Supplementary figures and tables

Figure S1

Figure S1. Effect of Smad4 deficiency on cytokine secretion of Raw264.7 cells. (A-E) Elisa analysis of (A) IFN- γ , (B) TNF- α , (C) CXCL10, (D) IL-6, and (E) IL-10 secretion in Raw264.7 cells following LPS (100 ng/mL) stimulation. **P < 0.01, ***P < 0.001.

Figure S2

Figure S2. Smad4 deficiency in Raw264.7 promotes the expression of PD1. (A-B) The expression of PD1 in Sh-NC and Sh-Smad4 Raw264.7 cells was detected by flow cytometry. ***P < 0.001. (C) qPCR analysis of PD1 expression in Raw264.7 cells. ***P < 0.001.

Figure S3

Figure S3. Smad4 deficiency in S100A4⁺ cells facilitates fatty acid metabolism. RNA sequencing analysis of differentially expressed genes (DEGs) between DSS-induced colitis tissues from Smad4^{fl/fl} and S100A4^{Smad4-/-} mice. (A) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEGs. (B) Heatmap view of the most significant DEGs, and (C) analysis of fold change of DEGs. *P < 0.05, **P < 0.01. (D) Fold change of the most significant DEGs related to fatty acid metabolism. *P < 0.05, **P < 0.01.

Figure S4

Figure S4. Smad4 deficiency in macrophage promoted proliferative activity of MC38 cells. (A) MC38 cells were treated with the supernatants from Raw264.7 cells following IL-4 (20 ng/ml), IL-13 (20 ng/ml), and BMS-309403 (40 μ M) treatment, and proliferative activity of MC38 cells was detected by MTT. *P < 0.05, **P < 0.01.

Cana	Spacing	Drimon coqueros $(5^2, 2^2)$
Gene	Species	Primer sequence (5 - 5)
Actin	Mouse	F: CACCAGTTCGCCATGGATGACGA
		R: ATACCTCTTTGCTCTGGGCCTCG
Arg1	Mouse	F: CTCCAAGCCAAAGTCCTTAGAG
		R: AGGAGCTGTCATTAGGGACATC
IL-10	Mouse	F: GCTCTTACTGACTGGCATGAG
		R: CGCAGCTCTAGGAGCATGTG
YM1	Mouse	F: CTCAACCTGGACTGGCAGTA
		R: CTGCTCCTGTGGAAGTGAGT
Fabp2	Mouse	F: GTCTAGCAGACGGAACGGAG
		R: GTCTAGCAGACGGAACGGAG
Scara1	Mouse	F: GTG CTG TCT TCT TTA CCA GCA A
		R: GCT GTC ATT GAA CGT GCG TC
FASN	Mouse	F: GGA GGT GGT GAT AGC CGG TAT
		R: TGG GTA ATC CAT AGA GCC CAG
Scarb1	Mouse	F: TGA TGG AGA GCA AGC CTG TG
		R:TGA TGG AGA GCA AGC CTG TG
SCD1	Mouse	F: TTCTTGCGATACACTCTGGTGC
		R:CGGGATTGAATGTTCTTGTCGT
iNOS	Mouse	F:CGGAGATCAATGTGGCTGTG
		R:GAAGGACTCTGAGGCTGTGT

Table S1. Real-time PCR primer sequences.

	Catalogue number	Identifier	
Materials			
DMEM	06-1055-57-1ACS-1	BI	
RMPI-1640	SH30809.01	Hyclone	
FBS	A31608-02	Gibco	
Pen-Strep Solution	03-031-1B	BI	
AOM	A5486	Sigma-Aldrich	
DSS	160110	MP Biomedicals	
FastKing RT Kit (With gDNase)	KR116	TIANGEN	
SYBR Green qPCR Master Mix	НҮ-К0501-5	MCE	
Fixation & Permeabilization Buffer	88-8824-00	Invitrogen	
IFN-γ ELISA kit	SEA049Mu	Cloud-Clone	
TNF-α ELISA kit	SEA133Mu	Cloud-Clone	
IL-2 ELISA kit	SEA073Mu	Cloud-Clone	
Antibodies			
anti-Mouse CD11b	550282	BD Biosciences	
anti-Mouse F4/80	123101	BioLegend	
anti-Mouse Gr1	550291	BD Biosciences	
Mouse monoclonal anti-Fabp2	sc-374482	Santa Cruz	
Mouse monoclonal anti-Ki67	550609	BD Biosciences	
Phospho-STAT6 (Tyr641) Antibody	AF3301	Affinity	
STAT6 Antibody	AF6302	Affinity	
Mouse monoclonal anti-β-actin	sc-47778	Santa Cruz	
Experimental models: cell lines			
Raw264.7	TIB-71	AmericanTypeCulture Collection	
L929	CCL-1	AmericanTypeCulture Collection	

Table S2. Details of primary materials and antibodies used in the study.

MC38		m032	icell		
Experimental organisms/strains	models:				
C57BL/6			National Institute of		
			Biological Sciences		
Mouse: Smad4 ^{fl/fl}		1	The	Jackson	
Mouse. Sind I			Laboratory		
Manage Luz Cro		2	The	Jackson	
WIOUSE. Lyz-CIE			Laboratory	oratory	
Mouse: S100A4-Cre		3	The	Jackson	
			Laboratory		
Software and algorithm	IS		-		
ImageJ		https://imagej.nih.gov/ij	NIH		
Prism 6		http://www.graphpad.com /scientific-software/prism	GraphPad		
FlowJo		https://www.flowjo.com	FlowJo		
GEO Database		http://www.ncbi.nlm.nih.g ov/go	Open source		
Timer2.0		http://timer.cistrome.org/	Open source		

Reference

- Garcia-Carracedo D, Yu CC, Akhavan N, et al. Smad4 loss synergizes with TGFα overexpression in promoting pancreatic metaplasia, PanIN development, and fibrosis. *PLoS One* 2015;10(3):e0120851. doi: 10.1371/journal.pone.0120851 [published Online First: 20150324]
- Clausen BE, Burkhardt C, Reith W, et al. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. *Transgenic Res* 1999;8(4):265-77. doi: 10.1023/a:1008942828960
- Tsutsumi R, Xie C, Wei X, et al. PGE2 signaling through the EP4 receptor on fibroblasts upregulates RANKL and stimulates osteolysis. *J Bone Miner Res* 2009;24(10):1753-62. doi: 10.1359/jbmr.090412