Supplemental Information

The modulation of calcium and chloride channels induces cardiomyocytes from human pluripotent stem cells

Ya Meng^{1,2#*}, Chunhao Deng^{3#}, Xia Xiao^{2#}, Shengnan Wei^{2, 4}, Chengcheng Song^{2, 4}, Jiaxian Wang⁵, Chon Lok LEI², Weiwei Liu^{2, 4}, Guokai Chen^{2, 3, 6*}

1. Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, 519000, China.

2. Faculty of Health Sciences, University of Macau, Taipa, Macau

3. Chinese Medicine and Translational Medicine R&D center, Zhuhai UM Science & Technology Research Institute, Zhuhai, Guangdong, 519031, China

4. Biological Imaging and Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macau

5. HELP Stem Cell Innovations Co. Ltd., Nanjing, 210000, China

6. MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China

Corresponding authors: Ya Meng, yameng@ext.jnu.edu.cn; Guokai Chen, guokaichen@um.edu.mo.

These authors contributed equally to this paper.

Index

Supplemental Methods

Supplemental Figure legends

Fig. S1 Expression of ion channels in human embryonic heart and dynamic expression of RYR2 during the process of cardiac differentiation.

Fig. S2 Suramin promoted cardiomyocytes derivation from hPSCs.

Fig. S3 Flow cytometry analysis and immunostaining images of TNNT2 after the treatments of ion channel regulators.

Fig. S4 DIDS promoted cardiomyocytes derivation from hPSCs.

Fig. S5 Mechanism study of suramin and DIDS-induced cardiomyocyte differentiation.

Fig. S6 Bioinformatics analysis of gene expression in different treatments during cardiac differentiation.

Fig. S7 Analysis of Multielectrode array (MEA) and expression of subtype cardiomyocyte markers in suramin or DIDS-induced cardiomyocytes.

Supplemental Table

Tab. S1 Key resources table.

Supplemental Figures

Supplemental Methods

Intracellular calcium flux assay

The intracellular calcium flux assay was conducted using CalbryteTM 520 AM (Cat. 20653, AAT Bioquest) according to the manufacturer's protocol. Briefly, H1 cells were treated with CHIR99021 for 24 hours and then cultured in basal medium for an additional day. On day 2, a working solution of 5 μ M CalbryteTM 520 AM was added to the cells and incubated at 37 °C in a cell incubator for 60 minutes. After washing with HHBS, fluorescence intensity was measured using Varioskan Lux (ThermoFisher). Subsequently, suramin or DIDS was added to the medium and fluorescence intensity was measured after a 5-minute incubation.

Supplemental Figure legends

Fig. S1 Expression of ion channels in human embryonic heart and dynamic expression of RYR2 during the process of cardiac differentiation.

A Gene expression of ion channels during embryonic heart development at early, middle, and late Carnegie stage (CS). Early, CS 13-14; middle, CS 16-20; late, CS 21-23.

E-F Gene expression of *RYR2* and *NKX2-5* during cardiac differentiation. H1 cells were treated with CHIR99021 (5 μ M) for 1 day, and then treated with DMSO (Ctrl), IWP-2 (3 μ M) or Suramin (50 μ M) from day 2 to day 5, and samples were harvested at day 0 (H1), day 3, day 5, and day 7. Data shown are mean \pm SD of three independent experiments. At day 5 and day 7, gene expression of *RYR2* and *NKX2-5* of IWP-2 and Suramin groups showed significant differences compared with control (Ctrl) (*p < 0.05, **p < 0.01).

Fig. S2 Suramin promoted cardiomyocytes derivation from hPSCs.

A Analyses of mRNA expression levels of *NKX2-5* and *TNNT2* at day 10 of cardiac differentiation in H9 hESC. IWP-2 (3 μ M) or suramin (50 μ M) was added into basal medium from day 2 to day 5.

B Flow cytometry analysis of TNNT2-positive cells in the indicated groups after 12 days of differentiation in H9 hESCs.

C Analyses of mRNA expression levels of *NKX2-5* and *TNNT2* at day 10 of cardiac differentiation in NL4 iPSCs.

D Flow cytometry analysis of TNNT2-positive cells in the indicated groups after 12 days of differentiation in NL4 iPSCs.

E Immunostaining images of H1 before cardiac differentiation. DAPI, blue; NKX2-5, red; TNNT2, green.

Data shown are mean \pm SD of three independent experiments (*p < 0.05 compared with none-treated control).

Fig. S3 Flow cytometry analysis and immunostaining images of TNNT2 after the treatments of ion channel regulators.

A TNNT2-positive cardiomyocytes were quantified using flow cytometry analysis after 12 days of differentiation.

B Immunostaining images demonstrated the expression levels of TNNT2 in the differentiated cells following 12 days of differentiation. TNNT2, green; DAPI, blue; scale bar, $50 \mu m$.

Fig. S4 DIDS promoted cardiomyocytes derivation from hPSCs.

A Analyses of mRNA expression levels of *NKX2-5* and *TNNT2* at day 10 of cardiac differentiation in H9 hESC. IWP-2 (3 μ M) or DIDS (4 μ M) was added into basal medium from day 2 to day 5. Data shown are mean \pm SD of three independent experiments (*p < 0.05 compared with Ctrl).

B Flow cytometry analysis of TNNT2-positive cells in the indicated groups after 12 days of differentiation in H9 hESCs.

C Analyses of mRNA expression levels of *NKX2-5* and *TNNT2* at day 10 of cardiac differentiation in NL4 iPSCs. Data shown are mean \pm SD of three independent experiments (*p < 0.05 compared with Ctrl).

D Flow cytometry analysis of TNNT2-positive cells in the indicated groups after 12 days of differentiation in NL4 iPSCs.

E-F Cell survival did not exhibit significant differences throughout the process of differentiation. Cell numbers were assessed on days 0, 3, 5, 7, and 9 of differentiation and normalized to the initial cell count at day 0. Black, Ctrl; blue, IWP-2 group; orange, DIDS group; red, suramin group. N=3.

G Gene expression of cardiac markers at day 10 of differentiation. Data shown are mean \pm SD of three independent experiments (*p < 0.05 compared with IWP-2). H Immunostaining images represented the sarcomere structure labeled by TNNT2 (green) in Suramin or DIDS-treated cells at day 40 of differentiation. TNNT2, green; DAPI, blue; Scale bar, 50 µm.

Fig. S5 Mechanism study of suramin and DIDS-induced cardiomyocyte differentiation. **A-B** Gene expression of *TNNT2* and *NKX2-5* on day 10 of differentiation. Sirti, EX527 10 μ M; JNKi, SP600125 3 μ M; ERKi, SCH772984 10 μ M, P2YRi, P2Y receptor antagonist, AR-C124910XX 3 μ M. Data shown are mean \pm SD of three independent experiments (*p < 0.05 compared with Ctrl).

C Intracellular calcium concentration was enhanced upon administration of suramin and DIDS, as determined using Calbryte[™] 590 AM. The calcium concentration was assessed prior to the administration of suramin or DIDS, and subsequently after a 5-minute treatment with these compounds.

D-E Calcium chelator BAPTA downregulated gene expression of cardiac markers *TNNT2* and *NKX2-5*. BAPTA, 50 μ M. Data shown are mean \pm SD of three independent experiments (*p < 0.05 compared with the indicated group).

F-G Gene expression of *NANOG*, *POU5F1* and *RYR2* in H1 and three shRYR2 stable cell lines. shRYR2-2 and shRYR2-3 were used to investigate the role of RYR2 in cardiac differentiation. Data shown are mean \pm SD of three independent experiments (*p < 0.05 compared with H1).

Fig. S6 Bioinformatics analysis of gene expression in different treatments during cardiac differentiation.

A-C Bubble plot of enriched KEGG pathways from suramin (**A**), DIDS (**B**), and IWR-1 (**C**) up-regulated genes. Rich factor is the ratio of the treatment-regulated gene number to the total gene number of a certain pathway. A Q value is the corrected p value ranging from 0 to 1. The color and size of the dots indicated the range of the Q-value and the number of genes mapped to the certain pathways.

D-F Expression of genes encoded chloride channels (**D**), sodium channels (**E**), potassium channels (**F**) in the indicated groups.

G Gene ontology analysis of suramin, DIDS, or IWR-1 down-regulated genes compared with Ctrl.

Fig. S7 Analysis of Multielectrode array (MEA) and expression of subtype cardiomyocyte markers in suramin or DIDS-induced cardiomyocytes.

A The representative waveform of suramin or DIDS-induced cardiomyocytes was recorded using Axion Biosystems. The suramin or DIDS-induced cardiomyocytes were seeded in the 12-well MEA plates on day 15 of differentiation, and the electrical signals were recorded after 5-10 days.

B The amplitude, beat period and field potential duration (FPD) were measured in suramin or DIDS-induced cardiomyocytes by MEA. Data shown are mean \pm SD of 19-30 measurements (*p < 0.05).

C-D Gene expression of ventricular marker *IRX4*, and Atrial maker *NPPA* at day 40-50 of differentiation. Data shown are mean \pm SD of three independent experiments (*p < 0.05 compared with IWP-2 group).

E Immunostaining images represented the level of HCN4 (red) and DAPI (blue) in the differentiated cells at day 40-50 of differentiation. Scale bar, $50 \mu m$.

2			
REAGENT or	SOUDCE	IDENTIFIED	Concentration /
RESOURCE	SOURCE	IDENTIFIEK	Dilution factor
Antibody			
TNNT2 Antibody	DSHB	Cat.# CT3;	1:100
		RRID: AB_528459	
NIKV2 5 Antibody	Santa Cruz	Cat.# sc-14033;	1:100
NKX2.5 Antibody		RRID: AB_650281	
Catania Antihada	Santa Cruz	Cat.# sc-59737;	1:100
p-Catenin Antibody		RRID: AB_781850	
MLC2A Antibody	Synaptic Systems	Cat.# 311011;	1:100
		RRID: AB_887737	
HCN4 Antibody	Thermo	Cat.# MA5-45431;	1:100
		RRID: AB_2931885	
Alexa Fluor® 488-		Cat # 115 545 071, DDID.	
AffiniPure Goat Anti-	Jackson	Cal.# 115-545-0/1; KKID:	1:100
Mouse IgG		AB_2338847	
Alexa Fluor® 594-		C-+ #711 505 152 DDID	
AffiniPure Donkey Anti-	Jackson	Cat.# /11-383-152; RRID:	1:100
Rabbit IgG		AB_2340021	

Supplemental Table

Tab. S1 Key resources table.

Chemicals, Kits and			
Recombinant Proteins			
L-ascorbic acid-2- phosphate magnesium	Sigma	Cat.# A8960	64 µg/mL
Sodium selenium	Sigma	Cat.# S5261	14 ng/mL
holo-transferrin human	Sigma	Cat.# T0665	10 µg/mL
bFGF	From Chen lab (Chen et al., 2012)	N/A	100 ng/mL
Recombinant human TGF-β1	Peprotech	Cat.# 100-21	2 ng/mL
Insulin solution human	Sigma	Cat.# I9278	19.4 µg/mL
Penicillin/Streptomycin	Thermo	Cat.# 15140-122	1:1000
Y-27632	Selleck	Cat.# S1049	5 μΜ
CHIR-99021	Selleck	Cat.# S2924	5 μΜ
IWP-2	Selleck	Cat.# S7085	3 μΜ
Suramin	Tocris	Cat.# 1472	50 µM
4-CMC	Sigma	Cat.# C55402	500 µM
2-APB	Sigma	Cat.# 100065	40 µM
ВАРТА	Sigma	Cat.# 196419	10 µM
Dantrolene	Selleck	Cat.# S5478	50 µM
JTV519	Sigma	Cat.# SML0549	10 µM
IP3	Sigma	Cat.# 407137	40 µM
ATP	Sigma	Cat.# A1852	40 µM
3-Deoxyaconitine	MCE	Cat.# HY-N2164	5 μΜ
Lu AE98134	MCE	Cat.# HY-133910	5 μΜ
Nav1.1 activator	MCE	Cat.# HY-126429	5 μΜ
Veratrine	Selleck	Cat.# S3250	3 μΜ
Bifenthrin	MCE	Cat.# HY-B0824	5 μΜ
A-803467	Selleck	Cat.# S2785	2.5 μΜ
Bupivacaine	Selleck	Cat.# S2454	2.5 μΜ
Dyclonine	Selleck	Cat.# S2041	2.5 μM

Triamterene	Selleck	Cat.# S4080	2.5 μΜ
Rufinamide	Selleck	Cat.# S1256	2.5 μΜ
Ambroxol	Selleck	Cat.# S3064	2.5 μΜ
ICA-27243	Selleck	Cat.# E0105	5 μΜ
SKA-31	Selleck	Cat.# S0311	5 μΜ
ML-213	Selleck	Cat.# S6553	5 μΜ
Retigabine 2HCl	Selleck	Cat.# S4734	5 μΜ
Repaglinide	Selleck	Cat.# S1426	2.5 μΜ
Gliquidone	Selleck	Cat.# S3151	2.5 μΜ
Dofetilide	Selleck	Cat.# S1658	2.5 μΜ
Tolbutamide	Selleck	Cat.# S2443	2.5 μΜ
Lubiprostone	Selleck	Cat.# S1675	2.5 μΜ
DCEBIO	Tocris	Cat.# 1422	2.5 μΜ
CFTRinh-172	Selleck	Cat.# S7139	2.5 μΜ
DIDS	Tocris	Cat.# 4523	4 μΜ
IWR-1	Selleck	Cat.# S7086	2.5 μΜ
EX527	Selleck	S1541	10 µM
SP600125	Selleck	S1460	3 µM
SCH772984	MCE	HY-50846	10 µM
AR-C124910XX	MCE	HY-110126	3 µM
DAPI	Thermo	Cat.# D1306	0.1 ug/mL
BSA	Sigma	Cat.# A7030	0.5%
Triton TM X-100	Sigma	Cat.# X100	0.1%
Paraformaldehyde	Sigma	Cat.# P6148	4%
Applied Biosystems [™] High-Capacity cDNA Reverse Transcription Kit	Applied Biosystems	Cat.# 4368813	
SYBR® Premix Ex Taq™ (Tli RNaseH Plus)	Takara	Cat.# RR420A	
Calbryte [™] 520 AM	AAT Bioquest	Cat.# 20653	5 μΜ

Software		
Prism 8	GraphPad Software	https://www.graphpad.com
FlowJo V7.6.1	FlowJo	https://www.flowjo.com
R 3.4.2	R Software	https://www.rproject.org
Cell Lines		
Human ESC H1	(Thomson et al., 1998)	N/A
Human ESC H9	(Thomson et al., 1998)	N/A
iPSC NL-4 (NCRM-4)	From NIH	N/A
Other		
DMEM/F12	Thermo	Cat.# 11330-032
Matrigel	Corning	Cat.# 354230
TrypLE select enzyme	Thermo	Cat.# 12563-029
RNAiso Plus	Takara	Cat.# 9109
Vectashield Antifade Mounting Medium	Vector	Cat.# H-1000
Chemically Defined Lipid Concentrate	Thermo	Cat.# 11905031
Primers of Q-PCR		
Gene	Sequence (5'-3')	
NKX2.5-Reverse	CAGCTCTTTCTTTC	GGCTCTA
NKX2-5-Forward	CAAGTGTGCGTCTG	CCTTT
RYR2-Forward	ACAACAGAAGCTATGCTTGGC	
RYR2-Reverse	GAGGAGTGTTCGAT	GACCACC
TBP-Forward	TGAGTTGCTCATACC	CGTGCTGCTA
TBP-Reverse	CCCTCAAACCAACT	IGTCAACAGC
TNNT2-Forward	GGAGGAGTCCAAAC	CAAAGCC
TNNT2-Reverse	TCAAAGTCCACTCTC	CTCTCCATC
ITPR2-Forward	CACCTTGGGGTTAGTGGATGA	
ITPR2-Reverse	CTCGGTGTGGTTCCC	CTTGT
ITPR3-Forward	CCAAGCAGACTAAG	CAGGACA

ITPR3-Reverse	ACACTGCCATACTTCACGACA
RYR1-Forward	CTCCGCCTCTTTCATGGACAT
RYR1-Reverse	CTGCCCGGTAGTGACATGC
RYR3-Forward	GGACTTGGGAATCGCCTGTG
RYR3-Reverse	GCTCTGACAGATAGGGACTGTTC
WNT2-Forward	AAAGAAGATGGGAAGCGCCA
WNT2-Reverse	TTCATCAGGGCTCTGGCATC
WNT3-Forward	CGCACGACTATCCTGGAC
WNT3-Reverse	GAGGCGCTGTCATACTTGTC
WNT5A-Forward	GCCCAGGTTGTAATTGAAGC
WNT5A-Reverse	TGGCACAGTTTCTTCTGTCC
NANOG-Forward	GATGCCTCACACGGAGACTG
NANOG-Reverse	GCAGAAGTGGGTTGTTTGCC
POU5F1-Forward	AACCTGGAGTTTGTGCCAGGGTTT
POU5F1-Reverse	TGAACTTCACCTTCCCTCCAACCA
MYL2-Forward	TGTCCCTACCTTGTCTGTTAGCCA
MYL2-Reverse	ATTGGAACATGGCCTCTGGATGGA
MYL7-Forward	ACATCATCACCCATGGAGACGAGA
MYL7-Reverse	GCAACAGAGTTTATTGAGGTGCCC
HCN4-Forward	GACTGCTGGGTGTCCATCAA
HCN4-Reverse	AGAGCGCGTAGGAGTACTGCTT
IRX4-Forward	TTGGACTCCTGGGAACATGGACAA
IRX4-Reverse	ATGCTTCAGGGTATCTGGCCTCTT
NPPA-Forward	GGGTCTCTGCTGCATTTGTGTCAT
NPPA-Reverse	AGAGGCGAGGAAGTCACCATCAAA
CACNA1D-Forward	GACCAACTTCTCAGCCGAATA
CACNA1D- Reverse	GTGCAGAGGTGCTCATAGTT
TNNI1-Forward	CCGGAAGTCGAGAGAAAACCC
TNNI1- Reverse	TGGCCTCAATGTCGTATCGC

Figure. S1

Figure. S2

Figure. S5

Figure. S6

