1 Supporting Information

Supplementary Figure S1. A. The morphology of lung cancer cells (PC9 and HCC827) and
gefitinib resistant lung cancer cells (PC9/Gr and HCC827/Gr). B. Sanger sequencing for EGFR
T790M, BRAF and PIK3CA of PC9 and PC9/Gr, HCC827 and HCC827/Gr cells. C. The
expression of C-MET and HER2 in PC9 and PC9/Gr, HCC827 and HCC827/Gr cells was detected

7 by qRT-PCR.

9 Supplementary Figure S2. A. Immunofluorescence staining of stemness related genes NANOG,

- ABCG2, ALDH1A1 and OCT4 in PC9 and PC9/Gr cells. B. Immunofluorescence staining of
 stemness related genes NANOG, ABCG2, ALDH1A1 and OCT4 in HCC827 and HCC827/Gr
- 12 cells.
- 13

15 Supplementary Figure S3. The sensitivities of PC9 and PC9/Gr, HCC827 and HCC827/Gr cells

- 16 to cisplatin (A), pemetrexed (B), and gemcitabine (C). *: P < 0.05; **: P < 0.01; ***: P < 0.001.
- 17

19 Supplementary Figure S4. A. Immunofluorescence staining of EMT related markers E-cadherin,

- 20 N-cadherin, and Vimentin in PC9 and PC9/Gr cells. B. Immunofluorescence staining of EMT
- 21 related markers E-cadherin, N-cadherin, and Vimentin in HCC827 and HCC827/Gr cells.

Supplementary Figure S5. A. The relative c-kit mRNA expressions after interference with
 #1-siRNA-c-kit, #2-siRNA-c-kit, and #3-siRNA-c-kit in PC9/Gr cells were detected by qPCR. B.

26 The relative c-kit protein expressions after interference with #1-siRNA-c-kit, #2-siRNA-c-kit, and

27 #3-siRNA-c-kit in PC9/Gr cells were detected by Western blot. *: P < 0.05; **: P < 0.01; ***: P < 0.01;

- 28 0.001.
- 29

31 Supplementary Figure S6. Flow cytometry analysis of folate receptor-α in PC9 and PC9/Gr,

32 HCC827 and HCC827/Gr cells. *: P < 0.05; **: P < 0.01; ***: P < 0.001.

33

		mExo		17	FA-mExo	
8	PKH26	DAPI	merge	PKH26	DAPI	merge
PC9				6	® @	8 o
PC9/Gr	e o	• •	6.0	64	0 8	0

Supplementary Figure S7. Milk exosomes (red fluorescence) with or without FA modification applied on the PC9 and PC9/Gr cells. After 24h incubation, cells were visualized by confocal

microscope.

40 Supplementary Figure S8. Effects of different concentrations of FA on proliferation of PC9/Gr

41 (A) and HCC827/Gr cells (B).

	0V	100V	150V	200V	250V	300V
PKH26						
FITC						
Merge						

43 Supplementary Figure S9. The fluorescence intensity of mExo loaded siRNA-c-kit under
 44 different electroperforation voltages was observed by confocal microscopy.

47 Supplementary Figure S10. A. Protein expression of mTOR signaling pathway-related 48 molecules AKT, p-AKT, mTOR, p-mTOR, 4EBP1, p-4EBP1, eIF4E, p-eIF4E in HCC827 and 49 HCC827/Gr cells. B. Suppression of mTOR signaling pathway after interference of c-kit 50 expression in HCC827/Gr cells. C. The migration and invasive abilities of HCC827/Gr cells were assessed with transwell assays after treatment with MK2206 (AKT inhibitor) or rapamycin 51 52 (mTOR inhibitor). D. The sphere formation efficiency of HCC827/Gr cells was evaluated after 53 treatment with MK2206 (AKT inhibitor) or rapamycin (mTOR inhibitor). E. Effects of 54 AKT/mTOR inhibitors on gefitinib resistance after blocking the mTOR signaling pathway in 55 HCC827/Gr cells. F. The expression of stem cell-related genes OCT4, ABCG2 and mesenchymal 56 marker N-cadherin was diminished by MK2206 and rapamycin treatment, and epithelial makers E-cadherin expression was increased in HCC827/Gr cells. *: P < 0.05; **: P < 0.01; ***: P < 0.01; 57 58 0.001.

KIT_F	CAAGGCTTCTCCAATTCTGC
KIT_R	TGCAGTGGTCCACAGAAGAG
cMET_F	CCAAGTCAGATGTGTGGTCCTTTG
cMET_R	GGTGTTTACGTCAGGATAAGGTGG
HER2_F	GTGTCTGAATTCTCCCGCATGG
HER2_R	CCGCCACTCCTGGTAGATGAG
NANOG_F	CTCCTCCCATCCCTCATAG
NANOG_R	GGCTCCAACCATACTCCA
ABCG2_F	GGGCTTGTGGAAGAATCA
ABCG2_R	GATGGCAAGGGAACAGAA
ALDH1A1_F	TCAAACCAGCAGAGCAAA
ALDH1A1_R	GCCCATAACCAGGAACAA
PROM1_F	GCATCCATCAAGTGAAACC
PROM1_R	ACCAGGCCATCCAAATC
OCT4_F	GTTTGTGGCAGGGCTTT
OCT4_R	TGTGTCCCAGGCTTCTTT
SNAI2_F	CTGCGATGCCCAGTCTA
SNAI2_R	CCCCGTGTGAGTTCTAATG
VIM_1F	GAAGAGAACTTTGCCGTTG
VIM_1R	GAAGGTGACGAGCCATTT
ECAD_F	CGACACCCGATTCAAAGT
ECAD_R	GCGTAGACCAAGAAATGGA
NCAD_F	ATCATTGCCATCCTGCTC
NCAD_R	TCCTCCACCTTCTTCATCA

60 Supplementary Table 1. Primers and probes for qRT-PCR.