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Abstract 

The dysregulation of alternative splicing (AS) is increasingly recognized as a pivotal player in the 
pathogenesis, progression, and treatment resistance of B-cell acute lymphoblastic leukemia (B-ALL). 
Despite its significance, the clinical implications of AS events in B-ALL remain largely unexplored. This 
study developed a prognostic model based on 18 AS events (18-AS), derived from a meticulous 
integration of bioinformatics methodologies and advanced machine learning algorithms. The 18-AS 
signature observed in B-ALL distinctly categorized patients into different groups with significant 
differences in immune infiltration, V(D)J rearrangement, drug sensitivity, and immunotherapy outcomes. 
Patients classified within the high 18-AS group exhibited lower immune infiltration scores, poorer 
chemo- and immune-therapy responses, and worse overall survival, underscoring the model's potential in 
refining therapeutic strategies. To validate the clinical applicability of the 18-AS, we established an SF-AS 
regulatory network and identified candidate drugs. More importantly, we conducted in vitro cell 
proliferation assays to confirm our analysis, demonstrating that the High-18AS cell line (SUP-B15) 
exhibited significantly enhanced sensitivity to Dasatinib, Dovitinib, and Midostaurin compared to the 
Low-18AS cell line (REH). These findings reveal AS events as novel prognostic biomarkers and 
therapeutic targets, advancing personalized treatment strategies in B-ALL management. 

Keywords: B cell acute lymphoblastic leukemia, alternative splicing, prognosis prediction, machine learning algorithms, 
bioinformatics 

Introduction 
Acute lymphoblastic leukemia (ALL) is a 

progressive malignant tumor of the blood, caused by 
the uncontrolled proliferation of lymphoblasts in 
hematopoietic and lymphoid tissues, particularly in 
the bone marrow, spleen, and lymph nodes[1]. ALL is 
the most common type of leukemia in children, with 
B-cell acute lymphoblastic leukemia (B-ALL) 
accounting for 80% of cases. Although over 80% of 
children with ALL achieve remission, relapse remains 
a leading cause of pediatric death. In adults, ALL is 

less common but shows greater biological diversity, 
clinical heterogeneity, and worse outcomes[2]. 
Therefore, there is an urgent need to explore new 
potential molecular mechanisms underlying B-ALL to 
improve the prognosis of patients with B-ALL. 

In recent years, the advancement of 
high-throughput sequencing technologies has 
enabled the identification of new molecular 
biomarkers for the prognosis of B-ALL patients 
through sequencing data analysis. Prior research has 
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largely focused on gene fusions, gene expression, or 
gene mutations[3]. However, the low tumor 
mutational burden (TMB) observed in ALL patients 
suggests that analyses based solely on gene 
expression or mutations may not adequately account 
for the differences in key pathogenic processes[4]. 
Alterations in the transcriptome and proteome often 
signal the onset and progression of diseases. 
Alternative splicing (AS), a principal mechanism 
regulating the complexity and functional diversity of 
the transcriptome and proteome in eukaryotes[5], not 
only plays a significant role in normal cellular 
expression regulation and organismal development, 
such as in hematopoiesis[6], brain development[7], 
and muscle function[8]; it is also intimately associated 
with the emergence of many systemic diseases and 
even cancers. In cancer cells, certain crucial genes 
produce splice isoforms, which differ from those in 
normal cells, through alternative splicing, thereby 
directly contributing to tumor development[9-11]. 
Upon analyzing transcriptome/whole-genome data 
in B-ALL, researchers have identified abnormal 
alternative splicing events within B-ALL that are 
associated with its onset, progression[12, 13], drug 
resistance[14], and prognosis[15]. For example, 
previous studies have shown that an alternative 
splicing transcript of the NT5C2 gene, incorporating 
an alternative exon 4A, generates an enzyme that 
deactivates nucleoside analog drugs used in ALL 
treatment, leading to drug resistance and cancer 
relapse[16-18]. Furthermore, research by Sotillo E et 
al. revealed that alternative splicing of CD19 and 
CD22 could lead to loss or modification of chimeric 
antigen receptor (CAR) T-cell therapy targets, 

preventing CAR T cells from effectively recognizing 
and eliminating tumor cells, thereby resulting in 
acquired immune therapy resistance[14]. Our team 
has also previously demonstrated that the aberrant 
expression of DUX4/IGH in B-ALL patients and the 
subsequent abnormal alternative splicing it drives, 
namely ERGalt, are primary driving factors for the 
comprehensive onset of leukemia, establishing ERGalt 
as a significant secondary hit in leukemia 
development[13]. Therefore, actively understanding 
the alternative splicing events during the progression 
of B-ALL is extremely valuable and necessary for the 
prognosis and clinical treatment of B-ALL. 

Previous research on B-ALL has primarily 
focused on the effects of gene mutations and 
dysregulation on function and clinical treatment, 
while the role of alternative splicing events, which 
directly influence transcript structure, has largely 
been overlooked. In B-ALL, the potential of AS 
remains largely untapped. Therefore, in this work, we 
aimed to develop and validate risk stratification 
signatures based on prognostically relevant AS events 
among 303 B-ALL patients from three independent 
datasets. We employed a range of bioinformatics 
methods, in conjunction with machine learning 
models, to comprehensively identify and interpret AS 
events as prognostic indicators (Fig. 1). Currently, the 
prognosis of B-ALL is primarily based on 
classifications involving fusion genes and 
chromosomal abnormalities. Our work introduces a 
novel perspective for the clinical diagnosis and 
treatment of B-ALL, potentially contributing to the 
optimization of precision therapies for B-ALL and 
further improving patient outcomes. 

 

 
Figure 1: Workflow of This Study. This figure presents the study's streamlined approach, starting from data collection to uncovering prognostic insights in B-ALL, mainly 
including the analysis of RNA-seq data to identify alternative splicing events, the development and validation of a prognostic model using machine learning, and the exploration of 
immunological and drug response implications.  
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Methods 
Data Collection and Preprocessing 

This study received approval from the Ethics 
Committee of Ruijin Hospital. The CGA cohort (N = 
165, training set) RNA-seq raw data and clinical data 
(Table S1) were obtained through the hospital 
network database of the Shanghai Institute of 
Hematology (SIH). The B-ALL patients were enrolled 
under the Shanghai Institute Hematology protocol 
(Chinese Clinical Trial Registry, number 
ChiCTR-RNC-14004969) and Shanghai Children's 
Medical Center protocol (Chinese Clinical Trial 
Registry, number ChiCTR-ONC-14005003). The EGA 
cohort (N = 95, validation set) RNA-seq raw data were 
accessed through the European Genome-phenome 
Archive (accession number EGAS00001001795), and 
the JGA cohort (N = 44, validation set) RNA-seq raw 
data were obtained from the Japanese 
Genotype-Phenotype Archive (accession number 
JGAS00000000047). The transcriptome data of all 
patients analyzed in this study had previously been 
analyzed as part of prior publications[19-22]. 

RNA-seq data were aligned with the human 
reference genome (GRCh38) for RNA-seq read 
mapping, using Salmon (v 0.13.1) to obtain transcript 
reads. Detailed procedures of quality assessment, 
reading pair alignment from RNA-seq data are listed 
in Supplemental Methods. 

Detection of alternative splicing events and 
screening of high-confidence events 

Alternative Splicing events were analyzed using 
SUPPA2 (v 2.3)[23], which can identify seven types of 
AS events: exon skipping (ES), retained intron (RI), 
alternative 5’ splice-site (A5), alternative 3’ splice-site 
(A3), alternative first exons (AF), alternative last exons 
(AL), and mutually exclusive exons (ME), and 
explicitly calculates the percent spliced in (PSI) values 
for splicing events. Detailed procedures are listed in 
Supplemental Methods. 

The resulting raw PSI matrix was filtered using 
the following logic to obtain high-confidence AS 
events: i) AS events with less than 20% missing PSI 
values; ii) AS events with a mean PSI value of > 0.05 
and < 0.95; iii) AS events with a PSI variance > 0.1. 

Identification of Candidate Prognostic AS 
Events and Consensus Clustering 

The survival R package was utilized to conduct 
univariate Cox regression analysis on the association 
between AS events and patients' overall survival time. 
Candidate prognostic AS events were those with a 
P-value of < 0.001. A resampling-based consensus 
clustering method was applied to cluster candidate 

prognostic AS events in the CGA cohort, performed 
by the ConsensusClusterPlus R package[24]. The 
optimal number of clusters was determined by 
integrating the consensus score matrix, Cumulative 
Distribution Function (CDF) curves, and Proportion 
of Ambiguous Clustering (PAC) scores. 

Weighted Gene Co-expression Network 
Analysis (WGCNA) 

The WGCNA R package[25] was employed to 
generate a network of co-expressed AS event PSI 
profiles for the CGA cohort. An appropriate soft 
threshold β was calculated to satisfy the criteria for a 
scale-free network. The dynamic tree cutting method 
was used for module identification. To identify AS 
event modules significantly related to the consensus 
clusters, the module with the highest correlation was 
selected for further study. 

Prognostic AS Signatures Identified Through 
an Ensemble Machine Learning pipeline 

To characterize prognostic AS tags with high 
precision and stability, we integrated ten machine 
learning algorithms and 101 algorithm combinations 
based on previous research[26]. The ensemble 
algorithms included Random Survival Forest (RSF), 
Elastic Net (Enet), Lasso, Ridge, Step Cox, CoxBoost, 
Cox Partial Least Squares Regression (plsRcox), 
Supervised Principal Component (SuperPC), 
Generalized Boosted Regression Modeling (GBM), 
and Survival Support Vector Machine 
(survival-SVM). Key prognostic AS events from the 
module with the highest correlation to consensus 
clusters obtained from the WGCNA procedure were 
fitted using 101 algorithm combinations within a 
predictive model frameworkin the CGA cohort. All 
models were validated in two validation datasets, 
EGA and JGA. For each model, the Harrell's 
concordance index (C-index) was calculated across all 
validation datasets, and the model with the highest 
average C-index was considered optimal. 

Estimation of Immune Cell Infiltration in the 
Tumor Microenvironment 

The estimation of immune cell proportions in 
patients was conducted using seven algorithms 
implemented by the R package IOBR[27]. These 
algorithms include Cibersort, TIMER, quanTIseq, 
MCP-counter, xCell, EPIC, and ESTIMATE, which 
infer the proportions of immune cells in patients 
based on the expression of immune cell marker genes 
in samples. 

Immunoglobulin Repertoire V(D)J 
Rearrangement Analysis 

After quality assessment of the RNA-seq data, 
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immunoglobulin repertoire information was 
extracted using MiXCR (v4.0)[28]. The Convert 
program of VDJtools (v 1.2.1)[29] was used for format 
conversion, and the PlotFancyVJUsage and 
RarefactionPlot programs were utilized for 
visualization. Detailed procedures are listed in 
Supplemental Methods. 

Prediction of Drug Sensitivity and Evaluation 
of Immune Therapy Response 

The oncoPredict R package[30] was used to 
predict the half-maximal inhibitory concentration 
(IC50) of drugs commonly used for treating ALL in 
each sample. The TIDE algorithm (http://tide.dfci 
.harvard.edu/login/)[31] was employed to assess the 
potential clinical efficacy of immunotherapy across 
different groups, reflecting the potential for tumor 
immune evasion. A higher TIDE score is associated 
with poorer efficacy of immune checkpoint inhibitors 
(ICIs). 

SF-AS Regulatory Network 
A list of splicing factors was collected from 

previous research[32]. Spearman correlation analysis 
was utilized to analyze the correlation between the 
PSI values of prognostic AS events and the expression 
of SFs. SF-AS relationships with a p-value less than 
0.05 and an absolute Spearman correlation coefficient 
greater than 0.25 were selected, and an SF-AS 
regulatory network was constructed using 
Cytoscape[33]. 

Cell Proliferation Analyses 
10,000 REH or Sup-B15 cells were seeded into 

each well of a 96-well plate. The cells were treated 
with Dasatinib, Dovitinib, or Midostaurin at 
concentrations ranging from 1 to 1000 nM. They were 
cultured in RPMI 1640 medium supplemented with 
10% FBS, with a total volume of 100 μl per well, and 
incubated at 37°C in a humidified atmosphere 
containing 5% CO2 for 72 hours. After the incubation 
period, 10 μl of Cell Counting Kit-8 (CCK-8, Vazyme) 
reagent was added to each well and the plates were 
further incubated for 2 hours at 37°C. Absorbance at 
450 nm was then measured using a microplate reader 
to determine cell viability based on the absorbance 
values. 

RT-PCR 
SUP-B15 (High-18-AS) and REH (Low-18-AS) 

leukemia cell lines were cultured. Total RNA was 
extracted using the RNeasy Mini Kit (Vazyme, 
Nanjing, China). The synthesis of the first-strand 
complementary DNA was accomplished using the 
HiScript II RT SuperMix II Kit (Vazyme, Nanjing, 

China). Subsequently, primers were designed based 
on the reverse-transcribed first-strand (Table S3), and 
Polymerase chain reactions (PCR) were carried out 
using the Taq Plus Master Mix (Vazyme, Nanjing, 
China). The program of PCR was as follows: 95°C, 5 
min to activateadvantage GC polymerase; followed 
by 35 cycles of 94°C, 30 s; 55°C, 30 s and 72°C for 45 s, 
and finalextension was performed at 72°C for 5 min. 
After obtaining the PCR products, electrophoresis 
was performed using 0.7% agarose gel. 

Statistical Analysis 

All downstream data processing, statistical 
analyses, and plotting were conducted in R software 
version 4.1.3. The correlation between two continuous 
variables was assessed using Pearson or Spearman 
correlation coefficients. Categorical variables were 
compared using the Wilcoxon rank-sum test, while 
continuous variables were compared using the 
Wilcoxon rank-sum test or T-test as appropriate. Cox 
regression and Kaplan-Meier analyses were 
performed using the survival R package. The 
time-dependent area under the ROC curve (AUC) for 
survival variables was conducted by the timeROC R 
package. DCA curves were plotted using the R 
package ggDCA[34]. Forest plots were generated with 
ggforest in the survminer package. Other R packages 
used for visualization include pheatmap, 
clusterProfiler[35], ggplot2, ggsignif, ggsankey, 
ggpubr, factoextra, gghalves, tinyarray, and linkET. 

Results 

Selection of Key Prognostic-Related AS Events 

To systematically identify prognostic-related 
alternative splicing events in B-ALL, we first defined 
the landscape of AS events in B-ALL using RNA-seq 
data from 165 Chinese B-ALL patients in the Chinese 
Genome-phenome Archive (CGA) dataset. Overall, 
we identified over 290,000 distinct AS events in 165 
B-ALL patients, including exon skipping (SE), 
retained intron (RI), alternative 5’ splice-site (A5), 
alternative 3’ splice-site (A3), alternative first exons 
(AF), alternative last exons (AL), and mutually 
exclusive exons (ME), covering seven types of 
alternative splicing events. We also observed that a 
single gene could produce multiple types of AS events 
(Fig. 2A), confirming the significance of AS in 
diversifying the B-ALL transcriptome. After data 
filtering, a final set of 55,517 high-confidence AS 
events was generated (Fig. 2A). In the subsequent 
study, we focused on the prognostic value of these 
high-confidence AS events. 
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Figure 2: Identification of Key Prognostic-Related AS Events. (A) Distribution of high-confidence AS events and genes undergoing AS across seven types of AS events 
after filtering. Blue represents AS events, while yellow indicates genes undergoing AS. (B) Consensus heatmap for all samples when k = 3. A higher consensus score between 
samples indicates a higher likelihood of being grouped into the same cluster across different iterations. (C) Heatmap of the PSI values matrix for AS events across the three 
consensus clusters C1, C2, C3. (D) Kaplan-Meier curves illustrating survival differences among the three consensus clusters C1, C2, C3. (E) Heatmap showing the correlation 
between module characteristic AS events and clinical traits. (F) Correlation of module-trait relationships between turquoise and brown modules and consensus clusters, 
highlighting their significant association. (G) Union of AS events from the turquoise and brown modules identified as key prognostic-related AS events. 
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Next, we integrated clinical data from CGA 
patients and performed univariate Cox analysis on 
high-confidence AS events, identifying 1,271 screened 
candidate prognostic AS events (p < 0.001). These 
1,271 AS events were subjected to Consensus 
Clustering, initially dividing all B-ALL patient 
samples into k (k = 2-5) clusters. The Cumulative 
Distribution Function (CDF) curve of the consensus 
score matrix and the proportion of the Proportion of 
Ambiguous Clustering (PAC) statistic indicated that 
the optimal number of clusters was obtained at k=3 
(Fig. 2B, S1A, B). The prognostic differences between 
the three consensus clusters were significant, with C1 
(n = 127) having the best prognosis, followed by C2 (n 
= 33), and C3 (n = 5) having the worst prognosis (Fig. 
2C, D). We then performed WGCNA on the initially 
screened significant prognostic AS events, setting the 
soft threshold β to 9 in the WGCNA procedure (Fig. 
S1C). This provided an appropriate power value for 
co-expression network construction and identified 
four modules of different colors (Fig. S1D), showing 
the correlation between modules and clinical traits 
such as age, gender, complete remission (CR) status, 
survival status, and consensus clusters. The turquoise 
and brown modules had the highest correlation with 
the consensus clusters (Fig. 2E), both reaching 0.93, 
indicating good module construction quality (Fig. 2F). 
To further explore key AS events highly related to the 
consensus clusters within the turquoise and brown 
modules, we took the union of AS events within both 
modules, ultimately considering 310 AS events as key 
prognostic-related AS events (Fig. 2G). 

Identification of Prognostic AS Signatures 
Based on an Ensemble Machine Learning 
Pipeline 

Next, we aimed to develop prognostic AS 
signatures based on 310 key prognostic-related AS 
events through an integration process utilizing 
machine learning. In the CGA dataset, we fitted 101 
predictive models using a machine learning 
framework and further calculated the concordance 
index (C-index) of each model across all validation 
datasets (Fig. 3A). The optimal model was determined 
to be a combination of CoxBoost and Random 
Survival Forest (RSF), which achieved the highest 
average C-index (0.778), and this combination model 
exhibited significant C-index values across all 
validation datasets (Fig. 3A). The CoxBoost model, 
after 151 steps, identified 29 AS events with non-zero 
coefficient values (Fig. 3B). We further analyzed these 
29 AS events using the RSF model, which achieved the 
minimum error at n = 910, and ranked the 29 AS 
events by relative importance, selecting those with a 
relative ranking greater than 0.25. Ultimately, 18 

prognostic AS tags were identified (Fig. 3C, D), 
hereafter referred to as 18-AS signature. 
Subsequently, each patient's risk score was calculated 
using the percent spliced in (PSI) values of the 18-AS 
and their regression coefficients in a Cox model (Fig. 
3E). To assess the prognostic significance of 18-AS, we 
determined the optimal cutoff value using the 
survminer package, dividing all patients into high 
18-AS and low 18-AS groups. Kaplan-Meier survival 
analysis further demonstrated that patients in the 
high 18-AS group from the CGA training set had a 
significantly higher risk of death compared to the low 
18-AS group (p < 0.001) (Fig. 3F). The same outcome 
was observed in two validation cohorts from the 
Japanese and European B-ALL patients from Japanese 
Genome-phenome Archive (JGA) and European 
Genome-phenome Archive (EGA) datasets, where the 
overall survival (OS) of high 18-AS patients was 
significantly lower than that of the low 18-AS group (p 
< 0.05). 

Additionally, we measured the discriminative 
ability of 18-AS using time-dependent receiver 
operating characteristic (Time ROC) analysis, with the 
2-year, 3-year, and 5-year area under the curve (AUC) 
for CGA patients being 0.998, 0.999, and 0.999, 
respectively. For JGA patients, the AUCs were 0.737, 
0.769, and 0.713, and for EGA patients, they were 
0.653, 0.633, and 0.622, respectively (Fig. 3I). 
Furthermore, decision curve analysis (DCA) indicated 
that 18-AS provided a greater net survival benefit 
than other markers in the CGA and JGA datasets (Fig. 
S2). To facilitate risk quantification, we constructed a 
nomogram (Fig. S2) that combines 18-AS with clinical 
information, where higher nomogram points indicate 
poorer patient prognosis. These results suggest that 
prognostic AS signatures exhibit superior 
performance across each dataset, highlighting the 
broad clinical application prospects of AS events in 
B-ALL patients (Fig. S3). 

To further validate the prognostic value of the 
18-AS across different B-ALL subtypes, our results 
showed that the 18-AS can significantly distinguish 
high-risk from low-risk patients within multiple 
known B-ALL subtypes (Fig. 4). For instance, in the 
BCR::ABL1/-like subtype, patients in the high 18-AS 
group had significantly lower survival rates 
compared to those in the low 18-AS group (p = 
0.0091). Similar stratification effects were observed in 
other subtypes such as high hyperdiploid (p = 0.0076), 
TCF3::PBX1(p = 0.032), and ZNF384/-like subtypes (p 
= 0.056), indicating the broad prognostic applicability 
of the 18-AS. 

Moreover, we performed survival analyses 
separately for pediatric (aged under 18 years) and 
adult (aged 18 years and older) patients to address the 
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concern that the 18-AS might merely reflect 
age-related prognostic differences (Fig. S4). The 
results demonstrated that the 18-AS can significantly 

stratify survival outcomes in both pediatric and adult 
patients (p < 0.001), underscoring its independent 
prognostic value across different age groups. 

 

 
Figure 3: Identification of Prognostic AS Signatures Using an Ensemble Machine Learning Pipeline. (A) Prediction across 101 predictive models was conducted 
using an ensemble machine learning algorithm framework, with further calculation of the C-index for each model across all validation datasets, showcasing the comprehensive 
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evaluation of model performance. (B) The CoxBoost algorithm, after 151 steps, identified 29 AS events with non-zero coefficients, illustrating the rigorous selection process for 
AS events with significant prognostic impact. (C) Error rate curve of the RSF algorithm, achieving the minimum error rate at n = 910L, highlighting the optimization process for 
model accuracy. (D) Relative importance ranking of AS events in the RSF algorithm, emphasizing the contribution of individual AS events to the model's predictive power. (E) Final 
coefficients for 18 AS events obtained through Cox regression, underlining the critical AS events that constitute the prognostic signature. (F-H) Impact of the composite feature 
comprising 18 AS events on prognosis across CGA (F), EGA(G) and JGA (H) datasets, with Kaplan-Meier survival analysis for B-ALL patients demonstrating the prognostic value 
of the 18-AS. (I) Time-dependent ROC analysis predicting 2-year, 3-year, and 5-year overall survival (OS) across three datasets, validating the prognostic accuracy of the 18-AS 
over time. 

 
Figure 4. Prognostic Value of the 18-AS Across Different B-ALL Subtypes. (A) Mulberry chart of patient subtype distribution based on 18-AS, where the width of the 
bars is proportional to the quantity ratio. (B) Kaplan-Meier survival curves for patients with the different subtype stratified by high-18-AS and low-18-AS groups.  

 

Differences in Immunological and Molecular 
Characteristics Based on 18-AS 

Patients in the high 18-AS group exhibited a 
significantly higher risk of death compared to those in 
the low 18-AS group, consistent with the clinical 
characteristics of B-ALL observed in our study. 
Subsequently, we further evaluated the impact of 
18-AS on the patient's immune microenvironment 
and the abundance of B-cell lineage. We first 
conducted enrichment analysis on the genes of 18-AS, 
including genes frequently reported in hematological 
tumors such as FOXP1, IRF4, PDK1, etc. The results 
showed that these genes were enriched in pathways 
such as monocyte activation, macrophage activation, 
B-cell receptor signaling, B-cell apoptosis, and 
lymphocyte activation involved in the immune 
response (Fig. 5A). Meanwhile, patients with different 
18-AS subgroups showed significant differences in 
immune infiltration, with high 18-AS patients having 
lower abundance of B cells, CD4 T cells, macrophages, 
central memory T cells, monocytes, and NK cells 
compared to low 18-AS patients (Fig. 5B, C). 

Immunoglobulin (Ig) genes are assembled from 
variable (V), diversity (D), and joining (J) gene 

segments, undergoing site-specific DNA 
rearrangement mechanisms of V(D)J recombination 
during early B-cell differentiation, which determines 
antigen receptor diversity[36]. In both pediatric and 
adult high 18-AS patients, we observed defects in 
V(D)J rearrangement (Fig. 5D, E, S5). Compared to the 
high V(D)J recombination diversity in low 18-AS 
patients, high 18-AS patients exhibited a more 
pronounced oligoclonal state, showing significant 
reductions in VHJH and VkJk rearrangements. This may 
suggest that malfunction in RNA splicing in the 
context of high 18-AS patients could cause more 
severe impairment in the proliferation, survival, and 
differentiation of precursor B cells at an early stage, 
resulting in poor drug response. 

Drug Sensitivity and Immune Response 
Prediction Based on 18-AS 

To investigate the clinical therapeutic value of 
the 18-AS prognostic model, we explored differences 
in the efficacy of chemotherapy and immunotherapy 
among patients with different 18-AS subgroups. We 
referenced the list of FDA-approved drugs (https:// 
www.cancer.gov/about-cancer/treatment/drugs/le
ukemia#1) for treating ALL and, in conjunction with 
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the actual medication usage in the CGA cohort of 
Chinese patients (Chinese Clinical Trial Registry; no. 
ONC-14004969, ONC-14005003), conducted drug 
sensitivity analysis using oncoPredict package. 
Among six common chemotherapy drugs used to 
treat B-ALL, patients in the high 18-AS group 
exhibited higher IC50 values compared to those in the 
low 18-AS group (Fig. 6A), with significant 
differences in the IC50 values for Nelarabine, 
Vincristine, Imatinib, Doxorubicin, and Cytarabine (p 
< 0.05). Overall, high 18-AS patients displayed 
significant reduced sensitivity to these drugs, 
reiterating their poor response to chemo- and 
targeted-therapies. 

With increasing evidence showing that 
chemotherapy/targeted therapy combined with 
immune checkpoint therapy can demonstrate better 
efficacy in leukemia treatment[37, 38], we predicted 
immune therapy responses in patients. We observed 
significantly lower immune therapy responses in high 
18-AS patients (48.1%) compared to low 18-AS 
patients (64.3%, p < 0.001, Fig. 6B), with high 18-AS 
patients having higher TIDE scores and T-cell 
dysfunction scores (Fig. 6B). These findings suggest a 
lower efficiency of immune therapy in high 18-AS 
patients relative to those in the low 18-AS group. 
Furthermore, the low 18-AS group exhibited higher 
microsatellite instability (MSI) (Fig. 6C), which is 
often associated with better prognosis and sensitivity 
to checkpoint immunotherapy. 

Construction of a Regulatory Network 
between 18-AS and Splicing Factors 

The process of alternative splicing is highly 
organized and regulated by trans-acting factors and 
cis-regulatory elements. Splicing factors (SFs), as 
trans-acting factors, influence exon and splice site 
selections by recognizing cis-regulatory elements 
within pre-mRNA[39]. To explore the potential 
upstream regulatory network of 18-AS events, we 
collected splicing factors defined in previous 
studies[32] and calculated the correlation between SFs 
and 18-AS events using correlation analysis. By 
filtering with an absolute correlation coefficient R ≥ 
0.25 and p <0.05, we identified a series of SFs related 
to 18-AS (Fig. 7A). Further analysis of differential 
expression of SFs between high and low 18-AS 
patients, combined with correlation analysis, led to 
the selection of 12 SFs (Fig. 7B), with RBFOX2, LSM3, 
SRSF8, SAP18, FAM32A, C9orf78 upregulated, and 
MSI1, IGF2BP3, THOC1, SRRM2, RNF213, PAXBP1 
downregulated in high 18-AS patients. We focused on 
SAP18, MSI1, and IGF2BP3, which have been reported 
in hematological tumor research (Fig. 7C-E). SAP18, 
as an integral splicing component of the exon junction 

complex (EJC)-related apoptosis and splicing 
associated protein (ASAP)/PNN-RNPS1-SAP18 
(PSAP) complex[40], is associated with seven AS 
events including IRF4_SE, DPEP2_A3 etc. Previous 
studies reported that SAP18 is involved in the 
apoptosis signaling pathway in T-cell acute 
lymphoblastic leukemia (T-ALL)[41] and 
non-Hodgkin lymphoma[42], affecting disease 
progression. MSI1, involved in maintaining cell 
stemness and oncogenesis, has been shown to bind to 
the 3'-untranslated region of NUMB, a Notch 
inhibitor, thereby regulating the Notch signaling 
pathway[43], and is associated with four AS events 
including IRF4_SE, NUMB_AL in our network. 
IGF2BP3, involved in the localization, stability, and 
translational regulation of target RNAs, is related to 
four AS events including FOXP1_AL, STRN3_SE etc., 
and its low expression in B-ALL has been reported to 
indicate lower survival rates in pediatric B-ALL[44], 
consistent with our findings. In our constructed SF-AS 
network (Fig. 7F), the relationships between SFs and 
AS events are not only one-to-one but also 
many-to-one or many-to-many. 

Validation of Candidate Drugs For High 18-AS 
Patients 

Given the poor survival rate of high 18-AS 
patients, we aimed to identify effective drugs that 
could potentially improve disease progression in 
these patients. The top 20 upregulated SFs in high 
18-AS patients were used as predictive targets, and 
potential drugs reversing these gene expressions were 
screened through CLUE analysis. The results 
highlighted four drugs (Dasatinib, Dovitinib, 
Midostaurin and Saracatinib) as good candidates in 
B-ALL treatment (Fig. 8A). Midostaurin and Dasatinib 
share a common action as KIT inhibitors, while 
Midostaurin and Dovitinib as FLT3 inhibitors (Fig. 
8B). Detailed information about the candidate drugs is 
listed in Table S2. 

To further validate the efficacy of these 
candidate drugs, we conducted a CCK-8 assay on 
B-ALL cell lines. The Sup-B15 cell line, which 
corresponds to the BCR::ABL1 fusion subtype and 
predominantly represents high-18-AS, and the REH 
cell line, which corresponds to the ETV6::RUNX1 
fusion subtype and predominantly represents 
low-18-AS, were chosen to ensure that our 
experimental validation reflects the clinical relevance 
of the 18-AS stratification (Fig. 4A). The CCK-8 assay 
results demonstrated significant differences in drug 
sensitivity between high 18-AS and low 18-AS cell 
lines. High 18-AS cell lines (Sup-B15) exhibited 
markedly lower viability compared to low 18-AS cell 
lines (REH) when treated with Dasatinib, Dovitinib, 
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and Midostaurin at various concentrations. For 
Dasatinib, the viability of high-18-AS cells decreased 
significantly at concentrations as low as 1 nM (p < 
0.01), while low 18-AS cells required higher 
concentrations to achieve similar effects. Similarly, 

both Dovitinib and Midostaurin demonstrated a 
dose-dependent decrease in cell viability, with high 
18-AS cells showing greater sensitivity at tested 
concentrations (p < 0.01). All these results were in line 
with our bioinformatic analysis. 

 

 
Figure 5: Differences in Immunological and Molecular Characteristics Based on 18-AS. (A) Enrichment analysis of 18-AS genes, displaying genes undergoing AS 
events (left panel) and corresponding pathways (right panel). A mulberry chart shows the distribution of genes involved in pathways, illustrating the intricate network of AS events 
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and their pathway implications. (B-C) Distribution of immune cell subpopulation infiltration across different 18-AS subgroups, revealing the impact of AS events on the tumor 
microenvironment and immune cell dynamics. Differences in fibroblasts, neutrophils, monocytic lineage and NK cells were shown in enlarged view on the far right panel. (D) 
Circos plot of VHJH rearrangement in pediatric patients across different 18-AS subgroups, where the width of the bands correlates with the frequency of rearrangement events. 
The diversity of VHJH rearrangements in patients with different 18-AS subgroups is summarized in the curve plot on the right. (E) Circos plot of VHJH rearrangement in adult 
patients across different 18-AS subgroups, similarly illustrating the proportional relationship between band width and rearrangement event frequency. The diversity of VHJH 
rearrangements in patients with different 18-AS subgroups is summarized in the curve plot on the right. Statistical comparisons of categorical variables were made using the 
Wilcoxon rank-sum test, with significance levels marked as *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

 
Figure 6: Drug Sensitivity and Immune Response Prediction Based on 18-AS. (A) Comparison of the predicted IC50 value distributions for six drugs between 18-AS 
subgroups. The IC50 value indicates the effectiveness of a substance in inhibiting a specific biological or biochemical function, with smaller values indicating better efficacy. (B) 
Differences in immune therapy responses between 18-AS subgroups based on the TIDE algorithm. (C) TIDE scores for 18-AS subgroups. TIDE scores correlate positively with 
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the tumor's potential for immune evasion. The Exclusion score correlates positively with the expression of T-cell exclusion markers, the Dysfunction score correlates positively 
with the expression of T-cell dysfunction markers, and the MSI score negatively correlates with microsatellite instability. Categorical variables were compared using the Wilcoxon 
rank-sum test, and continuous variables were compared using the T-test, with significance levels indicated as *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

 
Figure 7: Construction of the 18-AS and Splicing Factor Regulatory Network and Determination of Candidate Drugs Based on Splicing Factors. (A) 
Correlation network between 18-AS and splicing factors. The heatmap's color represents the Pearson correlation coefficient among 18-AS, with darker colors indicating higher 
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correlation. The size of squares in the heatmap signifies the significance of the Pearson correlation among 18-AS, with larger squares indicating greater significance. The width of 
the network lines represents the Spearman test correlation between SFs and 18-AS, with wider lines indicating stronger correlations. The color of the network lines represents 
the significance level from the Spearman test. (B) Heatmap of differential expression profiles of splicing factors between 18-AS subgroups. (C-E) Correlation between splicing 
factors SAP18/MSI1/IGF2BP3 and AS events. (F) Regulatory network between 18-AS and SFs. Triangles (blue) represent AS events, circles (red) represent splicing factors, red 
lines indicate positive correlation between SFs and AS events, and green lines indicate negative correlations.  

 
Figure 8: Validation of Candidate Drugs for High 18-AS Patients. (A) Workflow for screening potential drugs for B-ALL treatment based on splicing factors, including 
the chemical structures of candidate drugs and their IC50 value distributions across different 18-AS subgroups. (B) Venn diagram showing the mechanisms of action (MOA) for 
Dasatinib, Dovitinib and Midostaurin. (C-E) Low-18-AS cells line (REH) and High-18-AS cells line (Sup-B15) were treated with three different drugs (Dasatinib, Dovitinib, or 
Midostaurin) at various concentrations for 72 hours, respectively. Data are presentedas means ± SEM. Statistical analysis was conducted with a two-way ANOVA type test, with 
significance levels indicated as *, P < 0.05; **, P < 0.01; ***, P < 0.001; n=3. 
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Discussion 
Alternative splicing is a highly regulated and 

coordinated molecular mechanism and is considered 
a key characteristic of cancer occurrence, 
differentiation, and treatment, gradually attracting 
widespread attention in various diseases, including 
B-ALL. Researchers have developed prognostic 
models or molecular typing models based on 
alternative splicing in cancers such as acute myeloid 
leukemia (AML)[45], renal cell carcinoma[46], lung 
adenocarcinoma[47], uterine sarcoma[48], and 
pan-gastrointestinal adenocarcinoma[49]. Further-
more, studies analyzing alternative splicing events 
across 33 types of cancer have shown that alternative 
splicing events can be used for molecular subtyping of 
cancers, revealing significant clinical relevance of 
abnormal alternative splicing events to cancer[50]. 
However, the applicability of alternative splicing as a 
prognostic indicator for B-ALL has not yet been 
reported. To address this gap, our study integrates 
high-throughput RNA-seq datasets to explore the 
relationship between AS events and B-ALL prognosis, 
disease progression, and drug benefits, and we have 
also established an SF-AS regulatory network to 
identify effective therapeutic drugs. 

We employed SUPPA2 for AS event 
identification due to its recognized efficacy in 
event-based analysis. SUPPA2 was chosen based on 
its demonstrated performance in detecting AS events 
with high precision and recall. In our previous 
benchmarking study[51], SUPPA2 was shown to be 
among the top-performing tools for event-based 
splicing analysis. However, we acknowledge the 
limitations of relying on a single algorithm and the 
potential for false positives associated with SUPPA2. 
To mitigate the risk of false positives, we 
implemented parameter filtering during the 
execution, ensuring that only AS events with 
sufficient transcript support were considered. This 
approach helped to refine the AS event detection and 
reduce the likelihood of false positives. The 
robustness of our findings is supported by the 
comprehensive nature of the dataset and the 
consistency of the 18-AS signature across multiple 
independent cohorts. Additionally, we validated 
eight AS events using RT-PCR in our high 18-AS and 
low 18-AS cell lines (Fig. S6) and generated Sashimi 
plots from the RNA-seq data of patients (Fig. S7) to 
offer a comprehensive validation of our identified AS 
events. 

In this study, we identified prognostic-related 
AS events using univariate Cox analysis, consensus 
clustering combined with WGCNA. To efficiently 
integrate these prognostic-related AS events, we 
utilized the PSI matrix of AS events, identifying the 

B-ALL prognostic 18-AS signature through an 
integration pipeline comprising ten different machine 
learning algorithms. We fitted 101 machine learning 
algorithms to the training set, among which models 
constructed with the CoxBoost and RSF algorithms 
exhibited the most outstanding performance across 
three datasets. Integrating a variety of methods based 
on different machine learning algorithms can combine 
the strengths of various algorithms, enhancing the 
predictive performance and generalizability of the 
model. By integrating algorithms, multiple machine 
learning algorithms can be combined to fit and predict 
data together. This integrated approach helps find 
prognostic markers with consistent performance 
across Chinese, Japanese and European datasets for 
B-ALL prognosis. At the same time, reducing the 
dimensionality of variables through integrated 
algorithms can simplify the model, making it easier to 
understand and apply. Furthermore, our ROC and 
DCA curve analyses indicate that 18-AS maintains 
accuracy and stable performance across three 
independent datasets, demonstrating its significant 
potential for clinical application. These findings 
further support the broad applicability and 
independent prognostic value of the 18-AS signature 
in B-ALL patients. By validating the signature across 
various subtypes and age groups, we demonstrate 
that the 18-AS signature is not only a marker 
associated with known high-risk subtypes but also an 
independent prognostic tool with significant clinical 
relevance. 

Given the significant prognostic differences 
between the 18-AS subgroups, we subsequently 
explored the potential mechanisms. Within 18-AS, we 
identified key genes involved in B-cell growth and 
development such as FOXP1[52, 53], IRF4[54, 55], 
PDK1[56, 57] incorporated into these prognostic 
signatures. Pathway enrichment results indicated that 
genes undergoing AS participated in regulating 
various pathways including immune cell activation 
and B-cell apoptosis. Previous studies have shown 
that the activity of multiple protein isoforms 
produced by alternative FOXP1 promoters might 
regulate B-cell maturation, and FOXP1 alternative 
splicing has been proven to affect the progression of 
diffuse large B-cell lymphoma[58]. IRF4, a key factor 
in regulating B-cell development, can negatively 
regulate pre-B cell proliferation and promote 
immunoglobulin locus rearrangement[59], and 
studies have indicated that IRF4 deficiency accelerates 
the progression of BCR::ABL positive B-ALL in 
mice[60]. Additionally, our immune infiltration 
analysis revealed that patients with a low 18-AS score 
demonstrated higher immune infiltration abundance. 
Concurrently, both adult and pediatric high 18-AS 
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patients exhibited defects in V(D)J rearrangement, 
suggesting they might face more severe B-cell 
differentiation disorders, leading to impaired B-cell 
function. More importantly, our drug sensitivity 
analysis revealed that high 18-AS patients had higher 
IC50 values for six commonly used B-ALL drugs 
including Nelarabine, Vincristine and Imatinib, which 
is supportive of our AS-based prediction.  

Studies on pan-cancer AS events have 
discovered many differences in selective splicing 
compared to normal cells, which are characteristic of 
individual cancer types and can be used to design 
immune therapy interventions[61]. Therefore, we 
extended the TIDE algorithm to B-ALL patients to 
assess the differences in immune therapy responses 
between the 18-AS subgroups, with results still 
showing significantly lower immune therapy benefits 
in the high 18-AS group compared to the low 18-AS 
group. Given the recent rapid development of CAR 
T-cell therapy in B-ALL[62], it will be of great interest 
to consider whether a similar AS-based risk 
assessment could be implemented prior to the use of 
immune therapy. To explore more effective treatment 
strategies for high 18-AS patients, we also 
characterized the potential regulatory splicing factors 
and developed an SF-AS regulatory network, 
providing some references for exploring the upstream 
mechanisms of 18-AS. Splicing factors can serve as 
predictive targets for drug screening, as demonstrated 
by Wan LD et al.'s study, where SRSF6, an SR protein 
overexpressed in colorectal cancer, promotes tumor 
progression by regulating AS. Virtual drug screening 
identified the SRSF6-targeting inhibitor indacaterol, 
which was evaluated in vitro and in vivo for its 
antitumor effects, showing that indacaterol could 
serve as a novel therapeutic agent by targeting SRSF6 
to regulate AS and thereby inhibit CRC 
progression[63]. Based on this, we screened for drugs 
targeting the splicing factors highly expressed in high 
18-AS patients in B-ALL cell lines, identifying four 
highly confident candidate drugs. Through access to 
the database[64], we found that these compounds 
target specific pathways and genes crucial for 
regulating various cellular processes (Fig. S8). For 
example, Dasatinib primarily influences signal 
transduction, the apoptotic process, and leukocyte 
activation. It targets genes such as ABL1, ABL2, BCR 
and SRC. These genes interact with splicing factors 
like SAP18, FAM32A, and RBFOX2, playing 
significant roles in nucleic acid metabolic processes 
and cell-cell adhesion regulation. Dovitinib affects 
pathways involved in cellular metabolic processes, 
cell population proliferation, and the vascular 
endothelial growth factor signaling pathway. Its 
target genes interact with splicing factors such as 

C9orf78, IGF2BP3, and SAP18, crucially influencing 
cellular metabolism and proliferation. Midostaurin 
impacts the regulation of the MAPK cascade, cell 
population proliferation, and the vascular endothelial 
growth factor signaling pathway. It targets key genes 
like FLT1, FLT3, KIT, PDGFRB, and VEGFA, which 
interact with splicing factors including LSM3, SAP18, 
and THOC1. These interactions are pivotal in 
regulating cell proliferation and metabolic processes. 
Saracatinib regulates apoptosis and cell adhesion by 
targeting ABL1 and LCK, interacting with FAM32A. 
To assess the compounds’ clinical potential, we 
performed CCK-8 assays. The results showed 
significant differences in drug sensitivity between 
high 18-AS and low 18-AS cell lines, confirming our 
findings' clinical relevance. Dasatinib is currently 
approved for use in chronic myelogenous leukemia 
(CML) and ALL, Midostaurin for AML and mast cell 
leukemia, while Dovitinib is not yet included in 
leukemia treatment guidelines. Studies have proven 
that Midostaurin, as a KIT inhibitor, can significantly 
prolong progression-free survival in ALL patients 
when used in combination[65]. Concurrently, 
Dovitinib, targeting FLT1, EGFR, FLT3 and KIT, acts 
as a EGFR inhibitor and FLT3 inhibitor, with previous 
research showing Dovitinib showed treatment 
efficacy in naïve and imatinib-resistant BCR::ABL(+) 
leukemia cells[66]. However, it is worthy to point out 
that the practical applicability of these drugs in B-ALL 
patients still requires vigorous exploration in future 
studies through experiments. 

In summary, this study developed a robust set of 
18-AS signatures using bioinformatics and machine 
learning algorithms, providing valuable insights for 
assessing the immune microenvironment and clinical 
outcomes in B-ALL patients. These findings open new 
avenues for personalized treatment strategies in 
B-ALL. However, our study has limitations, including 
the need for a broader cohort of B-ALL patients to 
confirm the 18-AS prognostic value and further 
exploration of the splicing regulatory mechanisms 
and target drugs. Despite these limitations, our 
research enhances the understanding of AS events in 
B-ALL, identifies key prognostic AS events, and 
highlights potential therapeutic drugs. 
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