SUMOylation modification of HNRNPK at the K422 site promotes invasion in glioblastoma

Wenguo Zhao^{1,2}, Jiazheng Wang^{1,2}, Feihu Zhao^{1,2}, Yaguan Li^{1,2}, Zhuo Li^{1,2}, Xingang Li^{1,2*}, Anjing $Chen^{1,2*}$

¹ Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China

² Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250017, China

*These authors contributed equally to this work as senior authors.

This Supplementary file includes:

Materials and Methods

Supplementary Figures. 1 to 11

Tables

Supplementary Text

Materials and Methods

Transfection of cells

GSCs were transfected with lentiviruses to overexpress HNRNPK (WT) or HNRNPK (K422R) tagged with Flag and GFP. Empty vectors with Flag and GFP tags were used as control groups. After lentiviral transduction, puromycin was used for drug selection. Fluorescence was observed to determine the transfection efficiency. Plasmids were used for the exogenous overexpression of SUMO1, UBE2I. All sequences are presented in Supplementary Text.

Western blotting

Cells were centrifuged and washed with PBS, followed by lysis on ice for 15 min using RIPA lysis buffer (R0010, Solarbio) with 10% NEM. Protein expression was quantified using the BCA method. SDS-PAGE was performed, and proteins were transferred onto a PVDF membrane. The membrane was then blocked with milk at room temperature for 1 h, followed by overnight incubation with the primary antibody on a rocking platform at 4°C. After washing three times with TBST, the membrane was incubated with the secondary antibody at room temperature for 1 h. Immobilon Western HRP (WBKLS0500, Millipore) was used for detection. The list of antibodies can be found in Supplementary table 1. Quantitative analysis of the Western blot images was performed using ImageJ software.

Immunohistochemistry data analysis

All immunofluorescence slides were imported into QuPath for processing. An artificial neural network was employed for tumor and normal cell classification. All slides underwent color normalization and annotation of tumor and normal regions to eliminate batch effects. The tumor core region was defined as an area > 500 μm from any edge, and the perivascular area extended 30 μm outward from the vascular edge. All white matter tracts (WMTs) were annotated in the corpus callosum region. The invasive margin refers to the protruding part of the tumor's main edge. All annotated regions used for statistical analysis were independently reviewed by two experienced pathologists. For image processing and analysis, the annotated region images were imported into Spyder and processed using OpenCV. Contour connectivity was used for edge analysis to detect the connectivity of tumor cells. The convex hull was applied to fit the edges, and extensions of 50, 100, and 200 μm were used to count diffused cell numbers at the edges.

GBM-brain organoid co-culture invasion assay analysis

All data were analysis with openCV and skimage. The images underwent brightness adjustment and were then subjected to binary processing. Connected component analysis techniques were applied to extract connected regions from the red channel of the image. The pixel values corresponding to these regions are preserved in the resulting color image. Subsequently, a surface model is generated using triangulation. The distances from green pixels to the reconstructed red surface are calculated using normal distance computation. The Open3D library is utilized for reconstructing the 3D model in this process.

Chromatin immunoprecipitation (ChIP)

The ChIP experiment followed the instructions provided in the SimpleChIP® Enzymatic Chromatin IP Kit (9003, CST). Cells were fixed with formaldehyde and lysed, and chromatin was digested using micrococcal nuclease to obtain chromatin fragments associated with nucleosomes. ChIP was performed using anti-FLAG M2 magnetic beads (M8823, Sigma) and ChIP-grade protein G magnetic beads. After reversing the protein-DNA cross-links, DNA was purified using DNA purification spin columns. ChIP-seq analysis was performed as described in the sequencing data data analysis section.

Sequencing data processing

The GRCh38.primary assembly.genome.fa.gz and gencode.v41.annotation.gtf.gz files were used as the reference genome and annotation. RNA-seq data was quality controlled using fastqc and then aligned and quantified using STAR. The resulting files were converted to bw format using deeptools for visualization. GATK4 was employed for mutation detection in RNA-seq data. ChIP-seq data was aligned using bowtie2, and peak calling was performed using MACS2 with no Input parameter. The results were annotated using CHIPseeker. Visualization was done using enrichedheatmap package.

Weighted Gene Co-expression Network Analysis (WGCNA)

The top 10,000 rows with the highest Median Absolute Deviation (MAD) were selected for further analysis. The scale-free network fit was calculated for different soft-thresholds using the pickSoftThreshold function. The soft-threshold value was chosen based on the analysis of the resulting scale-free fit index plot and the mean connectivity plot. Modules were detected using the blockwiseModules function. The soft-threshold value determined from the previous step was used in this process. Specific modules of interest were selected for subsequent gene function annotation.

Data analysis

The single-cell data was obtained from GSE159416. IVY data was acquired from http://glioblastoma.alleninstitute.org/. The complexheatmap package was used to generate heatmaps. Aneuploidy score, MSI score, RAGNUM hypoxia score, mRNAsi score, Stromal score, Immune score, ESTIMATE score, tumor purity and ABSOLUTE score were calculated according to previously published methods. The single-cell data was processed using the Seurat package, selecting GBM samples with cell numbers greater than 6000, filtering out mitochondrial genes, conducting CCA to identify highly variable genes, and annotating using singleR. InferCNV was used for tumor cell annotation with immune cells as a reference, and harmony was applied to integrate the data. After filtering for tumor cells, AddModuleScore was used to score based on molecular markers, with the highest score assigned to the corresponding cluster. t-SNE was used for dimensionality reduction and visualization. GO, REACTOME, HALLMARK, and other datasets were downloaded from the MSigDB database, and 2D-enrichment analysis was performed using the Perseus software.

Supplementary Figures

Supplementary Figure 1. Survival analysis of SUMO1-related molecules. A-F. Survival (progression free survival) analysis of SUMO-related molecules in GBM.

Supplementary Figure 2. Data analysis of SUMO1. A. Complexheatmap of GBM sample mutation status, chromosome structure, subtype, expression of SUMO1, and GSVA scores. Data were obtained from TCGA. B-E. Correlation analysis between SUMO1 and corresponding GBM scores.

Supplementary Figure 3. HNRNPK-SUMO1 expression validation. A. Western blotting of the coimmunoprecipitation results of HNRNPK or SUMO1. B. Expression of HNRNPK and HNRNPK-SUMO1 proteins in three types of GSCs (P3, BG5, and BG7).

Supplementary Figure 4. Localization of HNRNPK-SUMO1 in cells. A. Coomassie bright blue staining of the purified HNRNPK (WT). The solution remaining after purification was collected as the elution fraction. B. Distribution of HNRNPK (WT), HNRNPK-SUMO1, or HNRNPK (K422R) in the nuclear or cytoplasmic fraction of P3#GSCs. C. Distribution of HNRNPK (WT) or HNRNPK (K422R) in the nuclear or cytoplasmic fraction of P3#GSCs.

Supplementary Figure 5. Co-immunoprecipitation results of HNRNPK. A. Venn diagram of protein co-immunoprecipitation with HNRNPK (WT) or HNRNPK (K422R). B. GO analysis of protein coimmunoprecipitated with HNRNPK (WT). C. Enrichment analysis and cluster of proteins that were coimmunoprecipitated by HNRNPK (WT) or HNRNPK (K422R).

Supplementary Figure 6. WGCNA analysis of RNA-seq data. A. Cluster dendrogram of RNA-seq data. B. Correlation analysis of module and trait.

Supplementary Figure 7. Differentially expressed molecules and function of GSCs between wild-type and mutant HNRNPK. A. Alluvial plot illustrates the number of upregulated or downregulated genes in GSC overexpressing HNRNPK (WT) or HNRNPK (K422R). B-D. Boxplot presents the RNAseq GSVA scoring results of GSCs (P3, BG5, and BG7) overexpressing Flag, WT (HNRNPK), or K422R (HNRNPK).

Supplementary Figure 8. Differential functions of GSCs regulated by HNRNPK. A-F. GSEA demonstrating the differential regulatory pathways with GSCs overexpressing HNRNPK (WT) or HNRNPK (K422R).

13

WUS K422R

Supplementary Figure 9. Functional analysis of signaling pathways activated by HNRNPK. A. GSVA score of the CREB phosphorylation in different subtypes (CL, MES, PN) of GBM. B. GSVA score of the p38MAPK cascade in different subtypes (CL, MES, PN) of GBM. C. GSVA score of canonical NF-kappaB signal transduction in different subtypes (CL, MES, PN) of GBM. D. Western blotting image of P3#GSCs and BG5#GSCs detecting signaling pathway-associated proteins and phosphorylated proteins. E-G. Barplot of the protein's western blotting quantification. Data are presented as the mean ± SD; n = 3. **p* < 0.05, ***p* < 0.01, ****p* < 0.001, *****p* ≤ 0.0001.

Supplementary Figure 10. Data analysis of TSPAN13. A. Expression of TSPAN13 in GBM and normal brains. B. Expression of TSPAN13 in different anatomic tumor regions. The data were obtained from IVY. C. TSPAN13 expression in different subtypes (CL, MES, PN) of GBM. D. Dotplot showing

the expression of MAGI2, TSPAN13, VPS45, GPNMB, KAT6A, and UIMC1 in different single cell types. E. ChIP-qPCR results of two primer sets targeting the promoter region of TSPAN13. Cells overexpressing HNRNPK (WT) were used as the control group. Data are presented as the mean ± SD; n = 3. F. Western blotting of proteins in P3#GSCs and BG5#GSCs after TSPAN13 knockdown. **p* < 0.05, ***p* < 0.01, ****p* < 0.001, *****p* ≤ 0.0001.

Supplementary Figure 11. Analysis of mouse PDX model. A. Bioluminescence imaging of xenograft intracranial P3#GSCs or BG5#GSCs overexpressing Flag, HNRNPK (WT), or HNRNPK (K422R); n = 5. B. Relative intensity of bioluminescence images at days 7 and 14. C. Survival curve

of the P3#GSC PDX model. D. Survival curve of the BG5#GSC PDX model. E-F. Ki67 positive rates in PDX models subjected to different treatments (xenograft intracranial P3#GSCs or BG5#GSCs overexpressing Flag, HNRNPK (WT), or HNRNPK (K422R)). Data are presented as the mean ± SD. G-H. HE and HNRNPK-SUMO1 DAB staining of tissue sections (xenograft intracranial P3#GSCs overexpressing HNRNPK (WT) or HNRNPK (K422R)). **p* < 0.05, ***p* < 0.01, ****p* < 0.001, *****p* ≤ 0.0001.

Tables

Table S1

Table S2.

The information of antibody

Table S3.

The information of primer

Supplementary Text

molecule sequence

HNRNPK (WT)

ATGGAAACTGAACAGCCAGAAGAAACCTTCCCTAACACTGAAACCAATGGTGAATTTGGTAAAC GCCCTGCAGAAGATATGGAAGAGGAACAAGCATTTAAAAGATCTAGAAACACTGATGAGATGGT TGAATTACGCATTCTGCTTCAGAGCAAGAATGCTGGGGCAGTGATTGGAAAAGGAGGCAAGAA TATTAAGGCTCTCCGTACAGACTACAATGCCAGTGTTTCAGTCCCAGACAGCAGTGGCCCCGA GCGCATATTGAGTATCAGTGCTGATATTGAAACAATTGGAGAAATTCTGAAGAAAATCATCCCTA CCTTGGAAGAGGGCCTGCAGTTGCCATCACCCACTGCAACCAGCCAGCTCCCGCTCGAATCTG ATGCTGTGGAATGCTTAAATTACCAACACTATAAAGGAAGTGACTTTGACTGCGAGTTGAGGCT GTTGATTCATCAGAGTCTAGCAGGAGGAATTATTGGGGTCAAAGGTGCTAAAATCAAAGAACTT CGAGAGAACACTCAAACCACCATCAAGCTTTTCCAGGAATGCTGTCCTCATTCCACTGACAGAG TTGTTCTTATTGGAGGAAAACCCGATAGGGTTGTAGAGTGCATAAAGATCATCCTTGATCTTATA TCTGAGTCTCCCATCAAAGGACGTGCACAGCCTTATGATCCCAATTTTTACGATGAAACCTATGA TTATGGTGGTTTTACAATGATGTTTGATGACCGTCGCGGACGCCCAGTGGGATTTCCCATGCGG GGAAGAGGTGGTTTTGACAGAATGCCTCCTGGTCGGGGTGGGCGTCCCATGCCTCCATCTAGA AGAGATTATGATGATATGAGCCCTCGTCGAGGACCACCTCCCCCTCCTCCCGGACGAGGCGGC CGGGGTGGTAGCAGAGCTCGGAATCTTCCTCTTCCTCCACCACCACCACCTAGAGGGGGAGAC CTCATGGCCTATGACAGAAGAGGGAGACCTGGAGACCGTTACGACGGCATGGTTGGTTTCAGT GCTGATGAAACTTGGGACTCTGCAATAGATACATGGAGCCCATCAGAATGGCAGATGGCTTATG AACCACAGGGTGGCTCCGGATATGATTATTCCTATGCAGGGGGTCGTGGCTCATATGGTGATC TTGGTGGACCTATTATTACTACACAAGTAACTATTCCCAAAGATTTGGCTGGATCTATTATTGGC AAAGGTGGTCAGCGGATTAAACAAATCCGTCATGAGTCGGGAGCTTCGATCAAAATTGATGAGC CTTTAGAAGGATCCGAAGATCGGATCATTACCATTACAGGAACACAGGACCAGATACAGAATGC ACAGTATTTGCTGCAGAACAGTGTGAAGCAGTATGCAGATGTTGAAGGATTCTAA

HNRNPK (K422R)

ATGGAAACTGAACAGCCAGAAGAAACCTTCCCTAACACTGAAACCAATGGTGAATTTGGTAAAC GCCCTGCAGAAGATATGGAAGAGGAACAAGCATTTAAAAGATCTAGAAACACTGATGAGATGGT TGAATTACGCATTCTGCTTCAGAGCAAGAATGCTGGGGCAGTGATTGGAAAAGGAGGCAAGAA TATTAAGGCTCTCCGTACAGACTACAATGCCAGTGTTTCAGTCCCAGACAGCAGTGGCCCCGA GCGCATATTGAGTATCAGTGCTGATATTGAAACAATTGGAGAAATTCTGAAGAAAATCATCCCTA CCTTGGAAGAGGGCCTGCAGTTGCCATCACCCACTGCAACCAGCCAGCTCCCGCTCGAATCTG ATGCTGTGGAATGCTTAAATTACCAACACTATAAAGGAAGTGACTTTGACTGCGAGTTGAGGCT GTTGATTCATCAGAGTCTAGCAGGAGGAATTATTGGGGTCAAAGGTGCTAAAATCAAAGAACTT CGAGAGAACACTCAAACCACCATCAAGCTTTTCCAGGAATGCTGTCCTCATTCCACTGACAGAG TTGTTCTTATTGGAGGAAAACCCGATAGGGTTGTAGAGTGCATAAAGATCATCCTTGATCTTATA TCTGAGTCTCCCATCAAAGGACGTGCACAGCCTTATGATCCCAATTTTTACGATGAAACCTATGA TTATGGTGGTTTTACAATGATGTTTGATGACCGTCGCGGACGCCCAGTGGGATTTCCCATGCGG GGAAGAGGTGGTTTTGACAGAATGCCTCCTGGTCGGGGTGGGCGTCCCATGCCTCCATCTAGA AGAGATTATGATGATATGAGCCCTCGTCGAGGACCACCTCCCCCTCCTCCCGGACGAGGCGGC CGGGGTGGTAGCAGAGCTCGGAATCTTCCTCTTCCTCCACCACCACCACCTAGAGGGGGAGAC CTCATGGCCTATGACAGAAGAGGGAGACCTGGAGACCGTTACGACGGCATGGTTGGTTTCAGT GCTGATGAAACTTGGGACTCTGCAATAGATACATGGAGCCCATCAGAATGGCAGATGGCTTATG AACCACAGGGTGGCTCCGGATATGATTATTCCTATGCAGGGGGTCGTGGCTCATATGGTGATC TTGGTGGACCTATTATTACTACACAAGTAACTATTCCCAAAGATTTGGCTGGATCTATTATTGGC AAAGGTGGTCAGCGGATTAAACAAATCCGTCATGAGTCGGGAGCTTCGATCAGAATTGATGAG CCTTTAGAAGGATCCGAAGATCGGATCATTACCATTACAGGAACACAGGACCAGATACAGAATG CACAGTATTTGCTGCAGAACAGTGTGAAGCAGTATGCAGATGTTGAAGGATTCTAA

KH3 (WT)

ATGATCATCACCACCCAGGTGACCATTCCGAAAGATCTGGCCGGCAGTATTATTGGTAAAGGTG GCCAGCGTATTAAGCAGATTCGCCATGAAAGTGGTGCCAGTATTAAGATTGATGAACCGCTGGA AGGTAGTGAAGATCGTATTATTACCATTACCGGTACCCAGGATCAGATTCAGAATGCACAGTAT CTGCTG

KH3 (K36R)

ATGATCATCACCACCCAGGTTACCATTCCGAAAGATCTGGCCGGCAGTATTATTGGCAAAGGCG GCCAGCGCATTAAGCAGATTCGTCATGAAAGCGGTGCCAGCATTCGCATTGATGAACCGCTGG

AAGGCAGTGAAGATCGTATTATTACCATTACCGGTACCCAGGATCAGATTCAGAATGCCCAGTA TCTGCTG

SUMO1

ATGTCTGACCAGGAGGCAAAACCTTCAACTGAGGACTTGGGGGATAAGAAGGAAGGTGAATAT ATTAAACTCAAAGTCATTGGACAGGATAGCAGTGAGATTCACTTCAAAGTGAAAATGACAACACA TCTCAAGAAACTCAAAGAATCATACTGTCAAAGACAGGGTGTTCCAATGAATTCACTCAGGTTTC TCTTTGAGGGTCAGAGAATTGCTGATAATCATACTCCAAAAGAACTGGGAATGGAGGAAGAAGA TGTGATTGAAGTTTATCAGGAACAAACGGGGGGTCATTCAACAGTTTAG

UBE2I (UBC9)

ATGTCGGGGATCGCCCTCAGCAGACTCGCCCAGGAGAGGAAAGCATGGAGGAAAGACCACCC ATTTGGTTTCGTGGCTGTCCCAACAAAAAATCCCGATGGCACGATGAACCTCATGAACTGGGAG TGCGCCATTCCAGGAAAGAAAGGGACTCCGTGGGAAGGAGGCTTGTTTAAACTACGGATGCTT TTCAAAGATGATTATCCATCTTCGCCACCAAAATGTAAATTCGAACCACCATTATTTCACCCGAA TGTGTACCCTTCGGGGACAGTGTGCCTGTCCATCTTAGAGGAGGACAAGGACTGGAGGCCAGC CATCACAATCAAACAGATCCTATTAGGAATACAGGAACTTCTAAATGAACCAAATATCCAAGACC CAGCTCAAGCAGAGGCCTACACGATTTACTGCCAAAACAGAGTGGAGTACGAGAAAAGGGTCC GAGCACAAGCCAAGAAGTTTGCGCCCTCATAA

TSPAN13(promoter)

GAGAATAGGGTATCCATCCTCTGAAACATTTATCCTTTGAGTTACAAACAATCCAATTACATTCTT TAAGTTATTTTAAAATACACAATTAAGTTCTTATTAACGATTGTCACTTTATTGTGCTATCAAATAG TAGGTCTTATTCATTCTTTCTATTTTTTTGGACCTATTAACCATCCCCACCTTCTCCCGCTCTTGA TTTTCCTTTGCATGCATGTATTCATAAAGTTTATTAGTATTTTGCAAATCTTTGTAGGATAAGTCT GACCTGTCCAGGTCACAATTATAGGGCACATATCTTATTTTCTGAGAGAAGCAGGGATTTTATTT TATTTTTTATTGTTTCACTTATTTTCTCCCTTTCATTTGCCTCTACTTCGTTCTCTTTTAAATCTTTC ACATGTTTTCATTCATTACTTGCTTCCTGCCTTCCTTCCCTCAAACAAGGCCAGGTGCTTAGTTT TGAAATCTCATTCAAAATGGTGCCACGTCATCTGCCAGGGCCAAGAATCCAGAGGTGCTGTCAT ATTTCTCCTTGCCAGCGTGGATCTCCTCCGAGCCCCGCCCTCCCTCCTCACCTGCTCCTGGGG AAACTACACCAAGGCCGCCGCTCTGGCCTGGGGCTCCCTCCCACACGGCCTTGGCCCTCTCC CCCTCGCCCCGGGACCGCTCCGCCCCTCCCGGATCCCGGTCGGCGGAGCGCATTTATTTGCA

TATTTCTACCTTTGTTCCCTGCCAGCGGCCAATCAGCGCGCGGGGCGAGACGAAGGGGCTGG GCGGGGCTCGGGCTCCTGCT