representative IHC images of oenc-PLCG2 group (n=5) and oe-PLCG2 group (n=5). **B** The quantitative analysis of IHC experiments in oenc-PLCG2 group (n=5) and oe-PLCG2 group (n=5). Data were presented as mean±SD. ns no statistical significance, *P<0.05, **P<0.01, ***P<0.001, ****P<0.001. oenc overexpression negative control, oe overexpression, HE hematoxylin-eosin staining

Figure S7 Multicolor immunofluorescence (mIF) and immunohistochemistry for rescue experiments with MK2206 treatment. **A** Cell mIF experiments in oenc-PLCG2 group (n=3), oe-PLCG2 group (n=3) and oe-PLCG2+MK2206 group (n=3). **B** Representative IHC images of oenc-PLCG2 group (n=6), oe-PLCG2 group (n=6) and oe-PLCG2+MK2206 group (n=6). **C** The quantitative analysis of IHC experiments in oenc-PLCG2 group (n=6), oe-PLCG2 group (n=6) and oe-PLCG2+MK2206 group (n=6). Data were presented as mean±SD. ns no statistical significance, **P*<0.05, ***P*<0.01, *****P*<0.001, *****P*<0.0001. oenc overexpression negative control, oe overexpression

Figure S8 High expression of PLCG2 induced the formation of tumor

immunosuppressive microenvironment and facilitated tumor immune escape in CRC based on bioinformatics analysis. A Cytolytic score, Inflammation score, Immune and Stromal Score in high and low PLCG2 expression groups of TCGA-COREAD cohort. **B** Analysis of immune cell infiltration based on quanTIseq, TIMER, EPIC and CIBERSORT algorithms. C Correlation between PLCG2 expression and immune cell infiltration. **D** The expression of ICs in high and low PLCG2 expression groups of TCGA-COREAD cohort. Data were presented as mean±SD. ns no statistical significance, *P<0.05, **P<0.01, ***P<0.001, ***P<0.0001.

Figure S9 Prediction of immunotherapy response in CRC patients based on PLCG2 expression and screening of small molecule compounds targeting PLCG2. A IPS Score in high and low PLCG2 expression groups of TCGA-COREAD cohort. B The proportions of MSS, MSI-L and MSI-H status in high and low PLCG2 expression groups of TCGA-COREAD cohort. C The differences in PLCG2 expression of CRC patients with pMMR and dMMR status in TCGA-COREAD cohort. D The TMB in high and low PLCG2 expression groups of TCGA-COREAD cohort. E Correlation between PLCG2 expression and the expression of CD274, CTLA4, PDCD1 and LAG3. F Representative IHC images and the differences in PLCG2 expression of CRC patients with pMMR and dMMR status (n=76). G The differences in sensitivity to common chemotherapeutic drugs between CRC patients with high expression of PLCG2 and those with low expression of PLCG2. H The molecular mechanism of action of these small molecule compounds targeting PLCG2 protein by the CMap drug database. I The 3D chemical structures of the top 6 small molecule compounds with the highest predicted scores. J Molecular docking of the top-ranked small molecule compound D-4476 with PLCG2 protein. Data were presented as mean±SD. ns no statistical significance, *P<0.05, **P<0.01, ****P<0.001, ****P<0.0001. AOD average optical density, IC50 half maximal inhibitory concentration

Figure S10 The quantitative analysis of IHC experiments for synergistic therapy with PLCG2 knockdown and anti-PD-1. **A** The quantitative analysis of IHC experiments for PLCG2 protein (n=6) and Ki-67 protein (n=6). **B** The area ratio of PD-1⁺ cells (n=6), PD-L1⁺ cells (n=6) and CD8⁺ cells (n=6) per field. Data were presented as mean±SD. ns no statistical significance, **P*<0.05, ***P*<0.01, *****P*<0.001, *****P*<0.0001. shnc short hairpin RNA negative control, sh short hairpin RNA, AOD average optical

density

G

Log2 Exp - PLCG2 (Graph-based)

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies for western blotting		
Human-PLCγ2 Rabbit mAb	Cell Signaling Technology	55512S
Human-E-Cadherin Rabbit mAb	Cell Signaling Technology	3195T
Human-Claudin-1 Rabbit mAb	Cell Signaling Technology	13255T
Human-N-Cadherin Rabbit mAb	Cell Signaling Technology	13116T
Human-Snail Rabbit mAb	Cell Signaling Technology	3879T
Human-Caspase-3 Rabbit mAb	Cell Signaling Technology	14220T
Human-Cleaved Caspase-3 Rabbit mAb	Cell Signaling Technology	9664T
Human-Bcl-2 Rabbit mAb	Cell Signaling Technology	4223T
Human-Bax Rabbit mAb	Cell Signaling Technology	5023T
Human-Akt Rabbit mAb	Cell Signaling Technology	4691T
Human-Phospho-Akt (Ser473) Rabbit mAb	Cell Signaling Technology	4060T
Human-Phospho-Akt (Thr308) Rabbit mAb	Cell Signaling Technology	13038T
Human-mTOR Rabbit mAb	Abcam	ab134903
Human-Phospho-mTOR (Ser2481) Rabbit mAb	Abcam	ab137133
Human-Phospho-mTOR (Ser2448) Rabbit mAb	Abcam	ab109268
Human-β-Tubulin Rabbit mAb	Cell Signaling Technology	2128T
Antibodies and reagents for IF		
Human-PLCγ2 Rabbit mAb	Cell Signaling Technology	55512S
DAPI	Servicebio	G1011-10ML
IF555- phalloidin	Servicebio	G1249-100T
Human-N-Cadherin Rabbit mAb	Cell Signaling Technology	13116T
Human-E-Cadherin Rabbit mAb	Cell Signaling Technology	3195T

Table S1 The reagents and resources used in this study.

Antibodies for IHC and mIHC

Human-PLCγ2 Rabbit mAb	Abcam	ab133522
Human- Ki-67 Rabbit mAb	Abcam	ab16667
Human-E-Cadherin Rabbit mAb	Cell Signaling Technology	3195T
Human-N-Cadherin Rabbit mAb	Cell Signaling Technology	13116T
Human-Bax Rabbit mAb	Abcam	ab32503
Human-Cleaved Caspase-3 Rabbit mAb	Cell Signaling Technology	9664T
Human-Bcl-2 Rabbit mAb	Abcam	ab182858
Human-Akt Rabbit mAb	Cell Signaling Technology	4691T
Human-Phospho-Akt (Ser473) Rabbit mAb	Cell Signaling Technology	4060T
Human-Phospho-Akt (Thr308) Rabbit pAb	Proteintech	29163-1-AP
Human-mTOR Rabbit mAb	Cell Signaling Technology	2983T
Human-Phospho-mTOR (Ser2448) Rabbit mAb	Cell Signaling Technology	2976S
Human-Phospho-mTOR (Ser2481) Mouse mAb	Santa Cruz Biotechnology	sc-293132
Human-CD3 Rabbit mAb	Abcam	ab135372
Human-CD8A Rabbit mAb	Abcam	ab237709
Human- FOXP3 Mouse mAb	Abcam	ab20034
Human-CD4 Rabbit mAb	Abcam	ab133616
Human-PD-1 Rabbit mAb	Abcam	ab237728
Human-PD-L1 Rabbit mAb	Abcam	ab237726
Mouse-PLCG2 Rabbit mAb	HUABIO	HA721477
Mouse-Ki-67 Rabbit mAb	Abcam	ab16667
Mouse-PD-1 Rabbit mAb	Abcam	ab214421
Mouse-PD-L1 Rabbit mAb	Cell Signaling Technology	64988T
Mouse-CD8A Rabbit mAb	Cell Signaling Technology	ab237709
Antibodies and reagents for flow cytometry		

eBioscience™ Fixable Viability Dye eFluor™ 506	Invitrogen	65-0866-18
FITC anti-mouse CD45	BioLegend	103108
APC-Cy [™] 7 anti-mouse CD3	BD Biosciences	557596
PerCP-Cy [™] 5.5 anti-mouse CD8A	BD Biosciences	551162
Alexa Fluor® 700 anti-mouse Granzyme B Brilliant Violet 421™ anti-mouse IFN-γ	BioLegend	372222
	BioLegend	505830
PE anti-mouse Perforin-1	Invitrogen	12-9392-82
APC anti-mouse CD279 (PD-1)	BioLegend	135209
PE/Cyanine7 anti-mouse TNF- α	BioLegend	506324
PerCP/Cyanine5.5 anti-mouse CD326 (Ep-CAM)	BioLegend	118219
APC anti-mouse CD274 (B7-H1, PD-L1)	BioLegend	124312