IGF1R Enhances Calcium Oxalate Monohydrate-Induced Epithelial-Mesenchymal Transition by Reprogramming Metabolism via the JAK2/STAT3 Pathway

Jiashan Pan^{1,2,3*}, Yi Zhang^{1,2,3*}, Rui Yao^{1,2,3*}, Mo Yang^{1,2,3}, Xike Mao^{1,2,3}, Zhenyu

Song^{1,2,3}, Yuexian Xu^{1,2,3}, Yang Chen^{1,2,3}, Bingbing Hou^{1,2,3}, Xiaoying Liu^{4#}, Wei Wang^{1,2,3#}, Zongyao Hao^{1,2,3#}

¹Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China

²Institute of Urology, Anhui Medical University, Hefei, China

³Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China

⁴School of Life Sciences, Anhui Medical University, Hefei 230032, China; Henan International Joint Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-Coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan 450053, China.

*These authors contributed equally to this work.

[#]Corresponding Author: Zongyao Hao (ORCID https://orcid.org/0009-0002-1586-5093) Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China

Email: <u>haozongyao@ahmu.edu.cn</u>

Running title: IGF1R Promotes EMT in COM-Induced Injury via JAK2/STAT3

Figure number: 8

Supplemental figure number: 3

Supplemental table number: 5

Figure S1 The trend of IGF2R changes in HK2 cells induced by calcium oxalate monohydrate injury. (A) There is no significant difference in IGF2R between the COM group and the NC group at the mRNA level. (B) There is no significant difference in IGF2R between the COM group and the NC group at the protein level. COM: calcium oxalate monohydrate.

Ctrl

В

COM

Figure S2 The results of quality control for transcriptomics and non-targeted metabolomics.
(A) PCA results of transcriptomics between the si-COM group and the si-IGF1R+COM group.
(B) PCA results of non-targeted metabolomics between the si-COM group and the si-IGF1R+COM group. COM: calcium oxalate monohydrate.

Figure S3The mRNA trends of glycolysis pathway-related proteases in calcium oxalatecrystal-induced cell injury.HK2: Hexokinase, ENO1: Enolase 1, non-neuron, GPI: PhosphoglucoseIsomerase, ALDOA: Aldolase, fructose-bisphosphate A, and PGK1:Phosphoglycerate Kinase-1

Supplementary Table S1 Primers of qRT-PCR used in this study				
	Sequence of oligos used for quantitative real-time PCR of human genes			
	Forward primer	Reverse primer		
β-ΑCΤΙΝ	CCT GGC ACC CAG CAC AAT	GGG CCG GAC TCG TCA TAC		
IGF1R	CAG AGG AGC TGG AGA TGG AG	TCT CAG CCT TGT GTC CTG AG		
CDH1	CGA GAG CTA CAC GTT CAC GG	GGG TGT CGA GGG AAA AAT AGG		
CDH2	AGC CAA CCT TAA CTG AGG AGT	GGC AAG TTG ATT GGA GGG ATG		
VIMENTIN	AGT CCA CTG AGT ACC GGA GAC	CAT TTC ACG CAT CTG GCG TTC		
SNAIL	TCG GAA GCC TAA CTA CAG CGA	AGA TGA GCA TTG GCA GCG AG		
IL-1β	ATG ATG GCT TAT TAC AGT GGC AA	GTC GGA GAT TCG TAG CTG GA		
IL-6	ACT CAC CTC TTC AGA ACG AAT TG	CCA TCT TTG GAA GGT TCA GGT TG		
IL-10	GAC TTT AAG GGT TAC CTG GGT TG	TCA CAT GCG CCT TGA TGT CTG		
TNF-α	GAG GCC AAG CCC TGG TAT G	CGG GCC GAT TGA TCT CAG C		
IGF2R	CAC CAA GTA GGC ACC ACT AAG	CAC CAA GTA GGC ACC ACT AAG		
MCP-1	CAG CCA GAT GCA ATC AAT GCC	TGG AAT CCT GAA CCC ACT TCT		
CLCX1	CTG CTC CTG CTC CTG GTA G	AGT GTG GCT ATG ACT TCG GT		
CL3CX1	GCC ACA GGC GAA AGC AGT A	GGA GGC ACT CGG AAA AGC TC		
HK2	GAG CCA CCA CTC ACC CTA CT	CCA GGC ATT CGG CAA TGT G		
GPI	CAA GGA CCG CTT CAA CCA CTT	CCA GGA TGG GTG TGT TTG ACC		
ALDOA	ATG CCC TAC CAA TAT CCA GCA	GCT CCC AGT GGA CTC ATC TG		
ENO1	AAA GCT GGT GCC GTT GAG AA	GGT TGT GGT AAA CCT CTG CTC		
PGK1	TGG ACG TTA AAG GGA AGC GG	GCT CAT AAG GAC TAC CGA CTT GG		
STAT3	CAG CAG CTT GAC ACA CGG TA	AAA CAC CAA AGT GGC ATG TGA		
JAK2	CTT TGC CCT GTA TGA CGA GAA C	ACC TCA TCC GGT AGT GGA GC		
SLC2A1	ACA GCG TTG ATG CCA GAC AG	GGC CAA GAG TGT GCT AAA GAA		
PFKP	ACC TCC AGA ACG AAG GTC CTC	CGC CTA CCT CAA CGT GGT G		
PFKM	AAG CAT CAT CGA AAC GCT CTC	GGT GCC CGT GTC TTC TTT GT		
PFKL	CCT CTC ACA CAT GAA GTT CTC C	GTA CCT GGC GCT GGT ATC TG		
PFKFB3	TTG GCG TCC CCA CAA AAG T	AGT TGT AGG AGC TGT ACT GCT T		
PKM	TGG GTG GTG AAT CAA TGT CCA	ATG TCG AAG CCC CAT AGT GAA		
LDHB	TGG TAT GGC GTG TGC TAT CAG	TTG GCG GTC ACA GAA TAA TCT TT		
GAPDH	AAA AGC GGG GAG AAA GTA GG	AAG AAG ATG CGG CTG ACT GT		
LDHA	ATG GCA ACT CTA AAG GAT CAG C	CCA ACC CCA ACA ACT GTA ATC T		
LDHA site 1	AGC CAA CTT CAG CTC TCT G	AGG TTC TGA AAT GGG GCT C		
LDHA site 2	AGA GCC CCA TTT CAG AAC CT	GTG CAG TGA CTC ATG CCT GT		
LDHA site 3	GGC TCC TTC CTG AGG CTA TC	TCT GGG CCT GTA TTC TTG CT		

Supplementary Table S1 Primers of aRT-PCR used in this study

	Sequence of oligos used for quantitative real-time RT-PCR of mouse genes		
	Forward primer	Reverse primer	
β-Actin	GGC TGT ATT CCC CTC CAT CG	CCA GTT GGT AAC AAT GCC ATG T	
IGF1R	GTG GGG GCT CGT GTT TCT C	GAT CAC CGT GCA GTT TTC CA	
CDH1	CAG TTC CGA GGT CTA CAC CTT	TGA ATC GGG AGT CTT CCG AAA A	
CDH2	AGG CTT CTG GTG AAA TTG CAT	GTC CAC CTT GAA ATC TGC TGG	
Vimentin	CGT CCA CAC GCA CCT ACA G	GGG GGA TGA GGA ATA GAG GCT	
Snail	CAC ACG CTG CCT TGT GTC T	GGT CAG CAA AAG CAC GGT T	
IL-1β	GCA ACT GTT CCT GAA CTC AAC T	ATC TTT TGG GGT CCG TCA ACT	
IL-6	TAG TCC TTC CTA CCC CAA TTT CC	TTG GTC CTT AGC CAC TCC TTC	
MCP-1	AAG CTT CGC CCC ACA TGC CTC	TCT CGA GCT CAC GCG CAG G	
IL-10	GCT CTT ACT GAC TGG CAT GAG	CGC AGC TCT AGG AGC ATG TG	
TNF-α	CCCTCACACTCAGATCATCTTCT	GCT ACG ACG TGG GCT ACA G	

Supplementary Table S2 Primers of qRT-PCR used in this study

Supplementary Table S3 Details of antibodies

Antibodies	Company	Cat #	Dilution
IGF1R	GenTex	GTX637795	1:2000
IGF2R	Origene	TA351279	1:1000
E-cadherin	Affinity	AF0131	1:1000
N-cadherin	Origene	TA503933	1:1000
Vimentin	Origene	TA801297S	1:1000
Snail	Origene	TA500366	1:1000
STAT3	Cell Signaling Technology	9139	1:2000
Phospho-Stat3	Cell Signaling Technology	9145	1:2000
JAK2	ABclonal	A7694	1:1000
Phospho-JAK2	ABclonal	AP0531	1:1000
LDHA	Origene	TA500531	1:800
KIM-1	Abmart	MA8164S	1:1000
beta Actin	Affinity	AF7018	1:2000
Goat Anti-Rabbit IgG H&L (HRP)	Zenbio	511203	1:10000
Goat Anti-mouse IgG H&L (HRP)	Zenbio	511103	1:10000
Goat Anti-Rabbit IgG H&L (HRP)	Proteintech	30000-0-AP	1:5000

Supponentary Table 54 sixal and six A used in this study				
	Sense (5'-3')			
si-NC	UUCUCCGAACGUGUCACGUTT			
si-IGFR-1	GCGGUGUCCAAUAACUACAUU			
si-IGFR-2	TCATCAGCTTCACCGTTTA			
si-STAT3	GCTGACCAACAATCCCAAGAA			
si-LDHA	GCGTAACGTGAACATATTTAA			
sh-IGF1P	CCAACGAGCAAGTTCTTCGTT tagt gaag ccacagatg taAACGAA			
511-101 TK	GAACTTGCTCGT TGG			

Product Name Company Cat # Usage Calcium Oxalate Mix with complete culture medium, and add 200 Monohydrate Sigma 5794-28-5 ng of the reagent to each well of a 6-well plate (COM) Dilute with physiological saline and administer G10601 Glyoxylic acid(Gly) Sigma intraperitoneally to mice at a concentration of 100 mg/kg Stattic was used in 5 μ M to inhibit the activation Stattic TargetMol T6308 of STAT3 after we confirmed it had no effect on cell viability of HK-2 cell For in vivo experiments, use a concentration of 1 mg/kg with a dissolution solution of 5% DMSO, 40% PEG300, 5% Tween 80, and 50% Colivelin TargetMol **TP1856** physiological saline, and perform continuous injections for 6 days. In in vivo experiments, use a concentration of 10 μ M with a duration of 12 hours For in vivo experiments, use a concentration of Picropodophyllotox MedChem HY-15494 20 mg/kg, administer intraperitoneally twice in (PPP) Express daily, and continue for 7 days Pre-treat by adding the reagent 3 hours before 2-deoxyglucose MedChem adding calcium oxalate crystals, then add it HY-13966 (2-DG) Express together with calcium oxalate crystals to HK2 cells and replace the medium after 24 hours Remove the cell culture medium and add fresh HY-11621 MedChem medium containing 2-NBDG (10 µM). Incubate 2-NBDG

at 37°C for 60 minutes.

Express

5

Supplementary Table S5 Other reagents

Supplementary Table S4 siRAN and shRNA used in this study