1	The novel role of LOC344887 in the enhancement of hepatocellular carcinoma
2	progression via modulation of SHP1-regulated STAT3/HMGA2 signaling axis
3	
4	Supplemental information
5	Supplementary materials and methods
6	Cell culture and reagents
7	HepG2 (RRID:CVCL_0027), Huh7 (RRID: CVCL_0336), Hep3B
8	(RRID:CVCL_0326), J7 (RRID:CVCL_4Z69)(gift from Dr. C S Yang, National
9	Taiwan University, Taiwan)[1], Mahlavu (RRID:CVCL_0405), and SK-Hep1
10	(RRID:CVCL_0525) were cultured in Dulbecco's Modified Eagle's Medium (DMEM;
11	Gibco, New York, USA) supplemented with 10% fetal bovine serum (FBS; Gibco),
12	100 μ g/mL streptomycin sulfate, and 100 IU/mL penicillin G. Cells were maintained
13	in an incubator at 37°C with a humidified atmosphere and 5% CO2. Prior to
14	conducting in vitro assays, the cells were subjected to examination for mycoplasma
15	contamination using the TOOLS mycoplasma detection kit (BIOTOOLS, New Taipei
16	City, Taiwan, TTB-GBC8) to ensure their integrity.
17	
18	RNA extraction, reverse transcription polymerase chain reaction (RT-PCR) and

qRT-PCR

20	To ascertain the transcript of the target gene, total RNA was isolated using TRIzol		
21	reagent (Life Technologies Inc., Carlsbad, CA, USA). Subsequently, the RNA was		
22	converted into cDNA through reverse transcriptase (Life Technologies). For the		
23	RT-PCR analysis, a 20 μL reaction was conducted with forward and reverse primers		
24	and 1X DNA polymerase. The RT-PCR conditions included an initial denaturation at		
25	95°C for 5 min, followed by 30 cycles of 95°C for 30 sec, 55°C for 30 sec, and 72°C		
26	for 1 min. For the qRT-PCR analysis, a 15 μ L reaction was performed with forward		
27	and reverse primers and 1X SYBR green master mix (Applied Biosystems, Carlsbad,		
28	CA, USA). The standard qRT-PCR conditions were an initial denaturation at 95°C for		
29	10 min, followed by 40 cycles of 95°C for 15 sec, and 60°C for 1 min. The primers		
30	utilized in this study are listed in Supplementary Table 1.		
31			
32	5' and 3' rapid amplification of cDNA ends (RACE) assays		
33	RACE experiments (Roche Diagnostics, Mannheim, Germany, Catalog No.		
34	03343621001) followed the manufacturer's protocol. Briefly, the amplification of the		
35	LOC344887 signal was performed through nested PCR using two sets of primers, as		
36	listed in Supplementary Table 1. The PCR product was visualized by electrophoresis		

and ligated into the pGEM-T easy vector for DNA sequencing. The sequences derived

38 from the sequencing results were aligned using the NCBI genome browser.

39 Immunoblot analysis

40	The immunoblot analysis protocol was executed following previously described
41	procedures [2]. The antibodies employed in this study are detailed in Supplementary
42	Table 2. Signal detection was accomplished using X-ray films for chemiluminescence
43	detection. Signal intensities were quantified using Image Gauge software. The
44	expression levels of the target genes were normalized to GAPDH.
45	
46	In situ hybridization
47	The detection of the LOC344887 signal was performed using the RNAScope TM
48	Detection Reagent Kit RED with a custom LOC344887 probe (Advanced Cell
49	Diagnostics, Hayward, CA, USA, #323970-USM). The LOC344887 signal was
50	visualized as a brown signal. The stained tissue array was scanned and observed using
51	NDP.view2 viewer. The intensity of LOC344887 in the tissue array was quantified
52	using Image J software.
53	
54	Immunohistochemical (IHC) staining
55	The immunohistochemical staining protocol has been previously described [3].

56 Briefly, the primary antibodies used for IHC staining and their dilutions are listed in

57 Supplementary Table 2. Detection was performed using the EnVision kit (DAKO,

58	Carpinteria, CA, USA), with positive signals appearing as brown. The intensity of
59	p-STAT3 (Tyr705) and HMGA2 in tumor cells was categorized as absent (0), weak
60	(1+), moderate (2+), or strong (3+). Additionally, the percentage of positive cells was
61	classified as absent (0), focal ($\leq 10\%$), regional (11%-50%), or diffuse (>50%). The
62	histoscore was calculated by multiplying the percentage of antibody-positive cells by
63	the intensity.
64	

Gene expression and pathway analysis 65

Total RNA from LOC344887 knockdown J7 cell lines was isolated using TRIzol 66 reagent and analyzed for gene expression profiling with the Agilent SurePrint G3 67 Gene Expression Microarray (Agilent Technologies, Santa Clara, CA, USA). Signal 68 69 extraction was carried out using Feature Extraction software (version 10.7.3.1). 70 Differentially expressed genes regulated by LOC344887 were identified using their official gene IDs and further subjected to KEGG pathway analysis using the 71 72 clusterProfiler (4.8.2) package.

73

74 **Cell proliferation**

LOC344887 stable cells (5×10^4) were seeded in 6 cm plates. After 24h, 48h, and 72h 75 76 of seeding, the cells stained with 0.4% trypan blue were determined using a cell counter. The cell growth rate was normalized to day one and presented as a foldchange.

79

80 Cell migration and invasion assay

The Transwell assay (Becton-Dickinson, Franklin Lakes, NJ, USA, #3422) assessed cell migratory and invasive capabilities. Cells (8×10² cells/µl) suspended in serum-free medium were seeded in the upper chamber, which was either non-matrigel-coated (for migration assay) or matrigel-coated (for invasion assay). In contrast, the lower chamber contained DMEM with 20% FBS. After 18 hours of incubation, migratory or invasive cells were fixed and stained using crystal violet. Image J software quantified the cells traversing from the upper to the lower chamber.

88

89 Establishment of target gene stable cell lines

Full-length sequences of LOC344887 (v1 and v2), HMGA2, STAT3 (wild-type), and
SHP-1 were amplified by PCR and cloned into pcDNA3 expression plasmid
(Invitrogen, Carlsbad, CA, USA). The dominant-negative STAT3 (Y705F) pcDNA3
plasmid (Plasmid #74434) was purchased from Addgene. The pool stable
overexpression of those genes in hepatoma cell lines was incubated with DMEM with
10% FBS and G418 (800 µg/ml). We also performed the transient transfection assays

96	(as described in the corresponding figure legend). The shRNAs targeted to the
97	LOC344887 (shLOC344887#1 and shLOC344887#2) were synthesized and cloned
98	into pLKO.1 vector based on the guidelines of the TRC shRNA design algorithm
99	(RNAi core). In addition, the HMGA2 and SHP-1 shRNAs were purchased from the
100	National RNA Interference Core Facility (Institute of Molecular Biology, Academia
101	Sinica, Taiwan). The lentivirus-targeted individual genes were prepared as described
102	previously [4]. The pool stable knockdown specific genes were incubated with
103	DMEM with 10% FBS and puromycin (0.5 μ g/ml). The information on each shRNA
104	is listed in Supplementary Table 1.

105

Animal models 106

In tumor formation assay, Mahlavu-sh-luc#1 $(1 \times 10^6 \text{ cells}, n = 4)$, 107 Mahlavu-shLOC344887#1 (1×10^6 cells, n = 3), J7-sh-luc#1 (2×10^6 cells, n = 5) and 108 J7-shLOC344887#1 (2 \times 10⁶ cells, n = 5) were injected into the nude mice, 109 respectively. Tumor volumes were analyzed by the formula (W2xL)/2 (W, most minor 110 diameter, and L, longest diameter). In the metastatic assay, severe combined 111 immunodeficient (SCID) mice were used to investigate the metastatic effect of 112 LOC344887-depleted J7 cells. J7-sh-luc#1 and J7-shLOC344887#1 (2×10^{6} , n = 4) 113 114 cells were intravenously injected into the SCID mice. Furthermore, SCID mice were 115 used to uncover the metastatic effect of the LOC344887/HMGA2 axis (rescue experiment). J7-sh-luc#1/vc (n = 4), J7-shLOC344887#1/vc (n 116 5), = J7-sh-luc#1/HMGA2 (n = 5), and J7-shLOC344887#1/HMGA2 (n = 5) cells (2×10^{6}) 117 were intravenously injected into the SCID mice. After H&E staining, the metastatic 118 tumor (relative fold) in the lungs was determined. All assays were performed 119 120 according to the United States National Institutes of Health guidelines and Chang Gang Institutional Animal Care and Use Committee Guide for the Care and Use of 121 Laboratory Animals (IACUC: CGU109-135). 122

123

124 Human JAK/STAT Pathway Phosphorylation Array

125 The human JAK/STAT pathway phosphorylation kit array (Catalog 126 #AAH-JAKSTAT-1-4) was used following the manufacturer's protocol (RayBiotech Life, Inc., Peachtree Corners, GA, USA). Briefly, 150 µg of protein extracted from 127 control and LOC344887 knockdown cell lines was incubated with a blocking 128 membrane overnight at 4°C. The membranes were then washed with wash buffers I 129 130 and II. Afterward, the detection antibody cocktail was incubated with the membranes 131 overnight at 4°C. An HRP-conjugated antibody was applied for 2 hours at room temperature. Chemiluminescence was used to detect the signals visualized on X-ray 132 133 film.

134 Reporter assay

The vector NTI software (Thermo Fisher Scientific) was employed to predict six 135 136 potential STAT3 binding sites (-1500/-1492, -912/-904, -866/-858, -503/-495, -440/-432, and -414/-406) within the HMGA2 promoter region. Fragments of the 137 HMGA2 promoter (fragments I, II, III, IV, and VI) and a deletion of the putative 138 STAT3 binding site in the HMGA2 promoter (fragments V and VII) were amplified 139 using PCR and then cloned into the PGL3-TK vector. Hepatoma cells (3×10^4) were 140 seeded in a 24-well plate and co-transfected with pcDNA3, pcDNA3-LOC344887-v1, 141 pcDNA3-LOC344887-v2, HMGA2 reporter plasmids, and the β-galactosidase 142 plasmid (Clontec Laboratories Mountain View, CA, USA) using TurboFectTM 143 144 (Thermo Fisher Scientific). Luciferase activity was normalized to the control vector. 145 In addition, the STAT3 reporter activity was determined using STAT3 Reporter Assay 146 Kit (BPS Bioscience, San Diego, CA, USA, #79730). 147

148 Chromatin immunoprecipitation (ChIP) assay

This assay was performed on the HMGA2 promoter region following a previously
described protocol [2]. Briefly, hepatoma cells overexpressing vector control,
LOC344887-v1, and LOC344887-v2 were harvested and cross-linked with 1%
formaldehyde. The reaction was terminated by adding 0.125M Glycine. After two

153	washes with ice-cold PBS, cells were lysed using RIPA buffer (25 mM Tris-HCl, pH
154	7.5, 150 mM NaCl, 1% Triton X-100, 1% Na deoxycholate, 0.1% SDS, and 2 mM
155	EDTA, pH 8.0) containing protease inhibitors (Merck Millipore, #539134). Samples
156	were sonicated with the Misonix Sonicator 3000 Homogenizer (Mandel Scientific
157	Company Inc., Guelph, ON, Canada). To minimize non-specific binding, samples
158	were incubated with magnetic protein A/G (GE Healthcare Life Sciences) for 1 hour
159	at 4°C. Subsequently, the products were incubated overnight at 4°C with STAT3
160	(ABclonal, A19566) and IgG (Cell signaling, #2729) antibodies. The complexes were
161	precipitated by adding magnetic protein A/G for 1 hour at 4°C. After precipitation,
162	samples were washed with wash buffer. DNA products were extracted and eluted
163	using the QIAquick PCR purification kit (QIAGEN Inc., Valencia, CA, USA, Cat. No
164	8106). The STAT3 binding fragments were identified using PCR, and the primer
165	details are listed in Supplementary Table 1.

RNA pull-down assay

The sense and anti-sense strands of biotin-labeled LOC344887 were generated using
the T7/SP6 transcription kit (Roche, Cat. No. 11685597910). The RNA lengths of
LOC344887-v1 and LOC344887-v2 generated by in vitro transcription were verified
using denaturing agarose gel electrophoresis with RNA Millennium[™] markers (ABI,

172	#AM7150). The synthesized biotin-labeled RNA (3 μ g) was incubated with total
173	proteins (1000 μ g). After a 1-hour incubation at room temperature, the complex was
174	treated with ice-cold NT2 wash buffer and combined with 2x Laemmli loading buffer.
175	The samples were then subjected to SDS-PAGE. The signals of p-STAT3 (Tyr705)
176	and GAPDH were detected using X-ray films for chemiluminescence detection.
177	

RNA immunoprecipitation (**RIP**) assay 178

The RIP assay was conducted following a previously described protocol [5]. Briefly, 179 cells were washed with ice-cold PBS and lysed with ice-cold polysomal lysis buffer 180 (100 mM KCl, 5 mM MgCl, 10 mM HEPES (pH 7.0), 0.5% NP-40, 1 mM DTT, 181 RNase inhibitor (Invitrogen, Cat. No. 10777019), and protease inhibitors (Merck 182 183 Millipore, #539134)). Samples were collected by centrifugation and pre-cleared with 184 magnetic protein-A/G beads (GE Healthcare Life Sciences). Immunoprecipitation (IP) was carried out by adding STAT3 (ABclonal, A19566) and p-STAT3 Y705 antibody 185 (ABclonal, AP0705) at 4°C overnight. Each sample was incubated with magnetic 186 protein A/G beads for 1 hour at 4°C. Subsequently, complexes were washed with the 187 lysis buffer. To prevent DNA contamination, DNase I (Roche, Cat. No. 04716728001) 188 was incubated for 15 minutes at 37°C after washing. Total RNA was then extracted 189 190 using Trizol reagent.

191 *In vitro* phosphatase assay

The *in vitro* phosphatase assay followed a previously described protocol [6, 7]. In brief, hepatoma cells were transfected with 3×FLAG-STAT3 plasmid for 72 h. After transfection, total cell lysates were extracted and incubated with anti-FLAG M2 magnetic beads (Sigma) for 4 h. Then, the aliquoted sample was mixed with recombinant human SHP-1 (R&D systems), LOC344887-v1, and v2 transcript. The p-STAT3 (Tyr705) and total STAT3 expressions were determined via immunoblot analysis.

199

200 **Duolink proximity ligation assay**

201 In situ proximity ligation assays (PLAs) were performed on fixed cells according to 202 the manufacturer's protocol (DUO92008, Sigma-Aldrich). Coverslips were initially 203 blocked for 45 minutes at 37°C with a blocking solution and then incubated with a 1:200 dilution of primary antibodies. SHP-1 antibody (Cell Signaling Technology, 204 #26516) alone was served as the negative control, while the interaction between 205 SHP-1 and p-STAT3 (Tyr705) was evaluated using both SHP-1 and p-STAT3 (Merck, 206 207 05485) antibodies at 4°C for overnight. Subsequently, the coverslips were washed three times for 10 minutes each with PBS containing 0.1% Tween 20, followed by 208 209 incubation with secondary antibodies (PLA probes, Sigma-Aldrich) at 37 °C for 2

210	hours. After additional washing steps with buffer B, DNA ligase was added and
211	incubated at 37 °C for 30 minutes. A subsequent amplification step involved
212	incubation with DNA polymerase (DUO82030, Sigma-Aldrich) at 37 °C for 2 hours.
213	Finally, the coverslips were rinsed with buffer A and washed with $0.1\times$ buffer B
214	before being mounted with a mounting solution containing DAPI. The close
215	proximity of these proteins, defined as less than 40 nm, is visualized by discrete red
216	fluorescent puncta under fluorescence microscopy.
217	
218	Supplementary figure legends
218 219	Supplementary figure legends Supplementary Figure 1. Full-length sequences of the two LOC344887 variants
218 219 220	Supplementary figure legends Supplementary Figure 1. Full-length sequences of the two LOC344887 variants in HCC. Upper panel: A schematic representation of LOC344887 variants in the
218 219 220 221	Supplementary figure legends Supplementary Figure 1. Full-length sequences of the two LOC344887 variants in HCC. Upper panel: A schematic representation of LOC344887 variants in the study, with the red line indicating the unique sequences for the v1 and v2 transcripts
218 219 220 221 222	Supplementary figure legends Supplementary Figure 1. Full-length sequences of the two LOC344887 variants in HCC. Upper panel: A schematic representation of LOC344887 variants in the study, with the red line indicating the unique sequences for the v1 and v2 transcripts of LOC344887. Lower panel: The full nucleotide sequences of LOC344887-v1 and
218 219 220 221 222 222 223	Supplementary figure legends Supplementary Figure 1. Full-length sequences of the two LOC344887 variants in HCC. Upper panel: A schematic representation of LOC344887 variants in the study, with the red line indicating the unique sequences for the v1 and v2 transcripts of LOC344887. Lower panel: The full nucleotide sequences of LOC344887-v1 and -v2 transcripts, identified by 5'RACE and 3'RACE, are shown. The distinctive
 218 219 220 221 222 223 224 	Supplementary figure legends Supplementary Figure 1. Full-length sequences of the two LOC344887 variants in HCC. Upper panel: A schematic representation of LOC344887 variants in the study, with the red line indicating the unique sequences for the v1 and v2 transcripts of LOC344887. Lower panel: The full nucleotide sequences of LOC344887-v1 and -v2 transcripts, identified by 5'RACE and 3'RACE, are shown. The distinctive sequences between the two variants are marked in red.

226 Supplementary Figure 2. Identification of LOC344887-mediated pathway.

(A) A schematic workflow is illustrated for microarray profiling analysis using control
(sh-luc#1) and LOC344887-depleted (shLOC344887#1) J7 stable cell lines. (B)

229	Differentially expressed genes from LOC344887-silenced (shLOC344887#1) stable
230	cells as compared to control cells (sh-luc#1) were analyzed using KEGG pathway
231	analysis, revealing the top enriched pathways dysregulated under LOC344887
232	knockdown. (C) A table showing enrichment scores for differentially regulated
233	signaling pathways from LOC344887-depleted cells versus control cells.
234	
235	Supplementary Figure 3. Knockdown and overexpression of SHP-1 reciprocally
236	regulate cell motility of J7 cells.
227	
237	The impacts of SHP-1 (A) knockdown or (B) overexpression on cell motility of J7
237	The impacts of SHP-1 (A) knockdown or (B) overexpression on cell motility of J7 cells were evaluated by transducing J7 cells with two SHP-1-specific shRNA, which
237 238 239	The impacts of SHP-1 (A) knockdown or (B) overexpression on cell motility of J7 cells were evaluated by transducing J7 cells with two SHP-1-specific shRNA, which resulted in significantly increased numbers of migratory cells. Migratory cells stained
237 238 239 240	The impacts of SHP-1 (A) knockdown or (B) overexpression on cell motility of J7 cells were evaluated by transducing J7 cells with two SHP-1-specific shRNA, which resulted in significantly increased numbers of migratory cells. Migratory cells stained with crystal violet were subjected to quantification using ImageJ software, and

- 242 post-hoc test. The scale bar indicates 100 μ m. **, P < 0.01.
- 243

Supplementary Figure 4. Data analysis on LOC344887 knockdown microarray data and GSE14520 identifies six potently dysregulated genes.

246 (A) RNA was extracted from control (sh-luc#1) and LOC344887-depleted247 (shLOC344887#1) cells and analyzed via microarray profiling. A Venn diagram

248	analysis revealed six differentially expressed genes in LOC344887-depleted J7 cells
249	and HCC dataset GSE14520 (intersection region), including high mobility group
250	AT-hook 2 (HMGA2), Tissue Factor Pathway Inhibitor (TFPI), CAMP-Regulated
251	Phosphoprotein 19 (ARPP19), SEC14 Like Lipid Binding 2 (SEC14L2), FXYD
252	Domain Containing Ion Transport Regulator 1 (FXYD1) and Kelch Repeat and BTB
253	Domain Containing 11 (KBTBD11). The selection criteria for target genes were: (1)
254	LOC344887#1/sh-luc#1 ratio > 2, with P < 0.05 and T/N < 0.83, and (2)
255	LOC344887#1/sh-luc#1 ratio < 0.5, with P < 0.05 and T/N > 1.2. (B) Relative
256	fold-change (shLOC344887#1/sh-luc#1) in the expression of the six potential target
257	genes regulated by LOC344887 are shown. (C) The expression intensity of the six
258	target genes in normal tissues (N) and HCC tissues (T) was examined. Statistical
259	significances were derived from the Mann-Whitney test. (D) Overall survival and
260	recurrence-free survival in relation to the expression of the six candidates were
261	analyzed using the publicly available GSE14520 dataset with Kaplan-Meier survival
262	analysis and log-rank tests, showing HMGA2 and TFPI as only two candidates
263	correlated with worse OS and RFS. Median expression values of these genes were
264	used as cutoffs. *, $P < 0.05$; **, $P < 0.01$. (E) The expression correlations between
265	LOC344887, HMGA2, and TFPI in HCC tissues were determined using Spearman's
266	rank correlation coefficient.

Supplementary Figure 5. HMGA2 expression can be regulated by phosphatase
SHP-1 and STAT3 phosphorylation.

269 Impacts of SHP-1 on HMGA2 expression were investigated by (A) knocking down or

270 (B) overexpressing SHP-1 and assessing for changes in HMGA2 protein levels. (C) A

dominant negative mutant of STAT3 (Y705F) was utilized to assess the role of STAT3

- 272 in mediating HMGA2 expression.
- 273

274 Supplementary Figure 6. Clinicopathological correlations of LOC344887 to

275 **p-STAT3 (Tyr705) and HMGA2 using HCC tissue array**.

(A) HCC tissue arrays that contain normal, cirrhosis, and HCC were utilized to 276 examine their correlation to p-STAT3 (Tyr705) and HMGA2 expression using 277 278 immunohistochemistry (IHC). The brown signals indicated the expression of 279 p-STAT3 (Tyr705) and HMGA2, showing significantly elevated expression of p-STAT3 and HMGA2 in HCC when compared to normal or cirrhosis tissues—scale 280 bar: 100 µm. Quantitative results and statistical significance were determined using 281 one-way ANOVA followed by Tukey's post-hoc test. *, P < 0.05; **, P < 0.01. (B) The 282 correlation between LOC344887 (RNA level), p-STAT3 (Tyr705) (protein level), and 283 HMGA2 (protein level) in HCC was evaluated using Spearman's rank correlation 284 285 coefficient, showing significant correlations among LOC344887, p-STAT3 (Tyr705) 287

Supplementary Figure 7. HMGA2 promoter contains putative STAT3 binding element responsible for LOC344887 in HCC.

(A) Mutant construct (VII) and wild-type construct (VI) containing putative STAT3-2 290 binding site were transfected into Mahlavu control cells (sh-luc#1) or 291 LOC344887-depleted cells (shLOC344887#1) to demonstrate the importance of 292 STAT3-2 in LOC344887-mediated HMGA2 promoter activity. (B) The same reporter 293 constructs utilized in (A) were transfected into control (vc), LOC344887-v1 or 294 LOC344887-v2-overexpressing Huh7 cells, showing significantly enhanced HMGA2 295 296 promoter activities when either LOC344887 variant was overexpressed. Luciferase 297 reporter activities measured were normalized to vc and presented in fold changes, as 298 statistical significance was obtained from one-way ANOVA followed by Tukey's post-hoc test. *, P < 0.05; **, P < 0.01. 299

300

301 **References**

Hosono S, Lee CS, Chou MJ, Yang CS, Shih CH. Molecular analysis of the p53
 alleles in primary hepatocellular carcinomas and cell lines. Oncogene. 1991; 6:
 237-43.

305	2. Lin YH, Wu MH, Liu YC, Lyu PC, Yeh CT, Lin KH. LINC01348 suppresses
306	hepatocellular carcinoma metastasis through inhibition of SF3B3-mediated EZH2
307	pre-mRNA splicing. Oncogene. 2021; 40: 4675-85.
308	3. Liao CJ, Wu TI, Huang YH, Chang TC, Wang CS, Tsai MM, et al.

- 309 Glucose-regulated protein 58 modulates cell invasiveness and serves as a prognostic
- 310 marker for cervical cancer. Cancer Sci. 2011; 102: 2255-63.
- 311 4. Chan YL, Liao CL, Lin YL. Human Kinase/Phosphatase-Wide RNAi Screening
- 312 Identified Checkpoint Kinase 2 as a Cellular Factor Facilitating Japanese Encephalitis
- **313** Virus Infection. Front Cell Infect Microbiol. 2018; 8: 142.
- 5. Hsieh CL, Liu H, Huang Y, Kang L, Chen HW, Chen YT, et al. ADAR1
- deaminase contributes to scheduled skeletal myogenesis progression via stage-specific
- 316 functions. Cell Death Differ. 2014; 21: 707-19.
- 6. Kim BR, Ha J, Kang E, Cho S. Regulation of signal transducer and activator of

318 transcription 3 activation by dual-specificity phosphatase 3. BMB Rep. 2020; 53:319 335-40.

320 7. Liu C, Shen A, Song J, Cheng L, Zhang M, Wang Y, et al.
321 LncRNA-CCAT5-mediated crosstalk between Wnt/beta-Catenin and STAT3 signaling
322 suggests novel therapeutic approaches for metastatic gastric cancer with high Wnt
323 activity. Cancer Commun (Lond). 2024; 44: 76-100.

324 Supplementary Figures

LOC344887 variants

LOC344887-v2 1 111 281

LOC344887-v1 (NR_151491)

LOC344887-v1

ATAATTCTCACCAGAGAAGAAACACAGCATTTCGGCTGGTGTCGCTGCTCCAGGG AAAGTTCTGTTACTCCACTGACTCTCTCTTTTCCTGATAACATGGCCAGCAAGAAA GTAATTACAGTGTTTGGAGCAACAGGGGAAGCTGGTGGCAGACTCCGCCAAGCA CCTGGGTCTGAAGCACGTGGTGTACAGCGGCCTGGAGAACGTCAAGCGACTGAC GGATGGCAAGCTGGAGGTGCCGCACTTTGACAGCAAGGGCGAGGTGGAGGAGTA CTTCTGGTCCATTGGCATCCCCATGACCAGTGTCCGCGTGGCGGCCTACTTTGAA AACTTTCTCGCGGCGTGGCGGCCCGTGAAAGCCTCTGATGGAGATTACTACACCT TGGCTGTACCGATGGGAGATGTACCAATGGATGGTATCTCTGTTGCTGATATTGG AGCAGCCGTCTCTAGCATTTTTAATTCTCCAGAGGAATTTTTAGGCAAGGCCGTG GGGCTCAGTGCAGAAGCACTAACAATACAGCAATATGCTGATGTTTTGTCCAAGG TTTTGGGGAAAGAAGTCCGAGATGCAAAGATTACCCCGGAAGCTTTCGAGAAGC TGGGATTCCCTGCAGCAAAGGAAATAGCCAATATGTGTCGTTTCTATGAAATGAA GCCAGACCGAGATGTCAATCTCACCCACCAACTAAATCCCAAAGTCAAAAGCTTC AGCCAGTTTATCTCAGAGAACCAGGGAGCCTTCAAGGGCATGTAGAAAATCAGC TGTTCAGATAGGCCTCTGCACCACACAGCCTCTTTCCTCTCTGATCCTTTTCCTCTT TACGGCACAACATTCATGTTGACAGAACATGCTGGAATGCAATTGTTTGCAACAC CGAAGGATTTCCTGCGGTCGCCTCTTCAGTAGGAAGCACTGCATTGGTGATAGAA CACGGTAATTTGATTCACATTTAACTTGCTAGTTAGTGATAAGGGTGGTACACCT GTTTGGTAAAATGAGAAGCCTCGGAACTTGGAGCTTCTCTCCTACCACTAATGGG AGGGCAGATTATACTGGGATTTCTCCTGGGTGAGTAATTTCAAGCCCTAATGCTG AAATTCCCCTAGGCAGCTCCAGTTTTCTCAACTGCATTGCAAAATTCCCAGTGAA CTTTTAAGTACTTTAACTTAAAAAAAAGAACATCTTTGTAGAGAAATTTTCTGGGG AACATGGTGTTCAATGAACAAGCACAAGCATTGGAAATGCTAAAATTCAGTTTTG ${\tt CCTCAAGATTGGAAGTTTATTTTCTGACTCATTCATGAAGTCATCTATTGAGCCAC}$ ${\tt CATT}{\tt CATT}{\tt ATT}{\tt CATT}{\tt CAT}{\tt CATT}{\tt CAT$ TTCTTGAGCACCAGCACGGGTGGCCATTTGTGGACTTCTCTTCATTCCTATGTGTT TTCTTATCAAAGTGATCCACTCTCGAAAGGCTCCTTTCCAGTCTGTGGTTGGGTTC AAGTCATGCCAGGGCCAGGGGGCCCATCTCCTCGTTTAGCTCTAGGCAAAATCCA GGGGATCTGCAGTGGGGGAGCGGGGGGGGGAGGGAAGGCCTGTGAAG GGTAGGGATGTGGAAAGACAAGGTGACAGAAGGACCCAATAGGACCTTTCTATA TCTCTGGCTTAGCATTTTCTACATCATATTGTAATCGTCTTATTTGCTAGTTTTCTT ${\tt CCTTACTGTGAGTGACTAACAGTCATCTTTATCCCAGTGCCTGGTACATAATAAGT}$

LOC344887-v2

GCATTTCGGCTGGTGTCGCTGCTCCAGGGAAAGTTCTGTTACTCCACTGACTCTCT CTTTTCCTGATAACATGGCCAGCAAGAAAGTAATTACAGTGTTTGGAGCAACAGG AGCTCAAGGTGGCTCTGTGGCCAGGGCAATTTTGGAGAGCAAAAATTTGCAGT GAGAGCAGTGACCAGGGATGTGACTTGACCAAATGCCCTGGAGCTCCAGCGCCT TGGAGCTGAGGTGGTCAAAGGTGACCTGAATGATAAAGCATCGGTGGACAGTGC CTTAAAAGGGGAAGCTGGTGGCAGACTCCGCCAAGCACCTGGGTCTGAAGCACG TGGTGTACAGCGGCCTGGAGAACGTCAAGCGACTGACGGATGGCAAGCTGGAGG TGCCGCACTTTGACAGCAAGGGCGAGGTGGAGGAGTACTTCTGGTCCATTGGCAT CCCCATGACCAGTGTCCGCGTGGCGGCCTACTTTGAAAACTTTCTCGCGGCGTGG CGGCCCGTGAAAGCCTCTGATGGAGATTACTACACCTTGGCTGTACCGATGGGAG ATGTACCAATGGATGGTATCTCTGTTGCTGATATTGGAGCAGCCGTCTCTAGCATT TTTAATTCTCCAGAGGAATTTTTAGGCAAGGCCGTGGGGGCTCAGTGCAGAAGCAC TAACAATACAGCAATATGCTGATGTTTTGTCCAAGGTTTTGGGGAAAGAAGTCCG AGATGCAAAGATTACCCCGGAAGCTTTCGAGAAGCTGGGATTCCCTGCAGCAAA GGAAATAGCCAATATGTGTCGTTTCTATGAAATGAAGCCAGACCGAGATGTCAAT CTCACCCACCAACTAAATCCCAAAGTCAAAAGCTTCAGCCAGTTTATCTCAGAGA ACCAGGGAGCCTTCAAGGGCATGTAGAAAATCAGCTGTTCAGATAGGCCTCTGC ACCACAGGCCTCTTTCCTCTCTGATCCTTTTCCTCTTTACGGCACAACATTCATG TTGACAGAACATGCTGGAATGCAATTGTTTGCAACACCGAAGGATTTCCTGCGGT CGCCTCTTCAGTAGGAAGCACTGCATTGGTGATAGAACACGGTAATTTGATTCAC ATTTAACTTGCTAGTTAGTGATAAGGGTGGTACACCTGTTTGGTAAAATGAGAAG CCTCGGAACTTGGAGCTTCTCCTCCCACCACTAATGGGAGGGCAGATTATACTGGG ATTTCTCCTGGGTGAGTAATTTCAAGCCCTAATGCTGAAATTCCCCTAGGCAGCTC CAGTTTTCTCAACTGCATTGCAAAATTCCCAGTGAACTTTTAAGTACTTTTAACTT AAAAAATGAACATCTTTGTAGAGAATTTTCTGGGGAACATGGTGTTCAATGAAC AAGCACAAGCATTGGAAATGCTAAAATTCAGTTTTGCCTCAAGATTGGAAGTTTA TTTTCTGACTCATTCATGAAGTCATCTATTGAGCCACCATTCAATTATTCATCTAT TAATTCCTTGATCCTTCATTTATCCATTCTGCAAACTTTTCTTGAGCACCAGCACG GGTGGCCATTTGTGGACTTCTCTTCATTCCTATGTGTTTTCTTATCAAAGTGATCC ACTCTCGAAAGGCTCCTTTCCAGTCTGTGGTTGGGTTCAAGTCATGCCAGGGCCA GGGGGCCCATCTCCTCGTTTAGCTCTAGGCAAAATCCAGGGGATCTGCAGTGGGG AGCGGGGGCAGGAAGCTGGAGGGAAGGCCTGTGAAGGGTAGGGATGTGGAAAG ACAAGGTGACAGAAGGACCCAATAGGACCTTTCTATATCTCTGGCTTAGCATTTT ACAGTCATCTTTATCCCAGTGCCTGGTACATAATAAGTGATCAATAAATGTTGAT TGACTAAATGAGTAAA

1797 1813

Supplementary Figure 1

326

327

С

The differential signaling in LOC344887-depleted J7 and control cell

Signaling	Fold enrichment	Enrichment FDR
KEGG_Malaria	4.94136	0.00671
KEGG_Pertussis	4.77882	0.001
KEGG_Complement and coagulation cascades	4.27282	0.00215
KEGG_ECM-receptor interaction	3.78323	0.00622
KEGG_Hematopoietic cell lineage	3.66859	0.00596
KEGG_Amoebiasis	3.56069	0.00622
KEGG_Cytokine-cytokine receptor interaction	2.77951	0.00054
KEGG_Pathways in cancer	1.99868	0.00596

Abbreviations: KEGG, Kyoto encyclopedia of genes and genomes.

Supplementary Figure 2

329			
330			
331			
332			
333			
334			
335			
336			
337			
338			

Supplementary Figure 3

Е

RNA level	LOC344887	HMGA2	TFPI
LOC344887		R = 0.516 P < 0.001	R = -0.101 P = 0.207
HMGA2	R = 0.516 P < 0.001		R = -0.095 P = 0.240
TFPI	R = -0.101 P = 0.207	R = -0.095 P = 0.240	

Supplementary Figure 4

C MGA2 ADDH D C MGA2 ADDH D C MGA2 C MD C MGA2 C MD C MGA2 C MD C MGA2 C MD C	A <u>J7</u> <u>sh-luc</u> <u>shSHP-1</u> <u>#1</u> #2 <u>#1</u> #2 SHP-1 HMGA2 GAPDH	Relative fold	B J7 vc SHP-1 HMGA2 GAPDH
	C J7 STAT3 vc (Y705F HMGA2 GAPDH	Belattice fold	Supplementary Figure 5

a		T .	1
Supp	lementary	Figure	6
~ upp	i vili vilicui j	1 19410	0

Supplementary Figure 7

408 Supplementary Table 1. The primers were used in RT-PCR, qRT-PCR, ChIP and 409 shRNA analysis.

RT-PCR

LOC344887 forward primer: 5'- CTCTCTCTTTTCCTGATAAC-3' LOC344887 reverse primer: 5'- AATATCAGCAACAGAGATAC-3' 18S rRNA forward primer: 5'- CGAGCCGCCTGGATACC-3' 18S rRNA reverse primer: 5'- CCTCAGTTCCGAAAACCAACAA-3'

qRT-PCR

LOC344887 forward primer: 5'-GAGCCTTCAAGGGCATGTAGA-3' LOC344887 reverse primer: 5'-GAATGTTGTGCCGTAAAGAGGAA-3' Specific LOC344887-v1 forward primer: 5'-ATAATTCTCACCAGAGAAGAAACA-3' Specific LOC344887-v1 reverse primer: 5'-TCAGTGGAGTAACAGAACTTTCC-3' Specific LOC344887-v2 forward primer: 5'-CTGTGGCCAGGGCAATTTT-3' Specific LOC344887-v2 reverse primer: 5'-CTCCAGGGCATTTGGTCAA-3' HMGA2 forward primer: 5'- TGGGAAGGAGCGAAATCTAA -3' HMGA2 reverse primer: 5'- GGTGAACTCAAGCCGAAG -3' TFPI forward primer: 5'- GTGGATGCCTGGGCAATA -3' TFPI reverse primer: 5'- GGAAACCATTCGGACCATCT -3' 18S rRNA forward primer: 5'- CCTCAGTTCCGAAAACCAACAA-3'

ChIP assay

HMGA2 promoter forward-2 primer: 5'-TGTCAGGGGACCTCTCCCAC-3' HMGA2 promoter reverse-2 primer: 5'-GAGGTCACCCCTGGGCAGTT-3' GAPDH forward primer: 5'-TACTAGCGGTTTTACGGGCG-3' GAPDH reverse primer: 5'-TCGAACAGGAGCAGAGAGCGA-3'

shRNA

LOC344887 shRNA-1 forward: 5'-CCGGATACAGCAATATGCTGATGTTCTCGAGAACATCAGCATATTGCTGTAT TTTTT-3' LOC344887 shRNA-1 reverse: 5'-AATTAAAAAATACAGCAATATGCTGATGTTCTCGAGAACATCAGCATATTG CTGTGT-3' LOC344887 shRNA-2 forward: 5'-CCGGCTCAACCAAGATAAGGAAGTGCTCGAGCACTTCCTTATCTTGGTTG AGTTTTT-3'

	LOC344887 shRNA-2 reverse:				
	5'-AATTAAAAACTCAACCAAGATAAGGAAGTGCTCGAGCACTTCCTTATCTT				
	GGTTGAG-3'				
410					
111					
411					
110					
412					
413					
413					
414					
415					
416					
417					
418					
440					
419					
420					
720					
421					
422					
423					
424					
425					
420					
426					
רכ⊿					
427					

428	Supplementary Table 2. The antibodies were used in western blot analysis, IHC, PLA
429	and RIP assay.

-				
Antibody	Company	Catalog No.	Dilution/Concentration	Assay
	Call Giorgalin a	#5260	1:1000	WB
HMGA2	Cell Signaling	#3209	1:100	IHC
p-STAT3	Call Signaling	#9145	1:1000	WB
(Tyr705)	Cell Signaling			
STAT3	Cell Signaling	#9139	1:1000	WB
SHP-1	Cell Signaling	#26516	1:200	PLA
p-STAT3		05485	1:200	PLA
(Tyr705)	Merck			
p-STAT3	ADalamal	A D0705	3 µg	RIP
(Tyr705)	ABCIONAI	AP0/05	1:100	IHC
STAT3	ABclonal	A19566	3 µg	RIP
SHP-1	ABclonal	A19111	1:1000	WB,
GAPDH	Santa Cruz	sc-47724	1:8000	WB