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Abstract 

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of 
chronic liver-related morbidity and mortality. Though high fructose intake is acknowledged as a 
metabolic hazard, its role in the etiology of MASLD requires further clarification. Here, we 
demonstrated that high dietary fructose drives MASLD development and promotes MASLD 
progression in mice, and identified Usp2 as a fructose-responsive gene in the liver. Elevated USP2 
levels were detected in the hepatocytes of MASLD mice; a similar increase was observed following 
fructose exposure in primary hepatocytes and mouse AML12 cells. Notably, hepatocytes 
overexpressing USP2 presented with exaggerated lipid accumulation and metabolic inflammation 
when exposed to fructose. Conversely, USP2 knockdown mitigated these fructose-induced 
changes. Furthermore, USP2 was found to activate the C/EBPα/11β-HSD1 signaling, which further 
impacted the equilibrium of cortisol and cortisone in the circulation of mice. Collectively, our 
findings revealed the role of dietary fructose in MASLD pathogenesis and identified the 
USP2-mediated C/EBPα/ 11β-HSD1 signaling as a potential target for the management of MASLD. 
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Introduction 
Metabolic dysfunction-associated steatotic liver 

disease (MASLD), which is the replacement term for 
non-alcoholic fatty liver disease (NAFLD), represents 
a predominant chronic hepatic disorder and affects an 
estimated two-fifths of the world population1, 2. The 
trajectory of MASLD spans from benign steatosis to a 
more aggressive form, metabolic dysfunction- 
associated steatohepatitis (MASH), and may progress 
to cirrhosis and hepatocellular carcinoma (HCC)3. 
Recently, the FDA approved Resmetirom as a 
pharmacologic choice for non-cirrhotic MASH 
patients with fibrosis at moderate to advanced stages. 
Still, lifestyle modification remains the principal 
therapeutic strategy for MASLD. Nutritional 

composition, particularly the interplay of carbohy-
drates, lipids, and proteins, is fundamentally linked to 
hepatometabolic integrity4. Notably, high fructose 
intake is increasingly recognized as a major dietary 
contributor to MASLD. The link between excessive 
fructose consumption, enhanced hepatic fat 
deposition, and insulin resistance (IR) has been 
well-established5, 6. A notable cohort study reported 
that high fructose intake elevated the risk of MASLD 
threefold, raising concerns about its significant impact 
on disease pathogenesis7. Conversely, strategic 
inhibition of fructose metabolism has shown 
therapeutic potential, as seen in a phase 2a clinical 
trial where PF-0683591 improved liver steatosis and 
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inflammation in affected individuals8. Moreover, 
fructose permeates adipose tissue metabolism, as 
evidenced by altered insulin sensitivity, increased 
high-sensitivity C-reactive protein levels, and 
augmented lipid oxidation, potentially aggravating 
MASLD-related complications9. These findings 
advocate for a holistic approach in addressing 
fructose-related metabolic disruptions. 

Within the alimentary tract, dietary fructose is 
swiftly assimilated through intestinal uptake and 
directed towards hepatic metabolism10. Unlike 
glucose, which is readily converted into glycogen for 
storage in the liver, fructose preferentially fuels de 
novo lipogenesis (DNL), culminating in lipid 
deposition in hepatic cells11. Excessive fructose 
exposure could also inhibit fatty acid oxidation in the 
liver, intensify IR, and elevate serum uric acid (UA) 
concentrations12-15. Nevertheless, the exact 
mechanisms by which fructose incites MASLD remain 
to be fully elucidated. 

Recent investigations have highlighted the 
complex role of ubiquitin-specific peptidase 2 (USP2) 
in liver metabolic homeostasis. USP2 modulates 
glucose and lipid metabolism, insulin sensitivity, and 
inflammatory processes. Enhanced USP2 expression 
boosts glucose production and aggravates glucose 
intolerance in obese mice16. In macrophages, USP2 
promotes inflammation by activating the nuclear 
factor kappa B (NF-κB) pathway17, 18. Moreover, USP2 
encourages lipid absorption by enhancing 
low-density lipoprotein receptor (LDLR) stability and 
compromising the actions of an inducible degrader of 
the LDLR (IDOL)19. Importantly, by deubiquitinating 
CCAAT/enhancer binding protein alpha (C/EBPα), 
USP2 also regulates 11beta-hydroxysteroid dehydro-
genase type 1 (11β-HSD1), thereby playing a vital role 
in the homeostasis of glucocorticoids within liver 
cells16. 

In this study, we found that high dietary fructose 
consumption promotes MASLD development and 
progression in C57BL/6J mice, identified Usp2 as a 
specific fructose-responsive gene, and revealed that 
the USP2-mediated C/EBPα/11β-HSD1 signaling is 
involved in disrupting cortisol homeostasis. Our 
results suggested that fructose-induced hepatic and 
metabolic disorders are intricately linked to the 
regulation of glucocorticoid homeostasis via the 
USP2/ 11β-HSD1 pathway. 

Materials and Methods 
Animals 

Male C57BL/6J mice, 7 weeks of age, were 
purchased from GemPharmatech Co., Ltd 
(SCXK2023-0009). The mice were maintained in a 

specific pathogen-free environment, with a controlled 
temperature of 22 ± 1°C, humidity at 55 ± 15%, and a 
12-hour light/dark cycle. All procedures were 
approved by the Animal Care and Use Committee of 
Shanghai University of Traditional Chinese medicine 
(PZSHUTCM2305210005) and complied with the 
established guidelines for the care and use of 
laboratory animals. Following a one-week acclimation 
period, the mice were randomly assigned into the 
following groups: Con, Fr, WD, WFr, and WDF 
groups, n=6/group. Con and Fr groups were fed with 
the chow diet (CD) (Harlan, TD. 08485); WD, WFr, 
and WDF groups were fed with the Western diet 
(WD) (Harlan, TD. 88137). Throughout the 
experiment, the Con and WD groups had access to tap 
water; meanwhile, the Fr and WDF groups were 
supplied with water containing high fructose corn 
syrup (HFCS)20-22, consisting of 23.1g/L d-fructose 
(Sigma Aldrich, G8270) and 18.9g/L d-glucose (Sigma 
Aldrich, F0127); and the WFr group was given tap 
water for the initial 10 weeks and HFCS-containing 
water for the subsequent 10 weeks. Food and water 
were provided ad libitum over the 20 weeks, and the 
average consumption of water and food per cage of 
mice was weighed and recorded every week. After 20 
weeks, venous blood was collected for immediate 
supernatant extraction for subsequent use, livers were 
harvested and weighed, then either fixed promptly or 
snap-frozen and stored at -80°C. 

Isolation of primary mouse hepatocytes 

C57BL/6J mice, 8-12 weeks old, were 
anesthetized with 2% pentobarbital via intraperi-
toneal injection. Thoroughly perfuse the liver through 
the inferior vena cava with EGTA buffer (136.89mM 
NaCl, 5.37mM KCl, 0.64mM NaH2PO4.H2O, 0.85mM 
Na2HPO4, 9.99mM HEPES, 4.17mM NaHCO3, 
0.5mM EGTA, and 5mM glucose), enzyme buffer 
(136.89mM NaCl, 5.37mM KCl, 0.64mM 
NaH2PO4.H2O, 0.85mM Na2HPO4, 9.99mM HEPES, 
4.17mM NaHCO3, and 3.81mM CaCl2.2H2O) 
containing 100CDU/mL collagenase (Sigma 
C0130-1G) sequentially, at a rate of 5mL/min for 3min 
and 7min, respectively. Tear up liver tissue and shake 
it thoroughly at 38°C for 15min, and filter it using a 
100μM strainer. Then, repeatedly centrifuged liver 
tissue suspension at 50G for 2min to obtain fully 
dispersed hepatocyte particles. Plant these 
hepatocytes on the 6-well plates and routine 
cultivation with DMEM/F12(1:1) (Gibco C113305 
00BT) containing 10% fetal bovine serum (FBS) 
(Lonsera S711-001S), 10−8 M dexamethasone (Sigma 
d1756), 10−8 insulin (Macklin R917753), and 1% 
penicillin-streptomycin (Gibco 15140-122).  
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Cell culture 
Mouse primary hepatocytes and murine cell line 

AML12 cells (Shanghai Cell Bank, China) were 
cultured in DMEM/F-12(1:1) (Gibco C11330500BT) 
medium with 10% fetal bovine (Lonsera S711-001S) 
and 1% Pen Strep (Gibco 15140-122) at 37℃ in a 
Forma™ II WATER JACKET incubator (Thermo 
Scientific, USA) with 5% CO2. The cells were treated 
with FFA (PA 100μM: OA 200μM), Fr (fructose 
88.8mM), or Cortisol (Sigma-Aldrich, St. Louis, MO, 
USA, 1μM), respectively. 

Transient transfection 
Overexpression (OE) and knockdown (KD) of 

Usp2 in cells were established with a plasmid 
(Genomeditech, China) (Table 1) via transient 
transfection. Transfection begins when the cell fusion 
rate is about 70%. Transfection solution is prepared 
according to the following steps: Firstly, the 
lipofectamine mixture, consisting of 20μL Opti-MEM 
(Gibco 31985-070) and 8μL Lipofectamine (Invitrogen 
11668-019), was incubated for 5min. Next, the plasmid 
mixture, composed of 200μL Opti-MEM and 3.2ug 
plasmid, was prepared. Mix the above two for 20 
minutes and add 400μL to each well. After 24 hours, 
the transfection solution was replaced with a regular 
culture medium for another 48 hours. The cells and 
their culture supernatant were harvested for the 
following detection. 
Biochemical indicators 

The serum biochemical indicators, including 
triglyceride (TG), total cholesterol (CHOL), 
low-density lipoprotein-cholesterol (LDL-c), aspartate 
aminotransferase (AST), alanine aminotransferase 
(ALT), and alkaline phosphatase (ALP) were detected 
by a TBA-40FR automatic biochemical analyzer 
(Toshiba, Japan) according to the testing procedures 
of manufacturers. Commercially Mlbio ELISA kits 
were used to measure the levels of cortisol 
(#m1001959-2), cortisone (#m1460921), interleukin 
(IL)-6 (#m1063159-2), IL-1β (#m1301814-2), and tumor 
necrosis factor (TNF)-α (#m1002095-2); and the TG 
assay kit (Nanjing Jiancheng Bioengineering Institute 
#A110-1-1) was purchased to test the cellular lipid 
content.  

Histological examination  
The histological examination was performed 

according to the established protocol23. Tissue 
samples: After conventional paraffin embedding, the 
tissue sections were cut evenly to 5μM thickness for 
H&E staining (Biosharp BL735B-2), and hematoxylin 
(Kohypath KH-HEMH-OT-500) was used to stain the 
nucleus. The middle part of the largest lobe of fresh 

liver were harvested and cut to 8μM thickness for oil 
red O (ORO) staining (Sigma Aldrich 00625), and 
hematoxylin was used to stain the nucleus. 
Paraffin-embedded blocks were cut into 3μM 
thickness for immunohistochemical (IHC) 
experiment: SABC immunohistochemical staining kit 
(Boster SA2002) was used, primary antibodies include 
F4/80 (CST 70076S, 1:300), CD68 (CST 97778, 1:300), 
and USP2 (Proteintech 10392-1-AP, 1:200). Photos 
were taken using Stratafaxs Ⅱ microscopes and cell 
imaging system (Tissuegnostics). Cell samples: Fresh 
cells were used for ORO staining24, and photos were 
taken under an AXIO Vert.A1 microscope (Zeiss) 
immediately. Fresh cells were used for Lipi-Red 
staining (Dojindo LD03), DAPI (Beyotime C1006) was 
used to stain the nuclear, and the operation manual 
was strictly followed. Immunofluorescence assay was 
performed as reported25. The primary antibody USP2 
(Protein 10392-1-AP, 1:200) and fluorescent secondary 
antibody (Invitrogen A11304, 1:1000) were used. All 
these photos were taken under the Image X press® 
Micro4 equipment (Molecular). 

 

Table 1. Plasma information 

P-Code Product 
138571-40541 GM-C34480 NC AML12 Cell Line (6716) 
138571-40541 GM-C34481 Mouse-USP2 AML12 Cell Line (79157) 
138571-40541 GM-C34727 NC AML12 Cell Line (2469) 
138571-40541 150827 Mouse-USP2-ShRNA1545 AML12 Cell Line (79156) 

 

Western blot 
The protein sample was prepared26 and 

quantified using a BCA kit (Beyotime P0012). Express 
Plus™ PAGE Gels 4-20% (Genscript M42015C) was 
used for protein electrophoresis. Western blot 
experiment was performed on a Mini-Protean® Tetra 
System electrophoresis apparatus (Bio-Rad, China) 
(60V) and a rapid film transfer instrument 
Electrophoresis (Genscript, China) (regular 10min), 
sequentially. After 30min of isolation in protein-free 
rapid blocking buffer (Epizyme, China), incubate the 
primary antibody (USP2, Protein 10392-1-AP, 1:500; 
C/EBP α, Abclonal A0904, 1:500; 11β-HSD1, Abclonal 
A1619, 1:500) overnight at 4℃. Incubation with the 
Goat anti-rabbit IgG (CST 7074s, 1:2000) at room 
temperature for 1 hour. Using an Omni-ECL™ Femto 
Light Chemiluminescence Kit (Epizyme, China), 
immunoblotting was visualized on the Tanon-5200 
Chemiluminescent Imaging System (Tanon Science 
and technology). 

Real-Time Quantitative PCR (RT-qPCR) 
The total mRNA was extracted using the Trizol 

(Invitrogen, Carlsbad, CA, USA) method. In short, 
RNA after concentration test on Nanodrop 2000 
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spectrophotometer (Thermo Scientific) was reversely 
transcribed into cDNA using the reverse transcription 
kit (Accurate Biology, China). qPCR was performed 
on Quantstudio⑤ Real-Time PCR System (Thermo 
Fisher Scientific) using the method of SYBR Green 
(Accurate Biology AG11701). Apply the 2−ΔΔT method, 
the expression of target genes was relative to β-actin. 
Relative sequences of the primers (Shanghai Shanjin 
Biotechnology, China) were shown in Table 2. 

RNA Sequence (RNA-Seq) 
Fresh liver samples (n=5/group) were collected 

for RNA-Seq27. RNA quality and concentration 
assessment were performed using a Nanodrop 2000 
spectrophotometer (Thermo Fisher Scientific) and 
Agilent 2100 Bioanalyzer with a 2100 RNA nano 6000 
assay kit (Agilent Technologies, USA), respectively. 
Post-quality control, eukaryotic mRNA with poly-A 
tails was enriched using the TIANSeq mRNA Capture 
Kit (Tiangen, China). Subsequently, transcriptome 
sequencing libraries were constructed from the 
enriched RNA using the TIANSeq Fast RNA Library 
Kit (Illumina, USA). Library quantification was 
conducted with a Qubit 2.0 fluorometer (Life 
Technologies) and diluted to 1ng/µL, followed by 
insert size validation on Agilent 2100 and precise 
quantification through quantitative PCR (Q-PCR) 
(library activity > 2nM). The index-coded samples 
underwent clustering with a cBot Cluster Generation 
System using a TruSeq PE Cluster Kit v3-cBot-HS 
(Illumina, USA), as per manufacturer protocols. 
Sequencing was performed on an Illumina platform, 
yielding 150 bp paired-end reads. 

Data analysis was conducted on high-quality 
reads, filtered through internal Perl scripts. Gene 
expression levels were estimated using FPKM. 
DESeq2 R package was employed for differential 
expression analysis between groups, adjusting 
p-values with Benjamini and Hochberg’s method to 
manage the false discovery rate. Genes were deemed 
differentially expressed with p<0.05 as per DESeq2. 
An adjusted p-value of 0.05 was the criteria for 
significant differential expression. The Cluster Profiler 
R package facilitated statistical enrichment analysis of 
differentially expressed genes within KEGG 
pathways.  

Statistical analysis 

SPSS software (version 26.0; IBM, Armonk, NY, 
USA) was used to analyze all the data, the data were 
displayed as means ± SD. Differential analysis 
between two or more groups were performed by 
Student’s t-test and one-way analysis of variance 
(ANOVA), respectively. Statistically significance was 
set as p<0.05. 

Results 
High dietary fructose drives the development 
of MASLD 

To investigate the impact of dietary fructose on 
MASLD, we fed C57BL/6J mice CD with tap water 
(Con group), CD with HFCS in drinking water (Fr 
group) or WD with HFCS in drinking water (WDF 
group) (Fig. 1A). During the 20 weeks feeding period, 
mice in Fr group tended to consume more water but 
less food (Fig. S1A&B), which may partially explain 
the body weight decrease in mice (Fig. 1B). However, 
fructose exposure resulted in increased liver-to-body 
weight ratio (Fig. 1C). High fructose administration 
significantly increased lipid accumulation in the liver, 
as evidenced by H&E and ORO staining (Fig. 1D&E) 
as well as the quantification of liver CHOL content 
(Fig. S1C). Concomitantly, serum levels of LDL-c in 
fructose-exposed mice were increased (Fig. 1F). WDF 
mice exhibited a more pronounced increase in body 
weight and hepatic lipid accumulation compared to 
Fr mice (Fig. 1B-E; Fig. S1C), indicating fructose could 
amplify the lipid accumulation in the liver. 

High fructose consumption also resulted in 
increased infiltration of inflammatory cells in the liver 
and higher inflammatory scores (Fig. 1D&E). Highly 
activated macrophages are the typical feature of 
hepatic inflammation, we also observed an increase of 
positive staining of macrophage markers F4/80 and 
CD68 in the liver sections of HFCS-exposed mice (Fig. 
S1D). Furthermore, high fructose consumption 
promoted the secretion of inflammatory cytokines 
IL-1β, IL-6, and TNF-α in the liver (Fig. S1E). When 
compared with Fr mice, the WDF mice exhibited more 
significant hepatic inflammation and increased NAS 
scores (Fig. 1D&E; Fig. S1D&E), suggesting an 
additive effect between fructose and WD in 
promoting MASLD. Additionally, serum levels of 
ALT, AST, and ALP were elevated in Fr mice and 
further amplified when combined with WD feeding 
(Fig. 1G). We also assessed the circulating cytokines, 
and found increased systemic inflammatory cytokines 
in the circulation of fructose-exposed mice (Fig. S1F). 
Together, these results revealed that high dietary 
fructose could drive the development of MASLD. 

High dietary fructose promotes MASLD 
progression 

To further elucidate the impact of high dietary 
fructose on MASLD, we fed the mice with 10-week 
WD to induce MASLD (WD group), and followed 
with a combination of HFCS and WD for another 10 
weeks (WFr group) (Fig. 2A). Consistent with 
previous experiment, fructose-treated mice tended to 
consume more water and less food (Fig. S2A&B), and 
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the body weight was lower than WD mice but still 
higher than Con mice (Fig. 2B). Mice in the WD group 
exhibited the typical MASLD phenotype (Fig. 2C-E), 
whereas WFr mice demonstrated a more pronounced 
increase in liver-to-body weight ratio (Fig. 2C). We 
also observed that high fructose administration 
resulted in aggravated lipid accumulation in the liver, 

as evidenced by H&E and ORO staining (Fig. 2D&E) 
and the quantification of liver CHOL content (Fig. 
S2C). Additionally, serum levels of LDL-c and CHOL 
were elevated in fructose-exposed mice (Fig. 2F). 
Together, these findings implied that fructose could 
exaggerate lipid accumulation in the liver of mice 
with pre-existing fatty liver. 

Table 2. Primer sequence for RT-qPCR 

Gene F R bp 
Usp2 CGATTGTGGCTACTGCTCTACAG CAGCAAGTTGGCTTCTCATCAC 153 
C/ebpa CAAGAACAGCAACGAGTACCG GTCACTGGTCAACTCCAGCAC 124 
Hsd11b1 GCCTTGAACTCGGAGCAGC TTCGCACAGAGTGGATGTCG 180 
β-actin TGACGTGGACATCCGCAAAG CTGGAAGGTGGACAGCGAGG 205 

 

 
Figure 1. High dietary fructose drives the development of MASLD (A) The design of animal experiment; (B) Dynamic changes of body weight of mice; (C) Liver-to-body 
weight ratio; (D) Pathological staining of liver (magnification 400×): H&E staining and ORO staining of liver sections (magnification 400×); (E) NAS score; (F) Serum levels of TG, 
CHOL, and LDL-c; (G) Serum levels of ALT, AST, and ALP. Data are presented as mean ± SD. Con vs WDF: *; Con vs Fr: #. *p<0.05, **p<0.01, ***p<0.001; #p<0.05, ##p<0.01, 
###p<0.001. 
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Figure 2. High dietary fructose promotes the progression of MASLD (A) Fructose induction scheme with WD feeding; (B) Dynamic changes in body weight of mice; (C) 
Liver-to-body weight ratio; (D) Pathological staining of liver (magnification 400×): H&E staining and ORO staining of liver sections (magnification 400×); (E) NAS score; (F) Serum 
levels of TG, CHOL, and LDL-c; (G) Serum levels of ALT, AST, and ALP. The quantification data are presented as mean ± SD. Con vs WD: *; WD vs WFr: #. *p<0.05, **p<0.01, 
***p<0.001; #p<0.05, ##p<0.01, ###p<0.001.  

 
Although the hepatic scores of steatosis and 

ballooning were comparable between WD and WFr 
mice, high fructose consumption promoted liver 
inflammation (Fig. 2D&E), infiltration of 
macrophages (F4/80 and CD68) (Fig. S2D), and 
production of hepatic inflammatory cytokines (Fig. 
S2E). Furthermore, serum ALT, AST, and ALP levels 
in WD mice were further elevated by fructose 
supplementation (Fig. 2G). WD mice showed 
comparable levels of systemic inflammatory cytokines 
(serum IL-1β, IL-6, and TNF-α) with Con mice, while 

these indicators were raised in WFr mice (Fig. S2F). 
Collectively, our results indicated that high dietary 
fructose might promote MASLD progression. 

High fructose intake upregulates hepatic USP2 
expression 

To explore the mechanisms of how dietary 
fructose impacts MASLD, we performed RNA- 
Sequence (RNA-Seq) on the liver tissues of the mice. 
We firstly compared the genetic profiles of mice 
between the Con and Fr groups, the partial least 
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squares discriminant analysis (PLSDA) plot showed 
distinguished clusters (Fig. 3A). Compared to the Con 
group, there were 816 downregulated and 1356 
upregulated genes in the liver of Fr group mice (Fig. 
3B). KEGG analysis demonstrated that these 
differentially expressed genes (DEGs) were enriched 
in pathways related to tumorigenesis, glucose and 
lipid metabolism, and inflammation (Fig. 3C). We 
then compared genetic profiles of mice between WD 
and WDF groups, distinguished clusters were 
observed by PLSDA plot (Fig. 3D). Totally, 1605 
DEGs were found, of which 677 were downregulated 
and 928 were upregulated in WDF group (Fig. 3E), 
and they were enriched in pathways related to 
cellular metabolism and cycle, inflammation, and 
immune response (Fig. 3F). When we cross-check all 
the DEGs (p adj<0.05) in the 4 groups, Usp2 was the 
only gene that was specifically upregulated by 
fructose (Fig. 3G&H). To verify these findings, we 
detected the expression of USP2 in the liver of mice. 
Expectably, we observed increased mRNA and 
protein expression of USP2 in Fr and WDF mice but 
not in WD mice (Fig. 3 I&J). Analysis of 
immunohistochemical images of liver sections 
revealed that the positive staining of USP2 was more 
obvious in fructose-administrated mice (Fig. 3K). In 
addition, USP2 expression was also found to be 
upregulated in the liver of fructose-containing 
(fructose-, palmitate-, and cholesterol-enriched, FPC) 
diet-induced MASLD mice, but not in a 
choline-methionine deficient diet (MCD)-induced 
MASLD mice (Fig. S3A). Together, these results 
suggested that USP2 might be a key mediator of 
fructose in driving MASLD development and 
progression. 

Fructose increases lipid accumulation and 
USP2 expression in hepatocytes  

As USP2 is increased in the liver of 
fructose-treated mice, we then tried to determine the 
target cells. To investigate the basic expression of the 
Usp2 gene in the liver of mice, we compared the two 
subtypes of primary cells (primary hepatocytes and 
Kupffer cells), and found that the primary 
hepatocytes expressed higher mRNA levels of Usp2 in 
comparison to Kupffer cells (Fig. S3B). Since primary 
hepatocytes are the dominant cell type of the liver, the 
higher expression of Usp2 upon fructose treatment 
might be the main contributor to MASLD. We 
cultured primary hepatocytes with fructose (Fr), free 
fatty acid (FFA) (oleic acid: palmitic acid =2:1), or the 
combination of Fr and FFA (FFr), respectively (Fig. 
4A). We revealed that both fructose and FFA 
treatment increased the cellular TG levels in mouse 

primary hepatocytes compared with untreated 
Control cells (Fig. 4B), and enlargement of lipid 
droplets can be observed by Lipi-Red and ORO 
staining (Fig. 4C&D). Mouse primary hepatocytes 
that cultured with FFr showed more pronounced lipid 
accumulation than FFA-treated cells (Fig. 4B-D), 
indicating an additive effect of fructose and FFA on 
hepatocytes. The production of inflammatory 
cytokines IL-1β, IL-6, and TNF-α in the medium was 
also significantly increased in hepatocytes exposed to 
fructose, while IL-6 and TNF-α levels in FFr-treated 
cells were higher than in FFA cells (Fig. 4E). In 
parallel, we observed increased USP2 expression in 
fructose- but not in FFA-treated primary hepatocytes 
(Fig. 4F-H). Meanwhile, these results were further 
confirmed in murine hepatocyte cell line AML12 cells 
(Fig. S4). Collectively, these results demonstrated that 
fructose triggered or exacerbated lipid accumulation 
and USP2 expression in hepatocytes. 

Fructose induces hepatocyte steatosis and 
inflammation via USP2 

To confirm the role of USP2 in fructose-induced 
steatosis and inflammation, we overexpressed the 
Usp2 gene in primary hepatocytes, and subsequently 
treated these cells with FFr (Fig. 5A). The 
upregulation of Usp2 expression confirmed the 
success of gene transfection (Fig. 5B). Usp2 
overexpressed primary hepatocytes showed 
comparable cellular TG content but increased IL-1β 
levels in comparison with vector-transfected cells 
when cultured in the conventional medium (Fig 
S5A&B). Upon FFr treatment, the number and the 
size of lipid droplets were further increased (Fig. 
5C&D), and cellular TG content was significantly 
augmented (Fig. 5E) in Usp2-overexpressed cells. 
Meanwhile, Usp2-overexpressed hepatocytes 
displayed aggressive inflammation, as evidenced by 
increased production of inflammatory cytokines 
IL-1β, IL-6, and TNF-α (Fig. 5F). On the contrary, Usp2 
knockdown (Fig. 5G&H) resulted in decreased size 
and number of lipid droplets (Fig. 5I&J), and reduced 
TG content (Fig. 5K) in FFr-exposed primary 
hepatocytes. Concurrently, Usp2 deficiency also 
decreased the secretion of inflammatory cytokines, 
including IL-1β, IL-6, and TNF-α, in mouse primary 
hepatocytes (Fig. 5L). While Usp2 knockdown showed 
comparable TG content but decreased the IL-1β levels 
with vector-transfected primary hepatocytes when 
cultured in the conventional medium (Fig.S5C&D). 
These findings were also confirmed by the results in 
AML12 cells (Fig. S5&6). Overall, the above results 
suggested that fructose induces hepatocyte steatosis 
and inflammation via USP2. 
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Figure 3. Fructose upregulates hepatic USP2 expression (A) Plot of PLSDA analysis between Con and Fr mice; (B) Heatmap of DEGs (p<0.05) between Con and Fr mice; 
(C) KEGG analysis between Con and Fr groups; (D) Plot of PLSDA analysis between WD and WDF groups. (E) Heatmap of DEGs (p<0.05) between WD and WDF groups; (F) 
KEGG analysis between WD and WDF groups; (G) Volcano plot of significant DEGs (p adj<0.05) of Fr vs Con, WDF vs WD, and WD vs Con, respectively; (H) Plot of 
co-responsive genes of Fr and WDF groups when compared to Con and WD groups, respectively; (I) Relative mRNA level of Usp2 gene in the liver; (J) Protein blotting of USP2 
in the liver; (K) The immunohistochemical staining in the liver for USP2 protein (magnification 400×) and the quantification of the positively stained area. The quantification data 
are presented as mean ± SD. *p<0.05, **p<0.01, ***p<0.001.  
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Figure 4. Fructose increases lipid accumulation and USP2 expression in primary hepatocytes. (A) The cell experiment flowchart; (B) The TG content of primary 
hepatocytes; (C) The Lipi-Red staining of primary hepatocytes (magnification 200×), the bottom panel figures are amplification of the upper panel; (D) The ORO staining of 
primary hepatocytes (magnification 200×), the bottom panel figures are amplification of the upper panel; (E) The levels of IL-1β, IL-6, and TNF-α in the culture medium of primary 
hepatocytes; (F) The immunofluorescence for USP2 in primary hepatocytes (magnification 100×); (G) Relative mRNA level of Usp2 gene in primary hepatocytes; (H) Protein 
blotting of USP2 in primary hepatocytes. The quantification data are presented as mean ± SD. *p<0.05, **p<0.01, ***p<0.001.  
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Figure 5. Fructose induces hepatocyte steatosis and inflammation via USP2 in primary hepatocytes. (A) The cell experiment flowchart of Usp2 overexpression in 
primary hepatocytes; (B) The mRNA expression of Usp2 gene in primary hepatocytes; (C) The Lipi-Red staining (magnification 200×) of Usp2-overexpressed primary 
hepatocytes, the bottom panel figures are amplification of the upper panel; (D) The ORO staining (magnification 100×) of Usp2-overexpressed primary hepatocytes, the bottom 
panel figures are amplification of the upper panel; (E) The TG content of Usp2-overexpressed primary hepatocytes; (F) The levels of IL-1β, IL-6, and TNF-α in the culture medium 
of Usp2-overexpressed primary hepatocytes; (G) The cell experiment flowchart of Usp2 knockdown in primary hepatocytes; (H) The mRNA expression of Usp2 gene in primary 
hepatocytes; (I) The Lipi-Red staining (magnification 200×) of Usp2-knockdowned primary hepatocytes, the bottom panel figures are amplification of the upper panel; (J) The 
ORO staining (magnification 100×) of Usp2-knockdowned primary hepatocytes, the bottom panel figures are amplification of the upper panel; (K) The TG content of 
Usp2-knockdowned primary hepatocytes; (L) The levels of IL-1β, IL-6, and TNF-α in the culture medium of Usp2-knockdowned primary hepatocytes. The quantification data are 
presented as mean ± SD. *p<0.05, **p<0.01, ***p<0.001. 
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The function of USP2 is dependent on C/EBPα/ 
11β-HSD1 

Previous research indicates that USP2 stabilizes 
C/EBPα, potentially leading to the upregulation of 
11β-HSD1 expression in hepatocytes, which catalyzes 
the regeneration of active glucocorticoids16, 17, 28-31. 
C/EBPα is a potent transcriptional factor of 11β-HSD1 
in the liver, and activation of the USP2/ C/EBPα/ 
11β-HSD1 signaling may account for fructose effects 
on MASLD (Fig. 6A). We detected the potential 
downstream molecules of USP2 in primary 
hepatocytes treated with fructose, the expression of 
C/EBPα (C/ebpα) and 11β-HSD1 (Hsd11b1) was 
significantly increased both at mRNA (Fig. 6B&C) 
and protein level (Fig. 6D). However, the expression 
of C/EBPα and 11β-HSD1 was not statistically 
different between FFA-treated cells and control cells 
(Fig. 6B-D), suggesting the activation of C/EBPα and 
11β-HSD1 signaling specifically occurred in 
fructose-treated cells. Additionally, we observed the 
same trend of changes in AML12 cells (Fig. S7A-C). 
Hepatocytes with Usp2 overexpression showed 
aggressive lipid accumulation and secretion of 
inflammatory cytokines (Fig. 5C-F), and the 
expression of C/EBPα (C/ebpα) and 11β-HSD1 
(Hsd11b1) was also increased (Fig. 6E&F) upon 
fructose challenge. In contrast, Usp2-knockdown 
induced improvement of steatosis and inflammation 
(Fig. 5I-L), and downregulation of C/EBPα (C/ebpα) 
and 11β-HSD1 (Hsd11b1) expression in these cells 
(Fig. 6G&H). Consistent results were obtained in 
FFr-challenged AML12 cells with Usp2 
overexpression or knockdown (Fig. S7D-G). Hence, 
we concluded that USP2 regulates steatosis and 
inflammation depending on the C/EBPα/ 11β-HSD1 
pathway. 

C/EBPα/ 11β-HSD1 signaling is activated in 
high fructose-induced MASLD mice  

To validate that USP2 mediated the C/EBPα/ 
11β-HSD1 pathway, we detected their expression in 
the liver of HFCS-drinking mice. Consistent with in 
vitro findings, the expression of C/EBPα (C/ebpα) and 
11β-HSD1 (Hsd11b1) were significantly increased in Fr 
and WDF groups (Fig. 7A-C). 11β-HSD1 is a widely 
distributed reductase, it regulates energy metabolism 
and inflammation by converting inactive cortisone 
into active cortisol, and the liver is the most important 
source of visceral cortisol32-34. Therefore, we assessed 
the level of hormones, and found that fructose 
administration significantly increased serum cortisol 
levels and reduced cortisone levels (Fig. 7D). 
Correspondingly, the cortisol/ cortisone ratio was 
decreased, whereas the cortisol and cortisone levels 

were comparable between Con and WD mice (Fig. 
7D). To further confirm the impact of cortisol on 
MASLD, we treated hepatocytes with cortisol, and 
found that cortisol exaggerated lipid accumulation in 
FFA- and Fr treated primary hepatocytes and AML12 
cells (Fig. S8). Collectively, the above results 
suggested that high fructose might promote MASLD 
formation and progression via USP2/ C/EBPα/ 
11β-HSD1 signaling pathway in the liver. 

Discussion 
In the present study, we found that high fructose 

promotes MASLD development and progression in 
C57BL/5J mice, and identified that USP2-mediated 
11β-HSD1 signaling in the liver is crucial for MASLD 
induced by high fructose exposure. 

High fructose consumption is widely recognized 
as a contributor to metabolic disorders. A 
cross-sectional survey among 283 Lebanese adults 
pinpointed an average fructose consumption of about 
52g/day, comprising approximately one-tenth of total 
caloric intake35. Human physiology, however, 
confronts challenges when metabolizing fructose 
beyond 25g/day, with industrially processed 
fructose, noted for its concentration and swift 
absorption, being particularly problematic36. Research 
indicates that absorbed fructose can catalyze hepatic 
DNL both directly and indirectly, whereas 
unabsorbed fructose threatens metabolic homeostasis 
by forming glycation end products with proteins in 
the intestine 37, 38. Subsequently, attempts to curtail 
fructose absorption and its metabolic effects have 
produced varied results in preventing or managing 
MASLD39-42. 

Natural fructose obtained from plants typically 
confers metabolic benefits due to its slower absorption 
rate and the presence of beneficial plant fiber and 
antioxidants. In contrast, industrial fructose sources 
such as HFCS and sucrose, particularly in liquid form, 
are rapidly absorbed and implicated in hepatic IR and 
MASLD43-45. Notably, HFCS-rich drinks nearly triple 
the likelihood of developing MASLD7. Animal models 
demonstrate that HFCS exposure heightens body 
adiposity, hepatic TG, and expression of DNL genes46. 
Moreover, high-fructose feeding induces glucose 
intolerance, IR, steatosis, hypoadiponectinemia, and 
mitochondrial disruption in mice46, 47. At the cellular 
level, HFCS additionally raises lipid deposition, 
oxidative stress, endoplasmic reticulum stress, and 
disrupts intracellular calcium47. Specifically, fructose 
triggers endoplasmic reticulum stress via the 
PIDDosome-sterol regulatory element binding 
protein (SREBP) cleavage activating protein (SCAP) 
axis in hepatocytes, potentially facilitating the shift 
from simple steatosis to steatohepatitis48. Moreover, 
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fructose stimulates the secretion of inflammatory 
cytokines by disrupting cellular metabolic adaptation 
and activates the reactive oxygen species (ROS)/ 
NF-κB signaling pathway in macrophages49,50. Our 

observations in this study further expanded the 
previous findings, and demonstrated that high 
fructose intake not only instigates MASLD but also 
aggravates its progression in murine models. 

 

 
Figure 6. The function of USP2 depends on C/EBPα/ 11β-HSD1 in fructose-stressed primary hepatocytes. (A) Hypothesis diagram for USP2/ 11β-HSD1 pathway 
in the liver; (B, C) Relative mRNA expression of C/EBPα (C/ebpα) and 11β-HSD1 (Hsd11b1) in hepatocytes; (D) Protein blotting of C/EBPα and 11β-HSD1 in hepatocytes; (E) 
Relative mRNA expression of USP2 (Usp2), C/EBPα (C/ebpα), and 11β-HSD1 (Hsd11b1) in Usp2-overexpressed hepatocytes; (F) Protein blotting of USP2, C/EBPα, and 
11β-HSD1 in Usp2-overexpressed hepatocytes; (G) Relative mRNA expression of USP2 (Usp2), C/EBPα (C/ebpα), and 11β-HSD1 (Hsd11b1) in Usp2-knockdowded hepatocytes; 
(H) Protein blotting of USP2, C/EBPα, and 11β-HSD1 in Usp2-knockdowded hepatocytes. The quantification data are presented as mean ± SD. *p<0.05, **p<0.01, ***p<0.001.  
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Figure 7. Fructose induces MASLD via the USP2/ 11β-HSD1 pathway (A, B) Relative mRNA expression of C/EBPα (C/ebpα) and 11β-HSD1 (Hsd11b1) in the liver of 
the mice; (C) Protein blotting and statistical analysis of C/EBPα and 11β-HSD1 in the liver of the mice; (D) Serum levels of cortisol and cortisone, and cortisone-to-cortisol ratio. 
The quantification data are presented as mean ± SD. *p<0.05, **p<0.01, ***p<0.001.  

 
By scrutinizing the RNA-Seq data, we unveiled a 

plethora of fructose-responsive genes, potentially 
influencing energy metabolism, inflammation, and 
even carcinogenesis. A noteworthy finding was the 
consistent upregulation of Usp2 gene in the 
fructose-treated mice, irrespective of whether a CD or 
a WD feeding. USP2, a deubiquitinating enzyme 
widely expressed by mammalian cells, is implicated 
in various cellular processes51, 52. Studies indicate that 
USP2 fosters tumor growth and spread through 
regulating apoptosis, autophagy, and oncoprotein 
stabilization53-56. Moreover, USP2 upregulation has 
been associated with increased liver gluconeogenesis 
and glucose intolerance, enhanced lipogenesis, and 

amplified inflammatory responses16-18, 57. Consistent 
with our in vivo observations, USP2 was found to be 
upregulated in fructose-exposed hepatocytes in vitro. 
Additionally, hepatocytes overexpressing Usp2 
exhibited increased lipid accumulation and elevated 
secretion of inflammatory cytokines. Conversely, 
Usp2 depletion caused diminished steatosis and 
inflammation. These findings lead to the compelling 
conclusion that USP2 occupies a pivotal position in 
fructose-induced liver damage. 

USP2 is also recognized for its role in amplifying 
11β-HSD1 through the action on its substrate, 
C/EBPα17, 28. Research indicates that liver-specific 
deletion of 11β-HSD1 abrogates the gluconeogenic 
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effects of USP216. 11β-HSD1, predominantly present 
in the liver, is crucial for converting inactive 
glucocorticoids into their bioactive forms, thus 
playing a critical role in maintaining glucocorticoid 
homeostasis 58. Deubiquitination of C/EBPα by USP2 
does not simply affect the stability of C/EBPα, since 
ubiquitination of transcription factors also acts on 
transcriptional functions59. Corresponding with these 
findings, fructose exposure was seen to boost C/EBPα 
mRNA levels in hepatocytes. Accumulating evidence 
implies that 11β-HSD1 activation could contribute to 
hepatic steatosis, inflammation, and fibrosis29-31. 
Decreased adiponectin levels, IR, hypercortisolism, 
and systemic inflammation are also linked to 
excessive 11β-HSD1 activity60, 61. Clinical trials have 
demonstrated the safety and efficacy of 11β-HSD1 
inhibition in ameliorating liver steatosis and IR29, 62, 63. 
Furthermore, 11β-HSD1 inhibition mitigates 
hyperlipidemia, liver inflammation, and fibrosis in 
MASLD models30, 64-67. And Hsd11b1 (11β-HSD1) gene 
deficiency shields mice against glucose intolerance, 
dyslipidemia, and obesity68. Our research indicates 
that fructose exposure leads to the upregulation of 
C/EBPα and 11β-HSD1, unveiling a mechanism by 
which USP2-mediated activation of C/EBPα and 
11β-HSD1 is implicated in the onset and progression 
of MASLD.  

The liver is the central viscus for converting 
inactive cortisone into active cortisol via 
11β-HSD132-34. Cortisol, the principal glucocorticoid, is 
widely recognized to cause various metabolic 
concerns. Elevated cortisol levels are closely 
associated with central obesity, IR, diabetes mellitus, 
dyslipidemia, hypertension, and subsequently a 
heightened risk of cardiovascular complications69-71. 
Notably, MASLD patients exhibit notably higher 
concentrations of cortisol, implicating the accentuated 
cortisol synthesis mediated by 11β-HSD1 contributing 
to MASLD72, 73. In our investigations, fructose 
administration led to a substantial rise in circulating 
cortisol and a concomitant reduction in cortisone 
levels. Consequently, the cortisone-to-cortisol ratio is 
decreased in fructose-exposed mice, indicating 
heightened activation of 11β-HSD1 in this context. 
These observations underscore the notion that 
disruption in glucocorticoid metabolism by 11β-HSD1 
is implicated in MASLD, especially in the context of 
excessive fructose consumption. 

While our exploration elucidated significant 
aspects of fructose-induced MASLD and the USP2/ 
11β-HSD1 signaling pathway, it is crucial to recognize 
certain limitations for a thorough comprehension of 
these findings. Firstly, our study focuses on 
hepatocytes; nonetheless, it is important to consider 
the potential role of macrophage activation in the 

development of fructose-induced MASLD. While 
hepatocytes do dominate liver cell populations and 
exhibit a higher USP2 expression which bolsters our 
results, further research is imperative to ascertain the 
contributions of other liver cell types to MASLD 
pathology. Secondary to this, the intestine is the initial 
site of fructose uptake and metabolism38. Therefore, 
the effects of fructose on the intestinal milieu and its 
microbiota are important aspects warranting further 
exploration. Future research endeavors should aim to 
decipher the complex interactions between dietary 
fructose, intestinal health, and the gut microbiome. 
Thirdly, our study discusses the well-documented 
correlation between 11β-HSD1 activity and cortisol 
conversion - a notion that is broadly acknowledged 
within the field 74. Nevertheless, the validity of this 
association would be significantly reinforced by 
targeted pharmacological or genetic studies. Lastly, 
considering the widespread expression of USP2, the 
prospective impact of cross-talk between organs on 
MASLD onset and progression warrants further 
scrutiny. The systemic implications of these 
inter-organ interactions present another layer of 
complexity to MASLD etiology and pathology, which 
should be the focus of future research endeavors. 

In summary, our findings indicate that high 
fructose consumption drives and exaggerates 
MASLD, pointing to the USP2/ 11β-HSD1 pathway as 
a key player. These insights into the relationship 
between diet and liver health highlight the 
multifaceted nature of MASLD’s etiology. Notably, 
our findings identified USP2 as a pivotal molecular 
target, presenting novel therapeutic opportunities for 
MASLD intervention. Certainly, these findings have 
the potential to deepen our understanding of 
metabolic liver diseases and bolster progress in 
clinical management and drug development. 
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