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Abstract 

Immunotherapy plays a key role in cancer treatment, however, responses are limited to a small number 
of patients. The biological basis for the success of immunotherapy is the complex interaction between 
tumor cells and tumor immune microenvironment (TIME). Historically, research on tumor immune 
constitution was limited to the analysis of one or two markers, more novel technologies are needed to 
interpret the complex interactions between tumor cells and TIME. In recent years, major advances have 
already been made in depicting TIME at a considerably elevated degree of throughput, dimensionality and 
resolution, allowing dozens of markers to be labeled simultaneously, and analyzing the heterogeneity of 
tumour-immune infiltrates in detail at the single cell level, depicting the spatial landscape of the entire 
microenvironment, as well as applying artificial intelligence (AI) to interpret a large amount of complex 
data from TIME. In this review, we summarized emerging technologies that have made contributions to 
the field of TIME, and provided prospects for future research. 
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Introduction 
The tumor microenvironment (TME) is a 

complex ecosystem that comprises tumor cells, 
stromal cells, immune cells, and cytokines. In recent 
years, research has begun to elucidate the role of the 
tumor immune microenvironment (TIME) in the 
development and progression of cancer. The TIME 
includes tumor-antagonizing immune cells, such as 
effector T cells, natural killer (NK) cells, and 
M1-polarized macrophages; tumor-promoting 
immune cells, such as regulatory T cells (Tregs) and 
myeloid-derived suppressor cells (MDSCs); and 
signaling molecules or factors, such as checkpoint 
receptors and their corresponding ligands [1, 2]. 

Conventional technologies, such as flow 
cytometry and immunohistochemistry (IHC), have 
been instrumental in elucidating the composition and 
molecular characteristics of the TIME as well as 
developing clinical methodologies to better treat 
tumors. Furthermore, significant resources have been 
devoted to analyzing the spatial structure of the 

TIME. The spatial distribution of the TIME can be 
summarized by four aspects: location—namely the 
spatial distribution and cell proportion of various 
immune cells in the TIME; distance between immune 
cells and their nearest neighbors; spatial distribution 
of cell-cell interactions at the level of antigen 
recognition, such as immune regulators; and special 
spatial patterns, such as the spatial characteristics of 
activation or inhibition of immune cells with 
molecular and morphological characteristics [3, 4].  

In the past few years, major advances have 
already been made in characterizing the TIME at a 
considerably elevated degree of throughput, 
dimensionality, and resolution. Notably, recent 
advances in techniques, such as imaging mass 
cytometry (IMC), multiplex immunohistochemistry/ 
immunofluorescence (mIHC/IF), single-cell RNA 
sequencing (scRNA-seq), and spatial RNA sequencing 
(spRNA-seq) have been employed to delineate the 
landscape of the TIME and unravel the heterogeneity 
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of its composition, function, and immune cell 
distribution within the TIME [5-8]. In this review, we 
highlighted the advancements of cytometry-based 
techniques (including flow cytometry, mass 
cytometry, and IMC), multiplexing imaging tech-
niques (such as mIHC/IF), RNA sequencing (from 
bulk, single-cell to spatial RNA sequencing), and 
artificial intelligence (AI) in characterizing the TIME. 

Overview of the TIME  
In recent years, the TIME has attracted 

increasing interest due to its crucial roles in 
immunotherapy. The TIME consists mostly of tumor 
cells; extracellular matrix; cytokines; and distinct 
immune cell populations, such as T lymphocytes, 
tumor associated macrophages (TAMs), neutrophils, 
MDSCs, NK cells, dendric cells (DCs) and other 
immune cells [5]. Immune cells in the TIME are 
roughly divided into two categories: tumor- 
antagonizing immune cells and tumor-promoting 
immune cells (Figure 1). Effector T cells, NK cells, 
DCs, M1-polarized macrophages and N1-polarized 
neutrophils function as tumor-antagonizing immune 
cells, while Tregs, MDSCs, M2-polarized macro-
phages, and N2-polarized neutrophils function as 
tumor-promoting immune cells. It is important to 
note that the role of immune cells within the TIME can 
vary depending on the specific disease, tumor type, 
and individual patient factors.  

T lymphocytes, also known as T cells, are a 
critical component of the adaptive immune system 
[9]. They play a vital role in recognizing and 
eliminating infected cells, foreign invaders, and 
cancerous cells. CD4+ helper cells (Th cells) and CD8+ 
cytotoxic T lymphocytes (CTLs) are the main subsets 
of T lymphocytes [9, 10]. Treg cells are a specialized 
subset of T lymphocytes that act as immune "brakes" 
by suppressing the activity of other immune cells, 
such as effector T cells, B cells, and antigen-presenting 
cells [11, 12]. The suppressive activity of Tregs within 
the tumor microenvironment can hinder anti-tumor 
immune responses and promote immune evasion by 
cancer cells [11, 12]. DCs and NK cells are 
tumor-antagonizing immune cells. DCs bridge the 
innate and adaptive immune responses by capturing 
and presenting antigens to T cells, playing a critical 
role in initiating and shaping adaptive immune 
responses [13, 14], while NK cells are innate immune 
cells that eliminate infected and cancerous cells by 
releasing cytotoxic molecules and cytokines [15]. In 
the context of cancer, certain immune cells have the 
ability to assume dual roles. For example, 
macrophages are vital components of the innate 
immune system and can be dynamically polarized to 
produce distinct functional phenotypes by various 
signals within the microenvironment, namely 
M1-polarized (classically activated) macrophages and 
M2-polarized (alternatively activated) macrophages, 

 

 
Figure 1. Overview of the the immune components that constitute the TIME. Immune cells in the TIME are divided into two categories: tumor-antagonizing immune 
cells and tumor-promoting immune cells. Effector T cells, NK cells, DCs, M1-polarized macrophages and N1-polarized neutrophils function as the tumor-antagonizing immune 
cells, while Tregs, MDSCs, M2-polarized macrophages and N2-polarized neutrophils function as tumor-promoting immune cells. 
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which are suggested to have opposite roles in tumor 
development [16-18]. M1-polarized macrophages 
display a tumoricidal phenotype and are involved in 
promoting anti-tumor immune responses. They 
release pro-inflammatory cytokines and generate 
reactive oxygen species (ROS) and reactive nitrogen 
species (RNS) to eliminate tumor cells. In contrast, 
M2-polarized macrophages exhibit a pro-tumorigenic 
phenotype and contribute to tumor progression. They 
secrete anti-inflammatory cytokines and growth 
factors, which subsequently promote tumor cell 
growth, angiogenesis, and tissue remodeling. Similar 
to the tumoricidal and pro-tumorigenic macrophages, 
tumor-associated neutrophils (TANs) are also divided 
into anti-tumorigenic N1 and pro-tumorigenic N2 
phenotypes [19-21]. N1-polarized TANs exhibit 
anti-tumorigenic properties by stimulating the 
production of ROS, tumor necrosis factor (TNF), and 
intercellular adhesion molecule (ICAM)-1. 
Additionally, N1-polarized TANs can activate various 
innate and adaptive immune cells, further enhancing 
their anti-tumor functions. These activities collectively 
contribute to the suppression of tumor growth and 
metastasis. On the contrary, N2-polarized TANs 
display a pro-tumorigenic phenotype and are 
characterized by the secretion of pro-angiogenic 
factors and enzymes involved in extracellular matrix 
(ECM) remodeling. Consequently, N2-polarized 
TANs promote angiogenesis and metastasis, which 
directly or indirectly support tumor growth and the 
dissemination of tumor cells. Among tumor- 
promoting immune cells, MDSCs exert their 
immune-suppressive function through multiple 
mechanisms [22-24]. They inhibit T cell responses by 
depleting essential nutrients, producing inhibitory 
cytokines like interleukin-10 (IL-10) and transforming 
growth factor-beta (TGF-β), as well as inducing Tregs. 
MDSCs can also directly suppress the activity of NK 
cells and DCs. Moreover, MDSCs promote tumor 
growth and metastasis by creating an immuno-
suppressive microenvironment, supporting 
angiogenesis, and facilitating tumor cell invasion and 
extravasation. 

The infiltration of immune cells into the tumor 
microenvironment leads to significant alterations in 
the immune landscape of the tumor. Understanding 
the unique characteristics and subclasses of TIME 
present in patients' tumors will improve the ability to 
predict patient treatment and guide prognosis [2]. 
Recently, significant progress has been made in 
analyzing the functional status and spatial 
distribution of immune cells to define subtypes of the 
TIME. Wang et al. [25] characterized the TIME into 
three distinct states: active TIME (A-TIME), 
equilibrated TIME (E-TIME), and suppressive TIME 

(S-TIME). A-TIME is characterized by a robust 
infiltration of CD8+ effector T cells and M1-polarized 
macrophages. Patients with A-TIME generally exhibit 
more favorable clinical outcomes. On the contrary, an 
S-TIME is associated with an increased presence of Th 
cells, Tregs, and M2-polarized macrophages, while 
the E-TIME state represents a balance between 
immune effector cells and immunosuppressive cells. 
Similarly, Binnewies et al. [2] described three broad 
classes of TIME: infiltrated-excluded (I-E) TIME, 
infiltrated-inflamed (I-I) TIME, and tertiary lymphoid 
structures (TLS) TIME. The I-E TIME features a wide 
distribution of immune cells but lacks CTLs in the 
tumor core and has been hypothesized to be poorly 
immunogenic or “cold” [2, 26]. Meanwhile, the I-I 
TIME is characterized by high infiltration of CTLs 
expressing PD-1 as well as an abundance of PD-L1 
expression on tumor cells and leukocytes [2]. Unlike 
the I-E TIME, tumors with a I-I TIME are considered 
to be immunologically “hot” tumors. Lastly, the TLS 
TIME is a subclass of the I-I TIME and contains 
tertiary lymphoid structures (TLSs). The cellular 
composition of TLSs includes a substantial diversity 
of lymphocytes, such as B cells, Tregs and DCs, which 
are similar to the diversity of lymphocytes in lymph 
nodes [27]. The TIME has also been classified based on 
the presence or absence of tumor infiltrating 
lymphocytes (TILs) and PD-L1 expression: type I 
(PD-L1 positive with the presence of TILs, driving 
adaptive immune resistance), type II (PD-L1 negative 
with absence of TILs, indicating immune ignorance), 
type III (PD-L1 positive with absence of TILs, 
indicating intrinsic induction), and type IV (PD-L1 
negative with the presence of TILs, indicating the role 
of other suppressors in promoting immune tolerance) 
[28]. This proposed classification may be important 
for designing optimal immunotherapeutic strategies 
[28, 29]. In addition, Thorsson et al. [30] identified six 
TIME subtypes in 33 diverse cancer types based on 
the differences in macrophage or lymphocyte 
signatures, Th1:Th2 cell ratio, extent of intratumoral 
heterogeneity, aneuploidy, extent of neoantigen load, 
overall cell proliferation, expression of immuno-
modulatory genes, and prognosis: wound healing, 
IFN-γ-dominant, inflammatory, lymphocyte- 
depleted, immunologically quiet, and TGF-β- 
dominant. These different TIME classification 
methods further stratify patients to better understand 
overall survival and response to immunotherapy. 

Analytical techniques used to 
characterize the TIME 

The complex interactions between tumor cells 
and the TIME serve as the biological basis for 
determining the success of immunotherapy. 
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Comprehensive analysis of the landscape of the TIME 
can be conducted to identify biomarkers that reliably 
predict the response to therapy and reveal new 
insights for the development of more effective cancer 
treatments. Technological advances in studying the 
TIME have emerged as a crucial area of research at the 
intersection of cancer biology and immunology. These 
technological developments have allowed researchers 

to gain a deeper understanding of the dynamic 
interactions between tumor cells and the immune 
system. In this section of the review, we discuss the 
technological advancements in TIME, including 
cytometry-based techniques, multiplexing imaging 
techniques, RNA sequencing, and AI. A summary of 
the above-mentioned techniques is provided in Table 
1. 

 
 

Table 1. Summary of techniques in the characterization of the tumor immune microenvironment 

Category Techniques Advantages Limitations Suitable Applications 
Cytometry-based 
Techniques 
 

Flow cytometry (FCM)  high-speed 
 relatively high throughput 
 capable of cell sorting 

 spectral overlap 
 limited number of detected 

markers 
 lack of spatial information 
 

 single-cell labeling  
 cell sorting, counting, viability, and 

phenotypic analysis 
 immune cell subgroup analysis 

Mass Cytometry  high-dimensional analysis (>40 
parameters) 

 reduced spectral overlap and better 
resolution 

 minimal compensation 
requirements 

 enhanced detection sensitivity 

 relatively low throughput 
 cells cannot be recovered and 

sorted 
 higher costs 
 lack of spatial information 
 

 deep phenotyping of immune cell 
subsets 

 identification of rare cell 
populations 

 

Imaging Mass 
Cytometry 
 (IMC) 

 high-dimensional tissue spatial 
imaging  

 high subcellular resolution 
 applicable to various sample types 

laid on glass slides 

 time-consuming 
 very expensive 
 

 subcellular spatial information in 
the tumor microenvironment 

 investigation of tissue architecture, 
cell-cell interactions, and signaling 
pathways at high resolution 

Multiplexing 
Imaging 
Techniques 

multiplex 
immunohistochemistry 
(mIHC) 

 simultaneous assessment of 
multiple biomarkers on the same 
tissue section 

 no restrictions on the types of 
antibodies 

 simple technique (similar to 
routine IHC) 

 only one marker in each round of 
staining 

 limited simultaneously detectable 
markers (5-10)  

 time-consuming 

 biomarker research 
 immune cell subgroup analysis 

multiplex 
immunofluorescence 
(mIF) 

 simultaneous assessment of 
multiple biomarkers and 
high-resolution imaging 

 more staining markers 
 TSA amplifies fluorescent signal 

and enhances sensitivity  

 spectral overlap and signal 
bleed-through 

 background fluorescence 
 higher costs  

 immune cell profiling 
 protein localization and subcellular 

analysis 

RNA Sequencing 
Techniques 

Bulk RNA sequencing 
(Bulk RNA-seq) 

 a global view of gene expression in 
a population of cells 

 high throughput 
 cost-effective and suitable for 

large-scale sample analysis 

 average gene expression profile, 
loss of cellular heterogeneity 
information  

 lack of spatial information 
 

 transcriptome profiling 
 tumor diagnosis, prognosis 

biomarker discovery, novel gene 
fusion discovery, and guidance for 
therapeutic treatment 

Single-cell RNA 
sequencing 
(scRNA-seq) 

 enables the analysis of gene 
expression at the single-cell level 

 tumor heterogeneity analysis 
 identification of unique cell types 

and rare cell populations 

 higher cost 
 limited sensitivity and higher 

levels of technical noise 
 lack of spatial information 
 
 

 tumor heterogeneity 
 cell typing and lineage tracing  
 immune response dynamics and 

immune landscape characteristics 
 
 

spatial RNA 
sequencing 
(spRNA-seq) 

 provides spatially resolved 
transcriptome information 

 10× spatial transcriptomics: higher 
cellular resolution  

 DSP: high-plex gene detection 
capability 

 higher cost and complexity of the 
workflow  

 the technique is relatively new and 
still developing 

 spatial tumor heterogeneity 
 comprehensive analysis of the 

tumor microenvironment  
 spatially biomarker discovery 
 immunotherapy optimization 

 
 
Artificial Intelligence 
(AI) 

 big data analysis 
 integration of multi-omics data 
 efficient and automated analysis 

 lack of interpretability 
 limited availability  
 ethical considerations 

 tumor microenvironment analysis 
 cancer subtyping 
 biomarker identification 
 therapy selection 
 survival prediction 
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Figure 2. Cytometry-based techniques. Top: In flow cytometry, cells are stained with fluorescent dye-labeled antibodies, which bind to certain protein markers. Under the 
excitation of laser beam, the protein marker emits light, and the antigen density on each cell is determined by measuring the fluorescence signal. Bottom Left: Mass cytometry, 
also known as CyTOF, is a technique that combines flow cytometry and mass spectrometry. During analysis, the cells stained with the metal isotope-conjugated antibodies are 
passed through a nebulizer, which converts the sample into single-cell droplets. The droplets are subsequently atomized and ionized inside an ICP torch, resulting in the 
generation of a cloud of metal ions for analysis by time-of-flight mass spectrometry. Bottom Right: Imaging mass cytometry is established based on CyTOF and IHC. In this 
technique, metal-conjugated antibodies label targets in tissue sections, and laser ablation releases metal ions from labeled biomarkers. These ions are detected by the mass 
spectrometer, enabling spatial mapping and quantification of biomarkers in the tissue. 

 

Cytometry-based Techniques 

Flow cytometry (FCM) 
Flow cytometry (FCM) is an analytical 

technology that can achieve high-speed, one-by-one 
quantitative analysis and sorting of cells by detecting 
the signals emitted from fluorescent molecules with 
which single cells or other biological particles in 
suspension are labelled. The advent of FCM has 
completely revolutionized immunology by enabling 
the analysis of single cells with multiple parameters. 
In FCM, cells are stained with fluorescent dye-labeled 
antibodies, which bind to certain protein markers for 
which they exhibit high specificity. FCM utilizes 
highly focused lasers as light sources to generate both 
scattered and fluorescent light signals (Figure 2). 
Under excitation with a laser, the protein markers 
emit light, these signals are then detected by sensitive 
photodiodes or photomultiplier tubes, and the 
antigen density on each cell is determined by 
measuring the corresponding fluorescence signal that 
is emitted [31]. Based on this principle, FCM is widely 
used in cell classification and immune cell subgroup 
analysis and plays an important role in the evaluation 
of human cellular immune function and the diagnosis 
and treatment of various hematological diseases and 
tumors. Another major application of FCM is to sort 

cells according to subtype or epitope expression for 
further biological studies by using an electrical charge 
to separate cells based on fluorochrome emission [31].  

Mass Cytometry 
Although FCM is widely used in single-cell 

labeling and sorting technique, the overlap of the 
excitation and emission spectra between fluorescent 
dye-labeled antibody signals limits the number of 
detected markers [32]. New methods, like mass 
cytometry—also called cytometry by time-of-flight 
mass spectrometry (CyTOF)—was developed to 
overcome this limitation [8]. In contrast to 
conventional FCM, CyTOF relies on rare element 
isotopes, specifically stable metal isotopes, that are 
conjugated to monoclonal antibodies [8, 33, 34]. 
Because these rare element isotopes are usually absent 
in cells, their purity and accurate detection by mass 
spectrometry significantly expand the number of 
phenotypic markers and improve the resolution of 
identifiable immune subgroups. During analysis, the 
cells stained with the metal isotope-conjugated 
antibodies are passed through a nebulizer, which 
converts the sample into single-cell droplets (Figure 
2). The droplets are subsequently atomized and 
ionized inside an inductively coupled plasma (ICP) 
torch, resulting in the generation of a cloud of metal 
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ions. These ions are then analyzed using time-of-flight 
mass spectrometry, which measures the time it takes 
for the ions to travel to the detector based on their 
mass-to-charge ratio (m/z). This allows for the 
detection and quantification of each metal-tagged 
antibody, the latter of which represents the expression 
level of the corresponding marker on each individual 
cell.  

CyTOF offers several advantages over 
traditional FCM, especially high-dimensional analysis 
and reduced spectral overlap [8, 34]. As stated 
previously, CyTOF utilizes metal isotopes as 
detection markers instead of traditional fluorophores; 
this significantly increases the number of 
measurement parameters and minimizes spectral 
overlap, allowing for improved resolution and 
accuracy in data analysis. At present, CyTOF can 
measure more than 40 parameters at the same time, 
and the increased resolution has improved the 
phenotypic diversity of TIME. Zhang et al. [35] 
identified 18 unique cell populations and defined 
distinct subsets of CD8+ T cells in rheumatoid arthritis 
joint synovial tissues by integrating mass cytometry 
and transcriptomics. Hata et al. [36] performed mass 
cytometry to identify characteristic immune cell 
subsets in bronchoalveolar lavage fluid from 
interstitial lung diseases by using two panels 
including 64 markers. Furthermore, there is minimal 
or no spectral overlap in CyTOF, thereby reducing or 
eliminating the need for compensation calculations. 
CyTOF also has the advantage of enhanced detection 
sensitivity. Metal tags used in CyTOF have low 
cellular background signals, resulting in lower noise 
levels and improved detection of rare cell 
populations. Levine et al. [37] elucidated a unique 
metabolic state in rare early-activated T cells by using 
CyTOF, displaying maximal expression of glycolytic 
and oxidative metabolic proteins. Their findings 
demonstrate the effectiveness of mass cytometry in 
identifying and characterizing rare immune cell 
populations. However, the use of metal tags also 
poses several challenges [8, 38]. The throughput of 
mass cytometers is typically limited to around 1,000 
cells per second. In addition, the cell injection and 
cleaning procedures can be time-consuming, adding 
to the overall run time for each sample. Furthermore, 
CyTOF does not have the capability to measure 
forward scatter and side scatter, which are used in 
traditional FCM to measure cell size and granularity. 
Cells also cannot be recovered and sorted for 
subsequent functional analysis, as they are in 
traditional FCM, and the use of metal tags and 
specialized instrumentation in CyTOF can result in 
higher costs compared to traditional FCM. 

Imaging Mass Cytometry (IMC) 
Conventional FCM and CyTOF have changed 

our ability to understand the phenotype of immune 
cells, but these technologies require the separation of 
solid tissue, so they cannot provide the spatial 
information in the tissue microenvironment. IMC 
combines an imaging system with a mass 
spectrometer to construct spatial mapping of isotopes, 
enabling researchers to obtain insightful information 
regarding the spatial distribution and abundance of 
specific biomarkers within the tissues [39-42]. The 
metal-conjugated antibodies bind to their respective 
targets within the tissue sections, allowing for the 
specific recognition and labeling of different cell 
populations and biomarkers (Figure 2). A laser is then 
used to ablate the tissue section, causing the release of 
metal ions from the labeled biomarkers. The released 
metal ions are then captured and transferred to the 
mass spectrometer, which acquires the mass spectra 
of the sample, from which the metal-tagged 
antibodies are identified and quantified. The imaging 
is performed sequentially, scanning the tissue section 
pixel-by-pixel, generating a series of mass 
spectrometry images that represent the distribution of 
different metal-conjugated antibodies within the 
tissues. These images can then be analyzed and 
visualized to study the cellular composition and 
spatial organization of the tissue. 

Overall, IMC can generate high-dimensional 
tissue spatial images within complex tissue samples 
[39-41]. One of the key advantages of IMC is its 
compatibility with standard histopathology tech-
niques, making it applicable to various sample types 
laid on glass slides [43]. Furthermore, IMC offers high 
subcellular resolution, enabling precise localization of 
proteins within the nuclear, cytoplasmic, and 
membranous cell compartments [43]. Moldoveanu et 
al. [44] utilized IMC to simultaneously analyze the 
expression of 35 protein markers at subcellular 
resolution, enabling the characterization of in-depth 
spatial quantification of cell-cell interactions within 
the melanoma microenvironment. Based on IMC, they 
identified specific cell subpopulations that were 
associated with positive response to immune 
checkpoint inhibitors (ICIs). However, the speed of 
data acquisition with IMC is relatively slow, taking 
approximately 100 minutes per 1 mm2 of tissue, which 
poses challenges when acquiring data for large or 
whole slide areas efficiently and cost-effectively [43]. 
The cost of IMC analysis is directly related to the 
number and volume of metal-tagged antibodies used 
in co-incubation as well as the surface area of tissue 
sections to study. These factors contribute to the 
overall expensive nature of IMC. 
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Multiplexing Imaging Techniques 
H&E and IHC remain the gold standard for 

pathological diagnosis and identification of tumor 
biomarkers in tissues. However, due to the limitation 
of labelling only one single marker or limited number 
of markers at once within one tissue section, 
conventional IHC cannot assess the complex TIME to 
understand in-depth the relative spatial distribution 
of immune cells. Although this problem can be solved 
by consecutive tissue section staining, high- 
dimensional co-expression analysis cannot be carried 
out, which will lead to the loss of valuable 
information [45]. To overcome this, mIHC/IF is an 
emerging technology that provides high-throughput 
multiplex staining and standardized quantitative 
analysis for the study of spatial TIME in limited tissue 
samples [46, 47]. 

mIHC 
mIHC offers the unique capability to label more 

markers on a single tissue section, expanding the 
clinical applications to pathologic diagnosis, 
biomarker research, and immune cell subgroup 
analysis across various tumor types [48-51]. Multi-
plexed immunohistochemical consecutive staining on 
a single slide (MICSSS) and sequential immuno-
peroxidase labelling and erasing (SIMPLE) are main 
types of mIHC assays that enable sequential staining 
with multiple dyes using iterative cycles of antigen 
labeling, image scanning, and decolorization of 
chromogenic substrate on a single slide [52, 53]. In this 
process, the peroxidase substrate 3-amino-9-ethyl-
carbazole (AEC) is removed with a de-staining buffer 
after image acquisition, after which the section is 
re-stained with a new antibody for other markers of 
interest, ensuring that MICSS and SIMPLE can carry 
out multiple rounds of staining (Figure 3). Finally, the 
images collected after the stainings are overlaid and 
sometimes even converted into pseudo-color images. 
Based on this principle, these two technical methods 
have no restrictions on the types of antibodies. 
Operationally, MICSSS and SIMPLE are nearly the 
same as routine IHC workflows, requiring no specific 
reagents or devices from any particular company, 
which is highly advantageous for routine clinical 
pathology laboratories. A potential drawback of the 
repetitive destaining/restaining method is the 
possibility of altering tissue integrity and antigen 
expression. However, one advantage of MICSSS is 
that it does not compromise antigenicity or create 
steric hindrance [54]. It is important to note, though, 
that both methods allow for the marking of only one 
marker in each round of staining, resulting in a 
limited total number of markers, typically ranging 
from 5 to 10 [53]. 

mIF 
mIF is a commonly used technique that allows 

for the detection of multiple protein targets by 
staining samples with different fluorophore-labeled 
antibodies. Compared to mIHC, mIF expands the 
number of staining markers from approximately 6 to 
60 [54]. Like mIHC, mIF allows sequential staining 
rounds, but more than one marker can be stained 
simultaneously during each staining, making mIF 
more effective and faster than mIHC. The 
visualization of the primary antibody in mIF can be 
realized by direct or indirect fluorophore labeling. 
These antibodies can be labeled with reactive 
fluorophores, quantum dots, DNA barcodes, etc. 
[55-58].  

Depending on the underlying principles, mIF 
can be classified into four categories: stain removal 
technologies, fluorophore inactivation technologies, 
multiplexed signal amplification, and DNA barcoding 
technologies [59]. Stain removal technologies, like 
multi-epitope-ligand cartography (MELC), uses 
photobleaching to remove staining. A recently 
developed imaging system, known as MACSima 
Imaging Cyclic Staining (MICS) technology, utilizes a 
mild signal erasure mechanism, which is achieved by 
photobleaching the dye or disrupting the labeling 
conjugate with the release reagent [60]. Fluorophore 
inactivation technologies, such as t-Cycif and MxIF 
techniques, uses chemical inactivation to eliminate the 
fluorophore. For example, the MILLAN approach 
employs SDS/ß-mercaptoethanol washing proce-
dures to completely eliminate antibodies, denaturing 
and inactivating them, thereby circumventing 
potential issues stemming from antibody crowding or 
steric hindrance [61]. In recent years, technologies 
using microfluidics, like the MACSima instrument for 
MICS, the COMET system from Lunaphore, and the 
CODEX system from Akoya, have gradually 
enhanced the automation of cyclic procedures, further 
expediting the acquisition of a small number of slides 
[62, 63]. CODEX is a multiplexed imaging technique 
that utilizes DNA-barcoded antibodies for target 
detection [64, 65]. The principle involves staining the 
tissue sample with DNA-barcoded antibodies, 
followed by the addition of fluorescence-labeled 
oligonucleotides that are complementary to those 
conjugated oligonucleotides. Subsequently, cyclic 
imaging is performed to capture images for each 
barcode. CODEX enables the detection of numerous 
targets in a single sample (no limitation by the 
number of different antibody species), facilitating the 
study of complex biological processes and 
heterogeneity. Additionally, it offers high-resolution 
imaging, allowing for precise localization and 
analysis of multiple biomarkers within the tissues. 
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However, it is time-consuming and even requires 
specialized equipment and expertise. Additionally, it 
has higher costs compared to traditional methods. 

One of the most widely used methods in mIF is 
indirect multiplexed signal amplification based on 
tyramide signal amplification (TSA). This method 
involves the utilization of individual TSA-conjugated 
fluorophores to detect various targets [47, 55, 66]. It 

provides signal amplification using a combination of 
polymer-horseradish peroxidase (HRP) and tyramide 
fluorophores (Figure 3). In the process, after the 
primary antibody is incubated, the HRP-conjugated 
secondary antibody is introduced into the sample. 
Then, the TSA-conjugated fluorophore, which is used 
as the substrate for HRP, is introduced into the system 
to generate antigen-related fluorescent signal upon 

 
Figure 3. Multiplexing imaging techniques. Top: The multiplex immunohistochemistry technique involves a sequential process in which FFPE tissue sections are treated 
with primary antibodies, followed by secondary antibodies, streptavidin-HRP, and the peroxidase substrate AEC. The stained sections are then counterstained and scanned. 
After image acquisition, the AEC substrate is removed with the de-staining buffer, allowing for subsequent rounds of staining with different antibodies. Bottom: Multiplex 
immunofluorescence based on TSA provides signal amplification through the combination of HRP detection system and the activation of tyramide fluorophores. Before the next 
round of staining, the tissue section is heat-treated to remove the non-covalently bound primary and secondary antibodies, while the TSA-conjugated fluorophore is still 
deposited on the section. After that, the tissue section is incubated in another primary antibody specific for another target and visualized by a different tyramine-linked 
fluorophore.  
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binding to HRP. Before the next round of staining, the 
tissue section is heat-treated to remove the 
non-covalently bound primary and secondary 
antibodies, while the TSA-conjugated fluorophore 
was still deposited on the section. Following, the 
tissue section is incubated in another primary 
antibody specific for another target and visualized by 
a different tyramine-linked fluorophore. After 
multiple staining rounds, the signals emitted from the 
various fluorophores that are bound to the protein 
targets in the tissue can be extracted according to the 
wavelength band of a series of scanning images, 
separated, and quantified by multi-spectral imaging 
analysis. In addition, the co-expression of various 
proteins can be characterized in the same sample, 
enabling protein localization and subcellular analysis. 
The advantage of this technology is that it allows the 
use of antibodies from the same species and can 
simultaneously detect six to eight individual targets, 
allowing for the generation of an immune cell profile 
and visualization of complex biological processes [67]. 
For instance, mIF panels can be designed based on 
various parameters including the cell lineage (such as 
myeloid or lymphoid), immune state (such as 
stimulated, pro-inflammatory, and regulatory), and 
expression of immune checkpoint markers (such as 
PD-1 and PD-L1) [67].  

RNA sequencing techniques 
The genomes within tumors and their 

microenvironment are promising biomarkers for 
prognosis prediction. RNA sequencing (RNA-seq) has 
become a highly useful tool to understand the 
interactions between cancer cells, immune subgroups, 
and non-immune interstitial elements, thereby 
providing a more complete genetic map than DNA 
sequencing. In recent years, RNA-seq has evolved 
from classical bulk RNA-seq to scRNA-seq and the 
emerging spRNA-seq [68]. Bulk RNA-Seq provides an 
average measure of gene expression across the entire 
population of cells, while scRNA-Seq enables the 
analysis of gene expression at the single-cell level, and 
spRNA-seq allows for the study of gene expression in 
a three-dimensional context, representing the next 
generation of RNA sequencing (Figure 4). 

Bulk RNA sequencing 
Bulk RNA-seq is the most widely used technique 

for measuring gene expression at the bulk sample 
level and has revolutionized the field of immunology 
research (Figure 4). It enables the comprehensive 
profiling of the expression of thousands of genes 
simultaneously, thereby providing insights into the 
immune transcriptional landscape in response to 
various stimuli. Bulk RNA-seq analyzes two types of 

RNA libraries: mRNA-only libraries and whole 
transcriptome libraries [68, 69]. The first type is the 
most commonly used bulk RNA-seq and is used to 
profile different gene expression levels to understand 
the molecular mechanisms or guide diagnosis and 
treatment. This type of sequencing focuses on mRNA 
only and requires single-read sequencing (1 × 50 or 1 
× 75) at 20–30 million reads/sample, which is simple 
and cost-effective [69]. The second type of bulk 
RNA-seq analyzes all RNA species in a sample, 
including mRNA, non-coding RNA (ncRNA) species 
such as transfer RNA (tRNA), riboswitches, 
ribozymes, long non-coding RNA (lncRNA), and 
microRNA (miRNA); however, it does not analyze 
ribosomal RNA (rRNA) [69]. This method requires 
paired-end sequencing (2 × 100 or 2 × 150) at 40–50 
million reads/sample from each direction in order to 
obtain more comprehensive gene expression 
information. It allows researchers to study RNA 
processing and splicing, as well as identify novel 
transcripts and isoforms.  

Bulk RNA-seq provides a comprehensive view 
of the transcriptional landscape, enabling its broad 
application in tumor diagnosis, discovery of 
prognostic biomarkers, identification of novel gene 
fusions, and guidance for therapeutic interventions 
[68, 69]. Using bulk RNA-seq, numerous novel gene 
fusions have been identified and utilized as diagnostic 
or prognostic markers and therapeutic targets in 
tumors, such as the NUP98-PHF23 fusion gene in 
acute myeloid leukemia (AML), as well as recurrent 
or pathogenic fusion genes like ESR1-CCDC170, 
SEC16A-NOTCH1, SEC22B-NOTCH2, and ESR1- 
YAP1 in breast cancer [69-71]. The discovery of some 
novel fusion genes has even subsequently led to the 
development of clinical trials for targeted fusion gene 
drugs, providing new therapeutic opportunities for 
patients with these fusion genes [69, 72]. However, 
this technique also has some limitations and 
drawbacks. Bulk RNA-seq measures the gene 
expression of a heterogeneous population of cells, 
making it difficult to identify the expression of 
individual cell types present in the sample.  

Single-cell RNA sequencing  
scRNA-seq refers to a collection of techniques 

used to analyze the transcriptome of individual cells 
at a genome-wide level (Figure 4). This technology 
has revolutionized our ability to investigate cellular 
diversity and identify unique cell types, providing 
unprecedented insights into the complexity and 
heterogeneity of several tumors, such as gastric 
cancer, bladder cancer, and breast cancer, to name a 
few, while also enabling the discovery of potential 
therapeutic targets and biomarkers for patient 



Int. J. Biol. Sci. 2024, Vol. 20 
 

 
https://www.ijbs.com 

2160 

stratification [38, 73-75]. scRNA-seq has also 
generated vast amounts of data that can be used to 
trace lineage development in subsets of immune cells, 
including exhausted T cells, TAMs, DCs, and other 
lineages. Recent studies have integrated bulk 
transcriptome and scRNA-seq to provide a more 
comprehensive understanding of gene expression, cell 
types, and cellular processes, enabling a systems-level 
view of immune response dynamics and immune 
landscape characteristics [76-78].  

To date, several scRNA-seq techniques have 
been employed for sequencing the transcriptome at 
the single-cell level. One prominent distinction among 
these scRNA-seq techniques is that some of them can 

generate full-length or nearly full-length transcript 
sequencing data, while others focus on capturing and 
sequencing either the 5'-end or 3'-end of the 
transcripts [79]. Full-length scRNA-seq allows for the 
comprehensive sequencing of entire RNA transcripts 
in individual cells. It provides a detailed and unbiased 
view of gene expression, identifying transcript 
isoforms, alternative splicing events, allelic expression 
patterns, and RNA editing events [79]. Furthermore, 
in comparison to 3’-end sequencing techniques, 
full-length scRNA-seq approaches have the potential 
advantages in detecting lowly expressed genes or 
transcripts [80].  

 

 
Figure 4. RNA sequencing techniques. Top: Bulk RNA-Seq provides an average measure of gene expression across the entire population of cells. Middle: Single-cell 
RNA-Seq enables the analysis of gene expression at the single-cell level, which helps to study cellular diversity and identify unique cell types, providing insights into the complexity 
and heterogeneity of the TIME. Bottom: Spatial RNA-seq is a high-throughput sequencing technique that allows for the profiling of gene expression with spatial resolution in a 
three-dimensional context within tissue samples. 
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There are several techniques available for 
performing full-length scRNA-seq. Examples of these 
techniques include the Quartz-seq, “single-cell 
universal poly(A)-independent RNA sequencing” 
(SUPeR-seq), “multiple annealing and dC-tailing- 
based quantitative single-cell RNA-seq” (MATQ-seq), 
and “switching mechanism at 5’-end of the RNA 
transcript sequencing” (Smart-Seq) [79]. Among them, 
Smart-Seq is widely recognized as one of the most 
reliable methods for full-length RNA-seq [81]. It 
leverages the unique characteristic of the Moloney 
murine leukemia virus reverse transcriptase 
(MMLV-RT), which exhibits a preference for selecting 
full-length cDNAs as substrates for its terminal 
transferase activity. This property enables the 
coupling of reverse transcription (RT) and template 
switching (TS) within a single reaction [81]. 
Additionally, the Smart-seq protocol incorporates the 
design of special primers, ensuring the use of identical 
primers for cDNA synthesis, which aids in 
maintaining consistent PCR amplification efficiency 
[82]. Collectively, these attributes contribute to the 
successful synthesis of full-length cDNA through the 
Smart-seq method. Smart-seq2 is an enhanced 
iteration of the original Smart-seq method and is 
developed to detect a higher number of genes [82]. It 
addresses the issue of 3’ bias commonly encountered 
in many sequencing methods [80]. Recently, 
Smart-seq has evolved into its third generation, 
referred to as Smart-seq3 [83]. This upgraded version 
integrates full-length transcriptome coverage with a 5' 
unique molecular identifier (UMI) RNA counting 
strategy [83]. This innovative approach enables the 
in-silico reconstruction of thousands of RNA 
molecules per cell, leading to enhanced sensitivity 
compared to Smart-seq2 [83]. Additionally, 
Smart-seq3 is capable of detecting longer transcripts 
at a lower cost. 

Notably, full-length sequencing techniques 
typically have lower throughput, limiting the number 
of cells that can be sequenced in a single experiment. 
However, 3'-end-counting scRNA-seq techniques, 
such as the “cell expression by linear amplification 
and sequencing” (CEL-seq), “single-cell RNA 
barcoding and sequencing” (SCRB-seq), “massively 
parallel RNA single-cell sequencing framework” 
(MARS-seq), and Drop-seq, capture only the 3'-end of 
mRNA [79]. This process involves the addition of a 
UMI to the 3' end of each cDNA molecule during 
reverse transcription, followed by library preparation 
and sequencing. These sequencing methods focus on 
the most informative region of the transcript—the 3' 
end—which contains the majority of the coding 
sequence and is highly correlated with gene 
expression levels, enabling the gene expression 

profiling of a large number of individual cells while 
providing efficient and cost-effective sequencing data 
[79, 82].  

Recently, microfluidics has played a significant 
role in advancing scRNA-seq by substantially 
reducing costs and significantly increasing the 
throughput of single-cell analysis [84]. Microfluidics 
is a technology that involves the manipulation and 
control of small volumes of fluids in microscale 
channels or chambers. Currently, droplet-based 
RNA-seq technologies, such as Drop-seq, inDrop, and 
the 10× Genomics Chromium system, as well as 
high-density microwell-based methods like Seq-well 
and Microwell-seq, have emerged as the predominant 
approaches for cell isolation [84, 85].  

The 10× Genomics Chromium system is a 
commercially available droplet-based system for 
scRNA-seq that utilizes microfluidic chip technology 
to create a single-cell reaction. This involves the 
formation of nanoliter-scale aqueous compartments, 
known as droplets, through the precise combination 
of aqueous and oil flows in the microfluidic device. 
Thousands of cells are partitioned into nanoliter-scale 
Gel Bead-In-Emulsions (GEMs), where the cDNA 
generated from each cell shares a common cell 
barcode [86-89]. The barcode information can then be 
used to reconstruct the original cellular identities and 
analyze gene expression or genomic data at a 
single-cell resolution. This system offers a streamlined 
workflow that combines single-cell isolation, 
amplification, and library preparation, enabling the 
analysis of a high number of individual cells 
simultaneously. This allows for increased throughput 
and improved accuracy in single-cell studies. The 
system demonstrates a high capture efficiency of up 
to 65% for single cells, ensuring reliable and robust 
data collection [90]. Additionally, the probability of 
capturing multiple cells within a single droplet is 
extremely low, further enhancing the system's ability 
to achieve true single-cell capture [90]. One of the 
advantages of the 10× Genomics Chromium system is 
its ability to capture multiple modalities of data from 
each single cell, including gene expression, surface 
protein markers, and chromatin accessibility [91]. This 
multi-omics approach allows for a more 
comprehensive understanding of cellular function 
and heterogeneity.  

Additionally, the 10× Genomics Chromium 
system has enabled researchers to analyze complex 
tissues and cellular interactions, such as in the study 
of the immune system and cancer in TIME. It has been 
used to investigate the dynamics of immune cell 
populations, identify novel cell subtypes, and 
understand how tumors evade the immune system 
[92]. Recent studies have demonstrated the potential 
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of the 10× Genomics Chromium system to 
characterize the immune landscape of various types 
of cancer, such as melanoma, lung cancer, and 
hepatocellular carcinoma (HCC) [91, 93, 94]. For 
example, in melanoma, it has been used to identify a 
subset of T cells with unique features that are 
associated with a favorable response to immune 
checkpoint inhibitors [91]. However, it is important to 
note that the 10× Genomics Chromium system has its 
limitations. One of the limitations is its high sample 
requirements. A starting cell quantity of 105–106 cells 
is required for each sample, and the percentage of 
viable cells needs to exceed 80% [90, 95]. These 
requirements can present challenges when working 
with limited or low-quality samples. In addition, 
scRNA-seq is subject to batch effects, where variation 
in sample processing and sequencing can result in 
biased data [96].  

The BD Rhapsody platform is another 
commercial system used for scRNA-seq; however, 
unlike the 10× Genomics system, it utilizes magnetic 
beads rather than GEMs in a microfluidic device for 
cell isolation and barcoding [97-99]. Another notable 
characteristic of the BD Rhapsody system is that it is a 
microwell-based technology, whereas the 10× 
Genomics utilizes a droplet-based approach [99]. The 
size and depth of the microwells are carefully 
optimized in order to minimize the occurrence of 
double occupancy of beads [99]. Moreover, the BD 
Rhapsody system is equipped with an optically clear 
window, enabling researchers to visually inspect the 
contents of the cartridge and each individual 
microwell. This feature enables quality control and 
allows researchers to ensure the accuracy of each 
microwell during the experiment. In addition to the 
aforementioned advantages, BD Rhapsody beads can 
be stored for later use, allowing researchers to 
preserve captured cDNA molecules for several 
months. The beads also remain intact throughout the 
workflow, enabling the creation of multiple 
sequencing libraries by subsampling.  

Spatial RNA-seq  
Despite the numerous advantages of scRNA-seq, 

it requires lysing individual cells, which can lead to 
loss of spatial and/or temporal information [38]. 
SpRNA-seq is a high-throughput sequencing 
technique that allows for the profiling of gene 
expression with spatial resolution in tissue samples 
(Figure 4). This technology enables the compre-
hensive analysis of the TME and characterization of 
the spatial tumor heterogeneity. In a recent study, the 
spatiotemporal immune landscape of colorectal 
cancer liver metastases was investigated at single cell 
level [100]. The authors identified the presence of 

highly metabolically activated immunosuppressive 
MRC1+ CCL18+ M2-like macrophages in the 
metastatic sites, suggesting that the TIME had 
undergone significant spatial reprogramming during 
metastasis [100]. Moreover, spatial RNA-seq has 
greatly advanced the development of more precise 
and sensitive biomarkers at the molecular, cellular, 
and microstructural levels, enhancing the 
optimization of immunotherapy. For example, 
Zugazagoitia et al. [101]. employed a digital spatial 
profiling (DSP) system to identify numerous pertinent 
candidate immune predictors in the spatial context 
and validated that elevated CD56+ immune cell 
counts in the stroma serve as a spatial biomarker that 
is associated with favorable outcomes in PD-1 
checkpoint blockade. Now, 10× spatial 
transcriptomics and DSP are widely used commercial 
spRNA-seq techniques.  

The 10× spatial transcriptomics technology 
combines the advantages of microarray analysis and 
the barcoding system of 10× Genomics to obtain 
spatially resolved transcriptomic information [68, 
102]. The workflow begins by imaging the tissue 
section placed on a Visium slide functionalized with 
printed oligo capture probes. The Poly-T tails of these 
capture probes bind the Poly-A tails of RNA 
molecules. After the tissue section is fixed, stained, 
and imaged, the tissue sections are permeabilized 
with a permeabilizing reagent that creates small holes 
in the cellular membrane, enabling RNA molecules to 
exit the cells and bind to the adjacent capture probes 
on the chip. Once captured, the RNA molecules can 
then undergo reverse transcription on-slide to 
generate cDNA fragments carrying spatially-defined 
barcodes. The resulting cDNA is denatured, and the 
second strand cDNA is collected for off-slide library 
preparation. The libraries are then sequenced, and 
bioinformatic analysis is performed to map the reads 
to specific locations on the tissue. It is a powerful tool 
for investigating the gene expression patterns and 
cellular interactions within the TIME. With 
advancements in technologies to enhance spatial 
resolution, it is now feasible to identify specific 
immune cell types and their corresponding gene 
expression profiles in the TIME. This breakthrough 
has significant implications in understanding the 
mechanisms of tumor immune evasion, identifying 
potential immune targets, and developing new 
immunotherapeutic strategies. However, there are 
also limitations to the technology, including the cost 
and complexity of the workflow, as well as the 
potential for technical artifacts and biases in data 
analysis. Nonetheless, the benefits of 10× spatial 
transcriptomics outweigh the limitations and hold 
great promise for advancing our understanding of 
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immunology and cancer biology. 
DSP, a new generation of spatial multi-target 

analysis system, integrates tissue image analysis with 
in situ digital quantitative technology. This method 
uses oligonucleotide detection technology to obtain 
the non-destructive, simultaneous high-plex spatial 
profiling of proteins and RNAs within specific regions 
of interest (ROIs) on formalin-fixed, paraffin- 
embedded (FFPE) samples [47, 55, 103]. Two types of 
primary antibodies or RNA-probes are used in this 
method. Firstly, small oligonucleotide “barcodes” 
(PC-oligos) are conjugated to primary antibodies or 
RNA-probes through a photocleavable UV 
light-sensitive linker for target interrogation. 
Secondly, fluorophores are conjugated to primary 
antibodies to enable the identification of different 
cellular compartments (up to four compartments) or 
cell markers. Fluorescence microscopy images of the 
tissue are acquired to understand the morphology of 
the tissue. Then, an ROI in the sample is identified, 
and UV light is projected onto the tissue sample to 
release the PC oligonucleotides from the antibodies or 
RNA-probes at the defined ROI. After that, the 
released PC oligonucleotides are automatically 
collected in tubes and transferred to a microtiter plate 
to be read by an nCounter analysis system or next 
generation sequencing (NGS). Then, the data will be 
mapped back to the previous morphological images 
to obtain the spatial profiling at the defined ROIs. This 
high-throughput technology allows for the adoption 
of non-invasive methods to maintain the integrity of 
the sample, the detection of highly multiplexed RNA 
or protein (up to 1800 targets can be detected in one 
round from a single FFPE section), and the selection of 
ROIs for high-plex analysis. However, DSP also has 
some limitations. For example, unlike other multiple 
staining techniques, DSP cannot generate images. In 
addition, the selection of ROIs is subjective, which 
may lead to biased hypothesis-driven sample analysis 
[104]. Furthermore, only four fluorescence channels 
are used to visualize tissue morphology, which limits 
the throughput of more morphological details, such as 
the spatial organization of different types of immune 
cells in the TIME [104].  

Artificial Intelligence (AI) 
In the analysis of tumor samples and associated 

clinical data, high-throughput technologies generate 
vast amounts of complex omics data, such as gene 
expression profiles (transcriptomics), protein expres-
sion patterns (proteomics), and genetic variations 
(genomics). However, analyzing gene expression data 
from the tumor microenvironment can be 
complicated, and accurately identifying immune cell 
infiltrations can be challenging. AI has become a 

powerful tool in the analysis and interpretation of 
various types of biological data, including pathology, 
genomics, transcriptomics, proteomics, and metabo-
lomics (Figure 5). By leveraging machine learning 
(ML) and deep learning (DL) algorithms, AI has 
revolutionized the analysis of the TME by enabling 
the discovery of complex patterns and relationships 
within large and diverse datasets [105-107]. 

Machine Learning (ML) is a subset of AI that 
focuses on use and the development of algorithms 
and statistical models that enable computers to learn 
from data and make predictions or decisions without 
being explicitly programmed [108]. ML algorithms 
can analyze and identify patterns, trends, and 
relationships within complex datasets, enabling the 
system to improve its performance over time through 
experience. ML can also help to classify immune cell 
types in the microenvironment using unsupervised or 
supervised machine learning algorithms [109, 110]. 
Unsupervised clustering algorithms, such as 
t-Distributed Stochastic Neighbor Embedding (t-SNE) 
or principal component analysis (PCA), can be used to 
classify cell types based on transcriptome profiles. 
Supervised machine learning algorithms, such as 
support vector machines (SVM) or random forests, 
can identify cell populations and predict functional 
pathways specific to each. This is crucial in 
understanding the immune cell types involved in 
cancer progression and the potential for developing 
targeted therapies.  

Deep Learning (DL) is a specific branch of ML 
that uses neural networks with multiple layers to 
model and process complex patterns and 
representations. Inspired by the structure and 
function of the human brain, DL algorithms have the 
ability to automatically learn hierarchical 
representations from the data and extract high-level 
features, enabling more advanced and accurate 
predictions or decision-making [108]. DL models, 
such as convolutional neural networks (CNN), 
analyze histopathology and immunohistochemistry 
images to quantify immune cell types, their spatial 
distribution, and interactions within the tumor 
microenvironment [111, 112]. This aids in 
characterizing immune cell infiltration patterns and 
predicting treatment outcomes. Recurrent Neural 
Networks (RNN) are capable of analyzing sequential 
data (such as time-series gene expression data) to 
model the dynamic changes in immune cell 
populations over time. DL architectures, such as deep 
belief networks or autoencoders, are employed to 
integrate and analyze multi-omics data encompassing 
RNA-Seq, whole-genome sequencing, whole-exome 
sequencing, or proteomics. This approach facilitates 
the identification of novel immune signatures 
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associated with the immune microenvironment [113, 
114]. Deep generative models, such as generative 
adversarial networks (GANs), can generate synthetic 
histopathology images or immunohistochemistry 
images that resemble real tissue samples. These 
synthetic images can be used for training models, 
augmenting datasets, or understanding immune cell 
spatial distribution within the tumor micro-
environment [114, 115]. 

AI models applied to Big Data have made 
significant contributions to the understanding and 
treatment of cancer by enabling analysis of the TIME, 
cancer subtyping, biomarker identification, therapy 
selection, and survival prediction (Figure 5). In terms 
of the TIME, AI algorithms can analyze multi- 
dimensional immune profiling data, including gene 
expression, immunohistochemistry, and single-cell 
sequencing, to characterize the immune response 
within a tumor. A recently developed ML classifier, 
known as ImmClassifier, demonstrated superior 
performance in accurately classifying fine-grained 
immune cell types from single-cell RNA-Seq data, 

enabling deeper investigations into the extensive 
heterogeneity of the immune system [110]. AI can 
identify specific immune cell types and their spatial 
distributions as well as functional states, providing 
insights into the interactions between tumor cells and 
the immune system. Saltz et al. [112] developed a 
DL-derived “computational stain” based on H&E 
images from 4,759 TCGA subjects to generate a TILs 
map for identifying spatial heterogeneity patterns of 
TILs and correlating the TIL patterns with immune 
profiles, cancer subtypes, and survival outcome [112]. 
This knowledge will assist in understanding the 
tumor immune landscape, predicting the response to 
immunotherapies, and developing strategies to 
overcome immunosuppressive mechanisms. By 
analyzing histopathological images, AI algorithms 
can accurately identify cancerous cells, detect specific 
tissue abnormalities, and predict patient outcomes. AI 
models have been developed to aid pathologists in 
detecting and characterizing various diseases, such as 
lymphoma, breast cancer, and lung carcinoma 
[116-118]. Biomarker discovery is another area in 

 
Figure 5. Artificial intelligence. Artificial intelligence is a powerful tool for analyzing diverse biological big data, including pathology, genomics, transcriptomics, proteomics, 
and metabolomics. It is widely used in various areas such as the characterization of the TIME, identification of cancer subtypes, recognition of biomarkers, selection of treatment 
options, and prediction of patient survival. 
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which AI has excelled. By analyzing omics data, AI 
algorithms can identify potential biomarkers for 
cancer diagnosis, prognosis, and treatment response 
[119]. For augmenting therapy selection, AI 
algorithms can integrate patient clinical data, 
molecular profiling data, and treatment outcomes to 
predict the most effective treatment strategies for 
individual patients. By utilizing ML and predictive 
modeling, AI can assist clinicians in personalized 
treatment decision-making, optimizing chemotherapy 
regimens, and identifying appropriate targeted 
therapies, including immunotherapies [114, 119]. AI 
also contributes to survival prediction by utilizing 
various clinical and molecular features to estimate 
patient outcomes. By training on large cohorts with 
known survival outcomes, AI algorithms can 
accurately predict patient survival, providing 
valuable information for treatment planning and 
prognosis [114, 119]. 

Challenges and future prospects 
In this review, the investigation of the immune 

microenvironment has been greatly facilitated by 
various technologies, however, it is important to 
acknowledge that these technologies also encounter 
certain challenges (Table 1). These challenges include 
limited parameter measurement in cytometry-based 
techniques and multiplexing imaging techniques, 
technical variability and high cost associated with 
RNA sequencing, and the interpretability of AI 
models. Overcoming these challenges will pave the 
way for future advancements in TIME research.  

To address the challenges in cytometry-based 
techniques, future developments should focus on 
increasing the number of measurable parameters, 
improving resolution and sensitivity, and automating 
these techniques. Innovative engineering approaches 
and spectral unmixing algorithms can further enhance 
our ability to analyze complex immune cell 
populations. Multiplexing imaging techniques, such 
as mIHC and mIF, offer the capability to 
simultaneously visualize multiple biomarkers within 
complex tissue samples. Despite their potential, 
challenges such as limited simultaneously detectable 
markers, spectral overlap, tissue autofluorescence 
need to be addressed. Future developments may 
include improving multiplexing capabilities and 
integrating spatial transcriptomics. In RNA 
sequencing, technical variability and high costs 
remain challenges, technical noise and confounding 
factors hinder subsequent analyses. Future advance-
ments should aim to improve sensitivity, accuracy, 
and scalability of RNA sequencing technologies. 
Integration of spatial transcriptomics with imaging 
techniques and scRNA-seq will provide a more 

comprehensive understanding of the TIME. AI has 
shown great potential in analyzing complex datasets. 
However, challenges persist in obtaining annotated 
datasets, interpreting AI models, and addressing 
ethical considerations. Future developments may 
involve the integration of AI with cytometry-based 
techniques, multiplexing imaging techniques, and 
RNA sequencing data. DL models may be refined and 
explainable AI approaches may be developed to 
enhance the interpretability and reliability of AI 
predictions. 

Looking ahead, advancements in technology 
hold immense promise for immune microenviron-
ment research. Overcoming the current challenges 
will allow for a more comprehensive understanding 
of immune responses in health and disease. By further 
refining and integrating cytometry-based techniques, 
multiplexing imaging techniques, RNA sequencing, 
and AI, we can unravel the complexities of the 
immune microenvironment and pave the way for 
personalized immunotherapies and improved patient 
outcomes. 
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