	Numb er	Histologic al classificat ion	A ge	Molecul ar subtype	Tum or size	Nodal status	Metastat ic status	cTNM (cStage) *	Histologic al grade**	Tissue type
-	1	Benign	26	NA	NA	-	-	NA	NA	adenosis tissue
	2	CIS	66	Luminal A	0.8	-	-	TisN0M 0 (0)	NA	both normal and tumor tissues
	3	CIS	50	Luminal A	1.1	-	-	TisN0M 0 (0)	NA	both normal and tumor tissues
	4	CIS	67	Luminal B	1.5	-	-	TisN0M 0 (0)	NA	both normal and tumor tissues
	5	CIS	69	Luminal B	1.4	-	-	TisN0M 0 (0)	NA	tumor tissue
	6	CIS	53	Luminal B	3.5	-	-	TisN0M 0 (0)	NA	tumor tissue
	7	CIS	40	HER2	3	-	-	TisN0M 0 (0)	NA	both normal and tumor tissues
	8	CIS	65	Luminal B	1.2	-	-	TisN0M 0 (0)	NA	both normal and tumor tissues
	9	CIS	39	Luminal A	3	-	-	TisN0M 0 (0)	NA	tumor tissue
	10	CIS	54	HER2	3.5	-	-	TisN0M 0 (0)	NA	tumor tissue
	11	CIS	45	Luminal B	6	-	-	TisN0M 0 (0)	NA	tumor tissue
	12	IC	48	Luminal A	1.5	-	-	T1N0M 0 (I)	Ш	both normal and tumor tissues
	13	IC	71	TNBC	2.8	-	-	T2N0M 0 (II)	III	tumor tissue
	14	IC	36	Luminal A	1.2	+	-	T1N1M 0 (II)	Π	tumor tissue
	15	IC	61	Luminal B	2	+	-	T1N2M 0 (III)	III	tumor tissue
	16	CIS	40	Luminal B	3	-	-	TisN0M 0 (0)	NA	tumor tissue
	17	CIS	35	TNBC	0.4	-	-	TisN0M 0 (0)	NA	tumor tissue

Supplementary Table 1. Characteristics of BC patients in CJFH cohort.

18	IC	62	Luminal B	1.5	-	-	T1N0M 0 (I)	II	tumor tissue
19	IC	60	Luminal B	4	-	+	T2N0M 1 (IV)	III	tumor tissue
20	IC	77	TNBC	5	-	-	T2N0M 0 (II)	III	tumor tissue
21	IC	45	Luminal B	2.8	+	-	T2N3M 0 (III)	II	tumor tissue
22	IC	82	Luminal B	2.8	-	-	T2N0M 0 (II)	II	tumor tissue
23	IC	61	NA	3.5	-	-	T2N0M 0 (II)	II	tumor tissue
24	IC	58	Luminal B	2.5	+	-	T2N3M 0 (III)	Ι	both normal and tumor tissues
25	IC	64	Luminal B	1.2	-	-	T1N0M 0 (I)	II	both normal and tumor tissues
26	IC	66	Luminal A	3	+	+	T2N3M 1 (IV)	II	tumor tissue
27	Benign	44	NA	NA	-	-	NA	NA	adenosis tissue
28	IC	76	Luminal B	1.5	-	-	T1N0M 0 (I)	II	tumor tissue
29	IC	50	Luminal A	2.8	-	-	T2N0M 0 (II)	II	tumor tissue
30	IC	51	Luminal A	NA	NA	NA	NA	II	tumor tissue
31	IC	65	Luminal B	2.5	-	-	T2N0M 0 (II)	II	tumor tissue
32	IC	52	Luminal B	1.5	-	-	T1N0M 0 (I)	Ι	tumor tissue
33	IC	66	Luminal B	2	-	-	T1N0M 0 (I)	Ι	tumor tissue
34	IC	43	Luminal A	1.3	+	-	T1N1M 0 (II)	Ι	tumor tissue
35	Benign	32	NA	NA	-	-	NA	NA	adenosis tissue
36	Benign	63	NA	NA	-	-	NA	NA	adenosis tissue
37	Benign	41	NA	NA	-	-	NA	NA	adenosis tissue
38	CIS	72	Luminal A	3.7	-	-	TisN0M 0 (0)	NA	tumor tissue
39	CIS	56	Luminal B	NA	-	-	TisN0M 0 (0)	NA	both normal and tumor tissues

40	CIS	71	Luminal B	0.3	-	-	TisN0M 0 (0)	NA	tumor tissue
41	IC	46	Luminal B	1.6	-	-	T1N0M 0 (I)	Ι	tumor tissue
42	IC	80	Luminal B	2.7	NA	NA	NA	III	tumor tissue
43	IC	45	Luminal A	1	-	-	T1N0M 0 (I)	Ι	both normal and tumor tissues
44	IC	73	TNBC	NA	NA	NA	NA	III	tumor tissue
45	IC	40	Luminal B	1.2	+	-	T1N1M 0 (II)	Ι	tumor tissue
46	IC	75	Luminal B	2	+	-	T1N1M 0 (II)	Ι	both normal and tumor tissues
47	IC	42	Luminal A	1.8	+	-	T1N2M 0 (III)	Ι	tumor tissue
48	IC	74	Luminal B	2.5	-	-	T2N0M 0 (II)	III	tumor tissue
49	IC	44	HER2	NA	NA	NA	NA	III	tumor tissue
50	IC	72	Luminal A	5.5	+	+	T4N2M 1 (IV)	Ι	both normal and tumor tissues

NA, not applicable; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; TNBC, triple-negative breast cancer.

*Followed the AJCC 8th edition staging guideline.

**Followed the modified Scarff-Bloom-Richardson grade.

Supplementary Table 2. Characteristics of BC patients treated with immune-neoadjuva	nt
therapy in PUCH cohort.	

Nu mb er	Histological classification before treatment	A g e	Molec ular subtyp e	Tu mor size	Nod al statu s	cTNM (cStag e)*	Histolo gical grade	Tis sue typ e	Miller- Payne grade**	p C R	Therapeuti c evaluation ***
1	IC	3 9	TNBC	4.8	+	T2N1 M0 (II)	III	tu mo r	2	N	PR
2	IC	5 5	TNBC	2.3	+	T2N3 M0 (III)	Π	tiss ues bef	5	N	PR
3	IC	6 3	TNBC	5.2	+	T4N3 M0 (III)	Π	ore & afte	1	N	SD

	IC	~				T2N2		r			
4		с С	TNBC	4	+	M0	III	trea	4		
		2				(III)		tme		Ν	PR
	IC	E				T2N3		nt			
5		2 2	TNBC	2.5	+	M0	III		5		
		3				(III)				Y	PR
	IC	4				T1N2					
6		4	TNBC	1.7	+	M0	III		3		
		0				(III)				Ν	SD
	IC	3				T2N2					
7		4	TNBC	2	+	M0	III		2		
		т				(III)				Ν	SD
	IC	5				T2N2					
8		2	TNBC	3.3	+	M0	III		3		
		-				(III)				Ν	PR
	IC	5				T2N1					
9		6	TNBC	2.5	+	M0	III		3		
						(II)				Ν	PR
	IC	4				T3N3					
10		1	TNBC	4.4	+	M0	III		2		
						(III)				Ν	PR
	IC	4				T2N2					
11		6	TNBC	3.6	+	M0	III		4		
						(III)				Ν	PR
10	IC	6		~ -		T2N3					
12		0	TNBC	2.5	+	M0	11		3	N	CD
	IC					(III) T2N0				N	SD
12	IC.	5	TNDC	2		12N0	TT		5		
15		4	INDU	3	-		111		5	v	DD
	IC					(II) T2N0				1	IK
14	IC .	6	TNBC	26	_	M0	ш		5	v	CR
11		3	INDE	2.0		(II)			5	1	en
	IC					(II) T2N2					
15	10	5	TNBC	2.8	+	M0	ш		5	Y	SD
		6				(III)			-	-	
	IC					(111) T2N2					
16		3	TNBC	2.5	+	M0	III		5	Y	PR
		7				(III)					
	IC					T2N3					
17		7	TNBC	2.3	+	M0	III		5		
		0				(III)				Y	PR

	IC	4				T2N2				
18		4	TNBC	3.4	+	M0	III	5		PR
		3				(III)			Y	
	IC	1				T2N2				
19		4	TNBC	3.0	+	M0	III	5		
		3				(III)			Y	PR
	IC	2				T2N0				
20		3 2	TNBC	3.2	+	M0	III	5		
		3				(II)			Y	PR
	IC	6				T3N3				
21		0	TNBC	5	+	M0	III	5		
		3				(III)			Ν	PR

IC, invasive carcinoma; TNBC, triple-negative breast cancer; pCR, pathologic complete response; N, no; Y, yes; CR, complete response; PR, partial response, SD, stable disease; PD, progressive disease.

*Followed the AJCC 8th edition staging guideline.

**Followed the modified Scarff-Bloom-Richardson grade.

***Followed the RECIST-1.1 guideline.

Supplementary Table 3. List of 24 features constructed from label-free MPM images.

	Feature name	Explanation	Method and formula
			Manually tracing the outer boundary of
		The eveness area of dustal witholish and	the selected cell (with TPEF signal)
1	Cell: mean of cell area	for one clice	and subsequently calculating its area,
		for one since	followed by determining the average
			area across all 20 cells.
2		The standard deviation of ducta	Calculate the cell area as mentioned
	Cell: stdev of cell area	enithelial cell for one slice	above, followed by determining the
		epitienal cen foi one shee	standard deviation across all 20 cells.
			Manually tracing the outer boundary of
			the nucleus of the selected cell (the
		The average nucleus area of ducta	dark oval structure located within the
3	Cell: mean of nucleus area	enithelial cell for one slice	cell that does not exhibit a TPEF
		epidienai cen foi one snee	signal) and subsequently calculating its
			area, followed by determining the
			average area across all 20 cells.
		The standard deviation of nucleus	Calculate the nucleus as mentioned
4	Cell: stdev of nucleus area	ductal enithelial cell for one slice	above, followed by determining the
		ductar epinicital cen for one shee	standard deviation across all 20 cells.
			Manually tracing the outer boundary of
			the nucleus and the selected cell as
5	Cell: mean of nucleus-	The average ratio of nucleus-cytoplasm	mentioned above and subsequently
5	cytoplasm ratio	for one slice	calculating their areas, using nucleus
			area/ (cell area - nucleus area) to
			calculate the nucleus-cytoplasm ratio

			for each cell, followed by determining the average ratio across all 20 cells.
			Calculate nucleus-cytoplasm ratio for
6	Cell: stdev of nue	cleus-The standard deviation of nucle	eus- each cell as mentioned above, followed
0	cytoplasm ratio	cytoplasm ratio for one slice	by determining the standard deviation
			across all 20 cells.
		-	Open the TPEF channel image in
			ImageJ software, adjust the threshold
			to select the fibrous structures (elastin),
	Extracellular matrix: me	an of The average area ratio of elastin to R	ROI calculate their area, and determine the
7	elastin density	for one slice	elastin density within the ROI using the
	2		formula: elastin area / ROI area.
			Finally, calculate the average elastin
			density for 20 ROIs
			Calculate the electin density for each
	Extra collular matrix, atd	an of The standard deviation of anon ratio	calculate the elastic density for each
8	extracentular matrix: stu	ev of the standard deviation of area ratio	of KOI as mentioned above. Then,
	elastin density	elastin to KOI for one since	calculate the standard deviation of
			elastin density for 20 ROIs.
			Open the SHG channel image in
			ImageJ software, adjust the threshold
			to select the fibrous structures
9	Extracellular matrix: me	an of The average area ratio of collagen	to(collagen), calculate their area, and
-	collagen density	ROI for one slice	determine the collagen density within
			the ROI using the formula: collagen
			area / ROI area. Finally, calculate the
			average collagen density for 20 ROIs.
			Calculate the collagen density for each
1.0	Extracellular matrix: std	ev of The standard deviation of area ratio	o of ROI as mentioned above. Then,
10	collagen density	collagen to ROI for one slice	calculate the standard deviation of
			collagen density for 20 ROIs.
			Calculate the elastin and collagen
			density of each ROI as mentioned
			above. Then determine the elastin-
11	Extracellular matrix: me	an of The average area ratio of elastin	to collagen density ratio using the
	elastin-collagen density ra	atio collagen for one slice	formula: elastin density / collagen
			density Finally calculate the average
			ratio for 20 ROIs
			Colorida the clothe collinear density
			calculate the elastin-collagen density
10	Extracellular matrix: std	ev of The standard deviation of area ratio) of
12	elastin-collagen density ra	atio elastin to collagen for one slice	i nen, calculate the standard deviation
			of elastin-collagen density ratio for 20
			KOIs.

13 Extracellular matrix: mean of The average of 1-minor/major axis for Perform the Fast Fourier Transform in

collagen o	orientation	one slice		SHG channel images, and then used
				the ImageJ software for ellipse fitting
				and measured the long (L) and short
				(S) axes, characterized collagen fiber
				orientation by 1-S/L for each ROI.
				Finally, calculate the average value for
				20 ROIs.
				Calculate 1-S/L for each ROI. Then,
Extracellu	ılar matrix:	stdev of The standard	deviation of	1- calculate the standard deviation of 1-
collagen o	orientation	minor/major axis	for one slice	S/L for 20 ROIs.
				Open the SHG channel image in
				Image software and analyze the
E-4 11	1 ((77) 1	(C 11	imagej software and analyze the
15	llar matrix:	mean of the average diar	neter of collagen i	Poly it de Direction de la
collagen o	liameter	one slice		ROI with the Diameterj plug-in in
				ImageJ. Finally, calculate the average
				diameter for 20 ROIs.
				Calculate the average diameter of
Extracellu	ilar matrix:	stdev of The standard d	eviation of avera	collagen in each ROI as mentioned
16 collagen (liameter	diameter for one s	lice	above. Then, calculate the standard
conagen (lice	deviation of the average diameters of
				20 ROIs.
				Open the TPEF channel image in
				ImageJ software, adjust the threshold
Texture:	mean of	elastin The average int	egrated intensity	of to select the fibrous structures (elastin),
¹ / intensity		elastin for one slic	ce	calculate their intensity. Finally,
				calculate the average intensity of
				elastin for 20 ROIs.
				Calculate the intensity of elastin of
Texture:	stdev of	elastin The standard de	viation of integrat	edeach ROI as mentioned above. Then,
18 intensity		intensity of elastir	1 for one slice	calculate the standard deviation of the
2		5		intensity for 20 ROIs.
				Open the SHG channel image in
				Image I software adjust the threshold
Texture	mean of	collagen The average int	egrated intensity	ofto select the fibrous structures
19 intensity	inean or	collagen for one s	lice	(collagen) calculate their intensity
intensity		conagen for one s	nee	Einally calculate the average intensity.
				of collagon for 20 POIs
T	.1 6	11 751 . 1 1 1		Calculate the intensity of collagen of
20 Iexture:	stdev of	collagen The standard de	viation of integrat	ed each ROI as mentioned above. Then,
intensity		intensity of collag	en for one slice	calculate the standard deviation of the
				intensity for 20 ROIs.
Texture: 21	mean of	average The average ratio	of elastin intensity	to Calculate the intensity of elastin and
elastin int	tensity	elastin density for	one slice	the elastin area for each ROI as

				mentioned above. Then, calculate the
				average elastin intensity by using the
				formula: intensity of elastin / elastin
				area. Finally, determine the mean of
				average elastin intensity for 20 ROIs.
				Calculate the average elastin intensity
22	Texture: stdev	of	averageThe standard deviation of elastin	for each ROI as mentioned above.
22	elastin intensity		intensity to elastin density ratio	Then, determine the standard deviation
				of average elastin intensity of 20 ROIs.
				Calculate the intensity of collagen and
				the collagen area for each ROI as
				mentioned above. Then, calculate the
23	Texture: mean	of	average The average ratio of collagen intensity	average collagen intensity by using the
23	collagen intensity		to collagen density for one slice	formula: intensity of collagen /
				collagen area. Finally, determine the
				mean of average collagen intensity for
				20 ROIs.
				Calculate the average collagen
	T (1	c		intensity for each ROI as mentioned
24	rexture: stdev	01	intervite to a standard deviation of collagen	above. Then, determine the standard
	collagen intensity intensity to collagen der		intensity to conagen density ratio	deviation of average collagen intensity
				of 20 ROIs.

Supplementary Figure 1. The atlas of MPM images and corresponding H&E and Masson images of microstructure of tissues and cells in breast lesion tissues. The first and second lines display the H&E and MT-stained images of typical tissue structure and cells in beast lesions, respectively, while the corresponding label-free MPM images are presented below. In particular, the third line shows cells, and elastic fibers capable of producing TPEF signals (red color-coded), while the fourth line shows collagen fibers in the extracellular matrix producing SHG signals (green color-coded). White arrow: complete basement membrane. Scale bar, 100 µm.

Supplementary Figure 2. Representative MPM images and corresponding H&E/Massonstained image of benign breast lesion. (A) TPEF image; (B) SHG image; (C) Merged image; (D) H&E-stained image; (E) Masson-stained image; (F) Zoom-in overlaid image of the white dashed box region in (C). White arrow: acinus; scale bar: 200 μm (A-E) and 50 μm (F).

Supplementary Figure 3. Representative MPM images and corresponding H&E/Massonstained image of CIS tissue. (A) TPEF image; (B) SHG image; (C) Merged image; (D) H&Estained image; (E) Masson-stained image; (F) Zoom-in overlaid image of the white dashed box region in (C). White arrow: Tumor cell; scale bar: 200 µm (A-E) and 20 µm (F).

Supplementary Figure 4. Representative MPM images and corresponding H&E/Massonstained image of IC tissue. (A) TPEF image; (B) SHG image; (C) Overlaid image; (D) H&E-

stained image; (E) Masson-stained image; (F) Zoom-in overlaid image of the white dashed box region in (C). White arrow: Tumor cell; scale bar: 200 μ m (A-E) and 20 μ m (F).

Supplementary Figure 5. The feature extraction pipeline. We randomly selected 20 ROIs (region of interest) of 512×512 pixels² on the suspicious lesion area of each label-free MPM image (shown on the left). Subsequently, we utilized merged images along with TPEF and SHG channel images to extract cell, elastic fibers, and collagen fiber features, respectively. As depicted in the middle, we manually outlined cells and nuclei to measure the mean and corresponding standard deviation of cell area, nucleus area, and nucleus-cytoplasm ratio. Elastic fibers were identified by adjusting thresholds in the TPEF channel, and we calculated the mean values and corresponding standard deviations of elastin density, elastin intensity, and average elastin intensity. The same approach was employed for collagen fibers in the SHG channel. Besides, the elastin-collagen density ratio was determined. Moreover, we evaluated the orientation of collagen fibers by employing a fast Fourier transform (FFT), followed by ellipse fitting and calculation of 1-S/L. Additionally, we utilized DiameterJ to measure the diameter of collagen fibers. Firstly, we conducted automatic segmentation of collagen fibers to determine the optimal segmentation approach; subsequently, DiameterJ was used to analyze the average diameter of collagen fibers (shown on the right).

Supplementary Figure 6. Dynamic changes in key label-free MPM factors pre- and postneoadjuvant immunotherapy in patients with breast cancer. (A) Mean of cell area; (B) mean of nucleus-cytoplasm ratio; (C) mean of elastin-collagen density ratio; (D) mean of diameter of collagen; (E) stdev of average elastin intensity. The blue points indicated the dynamic changes of patients who achieved pCR in NAIT; the red points indicated the dynamic changes of patients who did not achieve pCR in NAIT. $n_{pCR}=10$, $n_{Non-pCR}=16$, n refers to the number of slices. Outliers were removed using the ROUT method with an aggressive Q=1%. If the data conforms to a Gaussian distribution, paired t-test was used to analyze the significance of dynamic changes of each factor pre- and post-treatment; otherwise, Wilcoxon matched-pairs signed rank test was applied. Significance levels are indicated as follows: *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

Supplementary Figure 7. Label-free MPM factors predict the efficacy of neoadjuvant immunotherapy. (A)&(B) Correlation analysis of the baseline level of stdev of elastin

intensity and responses of patients with breast cancer to NAIT. (C)&(D) Correlation analysis of the baseline level of the mean of average elastin intensity and responses of patients with breast cancer to NAIT. MP, Miller-Payne grading system; pCR, pathological complete response; Non-pCR, non-pathological complete response.